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Preface

The exponential development of sensor technology and computer power over the last few 
decades, transformed signal processing in an essential tool for a wide range of domains such 
as telecommunications, medicine or chemistry. Signal processing plays nowadays a key role 
in the progress of knowledge, from the discoveries on the universe underlying structure, 
to the recent breakthroughs in the understanding of the sub-atom structure of the matter.  
Internet, GSM, GPS, HDTV technologies are also indebted to the accelerated evolution of 
signal processing methods. Today, a major challenge in this domain is the development of 
fast and efficient algorithms capable of dealing with the huge amount of data provided by the 
modern sensor technology.

This book intends to provide highlights of the current research in signal processing area, to 
offer a snapshot of the recent advances in this field.  This work is mainly destined to researchers 
in the signal processing related areas but it is also accessible to anyone with a scientific 
background desiring to have an up-to-date overview of this domain. The twenty-five chapters 
present methodological advances and recent applications of signal processing algorithms in 
various domains as telecommunications, array processing, biology, cryptography, image and 
speech processing.  The methodologies illustrated in this book, such as sparse signal recovery, 
are hot topics in the signal processing community at this moment. 

The editor would like to thank all the authors for their excellent contributions in the different 
areas of signal processing and hopes that this book will be of valuable help to the readers.

January 2010

Editor

Sebastian MIRON
Centre de Recherche en Automatique de Nancy

Nancy-Université, CNRS 
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1. Introduction

It is well known that the convergence of the adaptive filtering algorithms becomes slow when
the number of coefficients is very large. However, in many applications, such as digital net-
work and acoustical echo cancelers, the system being modeled presents sparse impulse re-
sponse, that is, most of its coefficients have small magnitudes. The classical adaptation ap-
proaches, such as the least-mean square (LMS) and recursive least squares (RLS) algorithms,
do not take into account the sparseness characteristics of such systems.

In order to improve the convergence for these applications, several algorithms have been pro-
posed recently, which employ individual step-sizes for the updating of the different coeffi-
cients. The adaptation step-sizes are made larger for the coefficients with larger magnitudes,
resulting in a faster convergence for the most significant coefficients. Such idea was first in-
troduced in (Duttweiler, 2000) resulting in the so-called proportionate normalized least mean
square (PNLMS) algorithm. However, the performance of the PNLMS algorithm for the iden-
tification of non-sparse impulse response can be very poor, even slower than that of the con-
ventional LMS algorithm. An improved version of such algorithm, which employs an extra
parameter to control the amount of proportionality in the step-size normalization, was pro-
posed in (Benesty & Gay, 2002).

An observed characteristic of the PNLMS algorithm is a rapid initial convergence, due to the
fast adaptation speed of the large value coefficients, followed by an expressive performance
degradation, owing to the small adaptation speed of the small value coefficients. Such be-
havior is more significant in the modeling of not very sparse impulse responses. In order to
reduce this problem, the application of a non-linear function to the coefficients in the step-size
normalization was proposed in (Deng & Doroslovacki, 2006).

The well-known slow convergence of the gradient algorithms for colored input signals is
also observed in the proportionate-type NLMS algorithms. Implementations that combine
the ideas of the PNLMS and transform-domain adaptive algorithms were proposed in (Deng
& Doroslovacki, 2007) and (Petraglia & Barboza, 2008) for accelerating the convergence for
colored input signals.

In this chapter, we give an overview of the most important adaptive algorithms developed
for the fast identification of systems with sparse impulse responses. The convergence of the
proposed algorithms are compared through computer simulations for the identification of the
channel impulse responses in a digital network echo cancellation application.

1
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2. Sparse Impulse Response Systems

Sparse impulse responses are encountered in several applications, such as in acoustic and
digital network echo cancelers. The adaptive filters employed in the modeling of the unknown
system in such applications present a small number of coefficients with significant magnitude.
Figure 1 illustrates the modeling of an unknown system w

o , which is assumed to be linear,
time-invariant and of finite impulse response length (N), by an adaptive filter. The vector
containing the adaptive filter coefficients is denoted as w(n) = [w0(n) w1(n) · · · wN−1(n)]

T

and its input vector as x(n) = [x(n) x(n − 1) · · · x(n − N + 1)]T. The adaptive filter output is
denoted as y(n), the desired response as d(n) and the estimation error as e(n). One of the most
used adaptation techniques is the normalized least mean-square (NLMS) algorithm, shown in
Table 1, where β is a fixed step-size factor and δ is a small constant needed in order to avoid
division by zero.
As shown in Table 1 for the NLMS algorithm, typical initialization parameters are given for
all algorithms studied in this chapter.

v[n]

w
o

e[n]

d[n]

x[n]

w(n)
y[n]

Fig. 1. System identification through adaptive filtering.

Initialization (typical values)

δ = 0.01, β = 0.25

w(0) =
[

w0(0) w1(0) · · · wN−1(0)
]T

= 0

Processing and Adaptation

For n = 0, 1, 2, · · ·
x(n) =

[

x(n) x(n − 1) · · · x(n − N + 1)
]T

y(n) = x
T(n)w(n)

e(n) = d(n)− y(n)

w(n + 1) = w(n) + β
x(n)e(n)

xT(n)x(n) + δ

End

Table 1. NLMS Algorithm

Described in the next sections, adaptive algorithms that take into account the sparseness of the
unknown system impulse response have been recently developed. The convergence behavior

of such algorithms depends on how sparse the modeled impulse response is. A sparseness
measure of an N-length impulse response w was proposed in (Hoyer, 2004) as

ξw =
N

N −
√

N

(

1 − ||w||1√
N||w||2

)

(1)

where ||w||l is the l-norm of the vector w. It should be observed that 0 ≤ ξw ≤ 1, and that
ξw = 0 when all elements of w are equal in magnitude (non-sparse impulse response) and
ξw = 1 when only one element of w is non-zero (the sparsest impulse response).
In the simulations presented throughout this chapter, the identification of the digital network
channels of ITU-T Recommendation G.168 (G.168, 2004), by an adaptive filter with N = 512
coefficients, will be considered. Figures 2(a) and 2(b) show the impulse responses of the most
and least sparse digital network channel models (gm1 and gm4, respectively) described in
(G.168, 2004). Figure 2(c) presents the gm4 channel impulse response with a white noise (uni-
formly distributed in [-0.05,0.05]) added to it, such as to simulate a non-sparse system. The
corresponding sparseness measures are ξw = 0.8970 for the gm1 channel, ξw = 0.7253 for the
gm4 channel and ξw = 0.2153 for the gm4 plus noise channel.
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Fig. 2. Channel impulse responses: (a) gm1, (b) gm4 and (c) gm4+noise.

3. Proportionate-type NLMS Algorithms

The proportionate-type NLMS algorithms employ a different step-size for each coefficient,
such that larger adjustments are applied to the larger coefficients (or active coefficients), re-
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Fig. 2. Channel impulse responses: (a) gm1, (b) gm4 and (c) gm4+noise.

3. Proportionate-type NLMS Algorithms

The proportionate-type NLMS algorithms employ a different step-size for each coefficient,
such that larger adjustments are applied to the larger coefficients (or active coefficients), re-
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sulting in faster convergence rate when modeling systems with sparse impulse responses. The
main algorithms of such family are described next.

3.1 PNLMS Algorithm
For an adaptive filter with coefficients wi(n), for 1 ≤ i ≤ N − 1, the proportionate normal-
ized least mean-square (PNLMS) algorithm is presented in Table 2. In this algorithm, a time-
varying step-size control matrix Γ(n), whose elements are roughly proportional to the abso-
lute values of the corresponding coefficients, is included in the update equation (Duttweiler,
2000). As a result, the large coefficients at a given iteration get significantly more update en-
ergy than the small ones. The parameter β is a fixed step-size factor, δ is a small constant
needed in order to avoid division by zero, and δp and ρ are small positive constants which
are important when all the coefficients are zero (such as in the beginning of the adaptation
process) or when a coefficient is much smaller than the largest one.

Initialization (typical values)

δp = δ = 0.01, β = 0.25, ρ = 0.01

w(0) =
[

w0(0) w1(0) · · · wN−1(0)
]T

= 0

Processing and Adaptation

For n = 0, 1, 2, · · ·
x(n) =

[

x(n) x(n − 1) · · · x(n − N + 1)
]T

y(n) = x
T(n)w(n)

e(n) = d(n)− y(n)

γmin(n) = ρmax{δp, |w0(n)|, · · · , |wN−1(n)|}
For i = 0, 1, · · · , N − 1

γi(n) = max{γmin(n), |wi(n)|}
End

For i = 0, 1, · · · , N − 1

gi(n) =
γi(n)

1
N ∑

N−1
j=0 γj(n)

End

Γ(n) = diag{g0(n), · · · , gN−1(n)}

w(n + 1) = w(n) + β
Γ(n)x(n)e(n)

xT(n)Γ(n)x(n) + δ

End

Table 2. PNLMS Algorithm

Figure 3 displays the experimental MSE evolutions of the PNLMS and NLMS algorithms for
the three channels of Fig. 2 with white Gaussian noise input. In all experiments a white
Gaussian measurement noise of variance σ2

v = 10−6 was added to the desired signal. It can
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Fig. 3. MSE evolution for the PNLMS and NLMS algorithms for white noise input and chan-
nels (a) gm1, (b) gm4 and (c) gm4+noise.

be observed in Fig. 3 that the PNLMS algorithm converges much faster than the NLMS algo-
rithm for the sparse channel gm1. However, for the dispersive channel gm4+noise the PNLMS
behaves much worse than the NLMS. For channel gm4 the PNLMS algorithm presents a fast
initial convergence, which is significantly reduced after 2000 iterations, becoming slower than
that of the NLMS algorithm.

3.2 IPNLMS Algorithm
In the improved proportionate normalized least mean-square (IPNLMS) algorithm, the indi-
vidual step-sizes are a compromise between the NLMS and the PNLMS step-sizes, resulting
in a better convergence for different degrees of sparseness of the impulse response (Benesty
& Gay, 2002). The IPNLMS algorithm is listed in Table 3. It can be observed that for α = −1
the step-size control matrix Γ(n) reduces to 1

N I and hence the IPNLMS and NLMS algorithms
turn identical. For α = 1, the elements of Γ(n) become proportional to the absolute values of
the coefficients, in which case the IPNLMS and PNLMS algorithms show practically the same
behavior. A typical value for this parameter is α = −0.5.
Figure 4 presents the experimental MSE evolutions of the IPNLMS and NLMS algorithms for
the three channels of Fig. 2 with white Gaussian noise input. From this figure, it can be ob-
served that for the sparse channel gm1, the IPNLMS algorithm produces similar performance
as the PNLMS algorithm, that is, significantly better than the NLMS algorithm. For the disper-
sive channel gm4+noise, the IPNLMS performance is similar to that of the NLMS algorithm,
not presenting the severe convergence degradation of the PNLMS algorithm. For channel
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be observed in Fig. 3 that the PNLMS algorithm converges much faster than the NLMS algo-
rithm for the sparse channel gm1. However, for the dispersive channel gm4+noise the PNLMS
behaves much worse than the NLMS. For channel gm4 the PNLMS algorithm presents a fast
initial convergence, which is significantly reduced after 2000 iterations, becoming slower than
that of the NLMS algorithm.
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vidual step-sizes are a compromise between the NLMS and the PNLMS step-sizes, resulting
in a better convergence for different degrees of sparseness of the impulse response (Benesty
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N I and hence the IPNLMS and NLMS algorithms
turn identical. For α = 1, the elements of Γ(n) become proportional to the absolute values of
the coefficients, in which case the IPNLMS and PNLMS algorithms show practically the same
behavior. A typical value for this parameter is α = −0.5.
Figure 4 presents the experimental MSE evolutions of the IPNLMS and NLMS algorithms for
the three channels of Fig. 2 with white Gaussian noise input. From this figure, it can be ob-
served that for the sparse channel gm1, the IPNLMS algorithm produces similar performance
as the PNLMS algorithm, that is, significantly better than the NLMS algorithm. For the disper-
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not presenting the severe convergence degradation of the PNLMS algorithm. For channel
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Initialization (typical values)

δ = 0.01, ε = 0.001, β = 0.25, α = −0.5

w(0) =
[

w0(0) w1(0) · · · wN−1(0)
]T

= 0

Processing and Adaptation

For n = 0, 1, 2, · · ·
x(n) =

[

x(n) x(n − 1) · · · x(n − N + 1)
]T

y(n) = x
T(n)w(n)

e(n) = d(n)− y(n)

For i = 0, 1, · · · , N − 1

gi(n) =
1 − α

2N
+

(1 + α)|wi(n)|
2 ∑

N−1
j=0 |wj(n)|+ ε

End

Γ(n) = diag{g0(n), · · · , gN−1(n)}

w(n + 1) = w(n) + β
Γ(n)x(n)e(n)

xT(n)Γ(n)x(n) + δ

End

Table 3. IPNLMS Algorithm

gm4, the IPNLMS algorithm does not present the performance degradation (after the initial
convergence period) observed in the PNLMS algorithm; however, there is almost no gain in
the initial convergence speed when compared to the NLMS algorithm.

3.3 MPNLMS and SPNLMS Algorithms
In the µ-law improved proportionate normalized least mean-square (MPNLMS) algorithm,
the step-sizes are optimal in the sense of minimizing the convergence rate (considering white
noise input signal) (Deng & Doroslovacki, 2006). The resulting algorithm employs a non-
linear (logarithm) function of the coefficients in the step-size control. A simplified version
of the MPNLMS, referred to as the segmented PNLMS (SPNLMS) algorithm, also proposed
in (Deng & Doroslovacki, 2006), employs a segmented linear function in order to reduce its
computational complexity. These two algorithms are presented in Table 4, where the function
F(·) is defined as

F(x) = ln(1 + µx) (2)

for the MPNLMS algorithm and

F(x) =

{

600x, x < 0.005
3, x ≥ 0.005

(3)

for the SPNLMS algorithm (Deng & Doroslovacki, 2006).
Figure 5 shows the experimental MSE evolutions of the MPNLMS and NLMS algorithms for
the three channels of Fig. 2 with white Gaussian noise input. From this figure, it can be noticed
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Fig. 4. MSE evolution for the IPNLMS and NLMS algorithms for white noise input and chan-
nels (a) gm1, (b) gm4 and (c) gm4+noise.

that the MPNLMS algorithm presents significantly faster convergence, when compared to
the NLMS, PNLMS and IPNLMS algorithms, mainly for the sparse channels gm1 and gm4.
However, for the dispersive channel gm4+noise, its convergence is severely degraded, being
much slower than that of the NLMS algorithm.
Figure 6 presents the experimental MSE evolutions of the SPNLMS and NLMS algorithms for
the three channels of Fig. 2 with white Gaussian noise input. Comparing Figs. 5 and 6, it can
be verified that the use of the simplified non-linear function does not deteriorate meaningfully
the performance of the MPNLMS algorithm.

3.4 Variable-Parameter IMPNLMS Algorithm
The variable-parameter improved µ-law PNLMS (IMPNLMS) algorithm was proposed in
(L. Liu & Saiki, 2008). In this algorithm, the channel sparseness measure of Eq. (1) was in-
corporated into the µ-law PNLMS algorithm in order to improve the adaptation convergence
for dispersive channels. Since the real channel coefficients are not available, the correspond-
ing sparseness measure is estimated recursively using the current adaptive filter coefficients.
The resulting algorithm is summarized in Table 5, where the parameter α(n), which in the
improved PNLMS algorithm of Table 4 was a predetermined fixed factor, is made variable
and related to the estimated impulse response sparseness measure ξw(n). In addition, also
proposed in (L. Liu & Saiki, 2008), was the use of the line segment function

F(x) =

{

400x, x < 0.005
8.51|x|+ 1.96, x ≥ 0.005

(4)
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Initialization (typical values)

δ = 0.01, ε = 0.001, β = 0.25, α = −0.5

w(0) =
[

w0(0) w1(0) · · · wN−1(0)
]T

= 0

Processing and Adaptation

For n = 0, 1, 2, · · ·
x(n) =

[

x(n) x(n − 1) · · · x(n − N + 1)
]T

y(n) = x
T(n)w(n)

e(n) = d(n)− y(n)

For i = 0, 1, · · · , N − 1

gi(n) =
1 − α

2N
+

(1 + α)|wi(n)|
2 ∑

N−1
j=0 |wj(n)|+ ε

End

Γ(n) = diag{g0(n), · · · , gN−1(n)}

w(n + 1) = w(n) + β
Γ(n)x(n)e(n)

xT(n)Γ(n)x(n) + δ

End

Table 3. IPNLMS Algorithm

gm4, the IPNLMS algorithm does not present the performance degradation (after the initial
convergence period) observed in the PNLMS algorithm; however, there is almost no gain in
the initial convergence speed when compared to the NLMS algorithm.

3.3 MPNLMS and SPNLMS Algorithms
In the µ-law improved proportionate normalized least mean-square (MPNLMS) algorithm,
the step-sizes are optimal in the sense of minimizing the convergence rate (considering white
noise input signal) (Deng & Doroslovacki, 2006). The resulting algorithm employs a non-
linear (logarithm) function of the coefficients in the step-size control. A simplified version
of the MPNLMS, referred to as the segmented PNLMS (SPNLMS) algorithm, also proposed
in (Deng & Doroslovacki, 2006), employs a segmented linear function in order to reduce its
computational complexity. These two algorithms are presented in Table 4, where the function
F(·) is defined as

F(x) = ln(1 + µx) (2)

for the MPNLMS algorithm and

F(x) =

{

600x, x < 0.005
3, x ≥ 0.005

(3)

for the SPNLMS algorithm (Deng & Doroslovacki, 2006).
Figure 5 shows the experimental MSE evolutions of the MPNLMS and NLMS algorithms for
the three channels of Fig. 2 with white Gaussian noise input. From this figure, it can be noticed
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Fig. 4. MSE evolution for the IPNLMS and NLMS algorithms for white noise input and chan-
nels (a) gm1, (b) gm4 and (c) gm4+noise.

that the MPNLMS algorithm presents significantly faster convergence, when compared to
the NLMS, PNLMS and IPNLMS algorithms, mainly for the sparse channels gm1 and gm4.
However, for the dispersive channel gm4+noise, its convergence is severely degraded, being
much slower than that of the NLMS algorithm.
Figure 6 presents the experimental MSE evolutions of the SPNLMS and NLMS algorithms for
the three channels of Fig. 2 with white Gaussian noise input. Comparing Figs. 5 and 6, it can
be verified that the use of the simplified non-linear function does not deteriorate meaningfully
the performance of the MPNLMS algorithm.

3.4 Variable-Parameter IMPNLMS Algorithm
The variable-parameter improved µ-law PNLMS (IMPNLMS) algorithm was proposed in
(L. Liu & Saiki, 2008). In this algorithm, the channel sparseness measure of Eq. (1) was in-
corporated into the µ-law PNLMS algorithm in order to improve the adaptation convergence
for dispersive channels. Since the real channel coefficients are not available, the correspond-
ing sparseness measure is estimated recursively using the current adaptive filter coefficients.
The resulting algorithm is summarized in Table 5, where the parameter α(n), which in the
improved PNLMS algorithm of Table 4 was a predetermined fixed factor, is made variable
and related to the estimated impulse response sparseness measure ξw(n). In addition, also
proposed in (L. Liu & Saiki, 2008), was the use of the line segment function

F(x) =

{

400x, x < 0.005
8.51|x|+ 1.96, x ≥ 0.005

(4)
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Initialization (typical values)

δp = δ = 0.01, β = 0.25, ρ = 1/N

w(0) =
[

w0(0) w1(0) · · · wN−1(0)
]T

= 0

Processing and Adaptation

For n = 0, 1, 2, · · ·
x(n) =

[

x(n) x(n − 1) · · · x(n − N + 1)
]T

y(n) = x
T(n)w(n)

e(n) = d(n)− y(n)

γmin(n) = ρmax{δp, F (|w0(n)|) , · · · , F (|wN−1(n)|)}
For i = 0, 1, · · · , N − 1

γi(n) = max{γmin(n), F (|wi(n)|)}
End

For i = 0, 1, · · · , N − 1

gi(n) =
γi(n)

1
N ∑

N−1
j=0 |γj(n)|

End

Γ(n) = diag{g0(n), · · · , gN−1(n)}

w(n + 1) = w(n) + β
Γ(n)x(n)e(n)

xT(n)Γ(n)x(n) + δ

End

Table 4. MPNLMS and SPNLMS Algorithms

with which the steady-state misalignment is decreased in comparison to those of the
MPNLMS and SPNLMS algorithms (Eqs. (2) and (3)), which place too much emphasis on
small coefficients.
Figure 7 presents the experimental MSE evolutions of the IMPNLMS and NLMS algorithms
for the three channels of Fig. 2 with white Gaussian noise input. The good convergence
behavior of the IMPNLMS algorithm for the sparse and dispersive channels can be observed
in this figure.

4. Wavelet-based proportionate-type NLMS Algorithms

Although the proportionate-type NLMS algorithms produce better convergence than the
NLMS algorithm when modeling sparse impulse responses with white noise inputs, they suf-
fer from the same performance degradation as the NLMS when the excitation signal is colored.
Figure 8 illustrates the performance of the NLMS, MPNLMS and IMPNLMS algorithms for a
colored input signal, generated by passing a white Gaussian noise with zero-mean and unit
variance through the filter with transfer function

H(z) =
0.25

√
3

1 − 1.5z−1 − 0.25z−2
. (5)
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Fig. 5. MSE evolution for the MPNLMS and NLMS algorithms for white noise input and
channels (a) gm1, (b) gm4 and (c) gm4+noise.

Such input signal has power spectrum similar to speech signal (Ikeda & Sugiyama, 1994).
In order to improve the adaptation speed of these algorithms in dispersive channels with
colored input signals, the use of wavelet transform was proposed independently in (Deng &
Doroslovacki, 2007) and (Petraglia & Barboza, 2008). The resulting algorithms are described
next.

4.1 Wavelet-based MPNLMS algorithm (Transform-Domain)
The transform-domain proportionate technique presented in (Deng & Doroslovacki, 2007)
employs the µ-law PNLMS algorithm in the wavelet-domain. Besides improving the con-
vergence of the conventional algorithms owing to power normalization of the step-sizes, the
wavelet-domain approach may be advantageous in the modeling of non-sparse impulse re-
sponses, since they usually become more sparse in the transformed domain. The resulting
algorithm, termed as wavelet-based MPNLMS in the transform-domain (WMPNLMS-TD), is
described in Table 6. The transformation matrix T is formed by the coefficients of the wavelet
filters, as defined in (Attallah, 2000), the vector z(n) = [z0(n) · · · zN−1(n)]

T = Tx(n) is the
transformed input vector and pi(n) is the power estimate of zi(n). The matrix D(n) intro-
duced in the update equation assigns a different step-size normalization to each coefficient.

Figure 9 presents the experimental MSE evolutions of the WMPNLMS-TD algorithm for
the three channels of Fig. 2 and colored noise input with the following wavelet functions:
Haar, Daubechies 2 (Db2) and Daubechies 4 (Db4). Comparing the simulation results of the
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Initialization (typical values)

δp = δ = 0.01, β = 0.25, ρ = 1/N

w(0) =
[

w0(0) w1(0) · · · wN−1(0)
]T

= 0

Processing and Adaptation

For n = 0, 1, 2, · · ·
x(n) =

[

x(n) x(n − 1) · · · x(n − N + 1)
]T

y(n) = x
T(n)w(n)

e(n) = d(n)− y(n)

γmin(n) = ρmax{δp, F (|w0(n)|) , · · · , F (|wN−1(n)|)}
For i = 0, 1, · · · , N − 1

γi(n) = max{γmin(n), F (|wi(n)|)}
End

For i = 0, 1, · · · , N − 1

gi(n) =
γi(n)

1
N ∑

N−1
j=0 |γj(n)|

End

Γ(n) = diag{g0(n), · · · , gN−1(n)}

w(n + 1) = w(n) + β
Γ(n)x(n)e(n)

xT(n)Γ(n)x(n) + δ

End

Table 4. MPNLMS and SPNLMS Algorithms

with which the steady-state misalignment is decreased in comparison to those of the
MPNLMS and SPNLMS algorithms (Eqs. (2) and (3)), which place too much emphasis on
small coefficients.
Figure 7 presents the experimental MSE evolutions of the IMPNLMS and NLMS algorithms
for the three channels of Fig. 2 with white Gaussian noise input. The good convergence
behavior of the IMPNLMS algorithm for the sparse and dispersive channels can be observed
in this figure.

4. Wavelet-based proportionate-type NLMS Algorithms

Although the proportionate-type NLMS algorithms produce better convergence than the
NLMS algorithm when modeling sparse impulse responses with white noise inputs, they suf-
fer from the same performance degradation as the NLMS when the excitation signal is colored.
Figure 8 illustrates the performance of the NLMS, MPNLMS and IMPNLMS algorithms for a
colored input signal, generated by passing a white Gaussian noise with zero-mean and unit
variance through the filter with transfer function

H(z) =
0.25

√
3

1 − 1.5z−1 − 0.25z−2
. (5)
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Fig. 5. MSE evolution for the MPNLMS and NLMS algorithms for white noise input and
channels (a) gm1, (b) gm4 and (c) gm4+noise.

Such input signal has power spectrum similar to speech signal (Ikeda & Sugiyama, 1994).
In order to improve the adaptation speed of these algorithms in dispersive channels with
colored input signals, the use of wavelet transform was proposed independently in (Deng &
Doroslovacki, 2007) and (Petraglia & Barboza, 2008). The resulting algorithms are described
next.

4.1 Wavelet-based MPNLMS algorithm (Transform-Domain)
The transform-domain proportionate technique presented in (Deng & Doroslovacki, 2007)
employs the µ-law PNLMS algorithm in the wavelet-domain. Besides improving the con-
vergence of the conventional algorithms owing to power normalization of the step-sizes, the
wavelet-domain approach may be advantageous in the modeling of non-sparse impulse re-
sponses, since they usually become more sparse in the transformed domain. The resulting
algorithm, termed as wavelet-based MPNLMS in the transform-domain (WMPNLMS-TD), is
described in Table 6. The transformation matrix T is formed by the coefficients of the wavelet
filters, as defined in (Attallah, 2000), the vector z(n) = [z0(n) · · · zN−1(n)]

T = Tx(n) is the
transformed input vector and pi(n) is the power estimate of zi(n). The matrix D(n) intro-
duced in the update equation assigns a different step-size normalization to each coefficient.

Figure 9 presents the experimental MSE evolutions of the WMPNLMS-TD algorithm for
the three channels of Fig. 2 and colored noise input with the following wavelet functions:
Haar, Daubechies 2 (Db2) and Daubechies 4 (Db4). Comparing the simulation results of the
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Fig. 6. MSE evolution for the SPNLMS and NLMS algorithms for white noise input and chan-
nels (a) gm1, (b) gm4 and (c) gm4+noise.

WMPNLMS-TD algorithm with those of Fig. 8, it can be observed that, for colored input,
there is a significant improvement in the performance of the MPNLMS algorithm when it
is applied in the wavelet-domain. The more selective wavelet (Daubechies 4) produced the
fastest convergence, as expected.

4.2 Wavelet-based MPNLMS Algorithm (Sparse Filters)
The wavelet-based proportionate NLMS algorithm proposed in (Petraglia & Barboza, 2008)
employs a wavelet transform and sparse adaptive filters. Illustrated in Fig. 10, the wavelet
transform is represented by a non-uniform filter bank with analysis filters Hk(z), and sparse
adaptive subfilters Gk(z

Lk ) (Petraglia & Torres, 2002). For an octave-band wavelet, the equiv-
alent analysis filters of the M-channel filter bank are (Vaidyanathan, 1993)

H0(z) =
M−2

∏
j=0

H0(z2j
),

Hk(z) = H1(z2M−1−k
)

M−k−2

∏
j=0

H0(z2j
), k = 1, · · · , M − 1, (6)

Initialization (typical values)

δ = 0.01, ε = 0.001, β = 0.25, λ = 0.1, ξ(−1) = 0.96

w(0) =
[

w0(0) w1(0) · · · wN−1(0)
]T

= 0

Processing and Adaptation

For n = 0, 1, 2, · · ·
x(n) =

[

x(n) x(n − 1) · · · x(n − N + 1)
]T

y(n) = x
T(n)w(n)

e(n) = d(n)− y(n)

ξw(n) =
N

N −
√

N



1 −
∑

N−1
j=0 |wj(n)|

√

N ∑
N−1
j=0 |wj(n)|2





ξ(n) = (1 − λ)ξ(n − 1) + λξw(n)

α(n) = 2ξ(n)− 1

For i = 0, 1, · · · , N − 1

gi(n) =
1 − α(n)

2N
+

(1 + α(n))F(|wi(n)|)
2 ∑

N−1
j=0 F(|wj(n)|) + ε

End

Γ(n) = diag{g0(n), · · · , gN−1(n)}

w(n + 1) = w(n) + β
Γ(n)x(n)e(n)

xT(n)Γ(n)x(n) + δ

End

Table 5. Variable-Parameter IMPNLMS Algorithms

where H0(z) and H1(z) are, respectively, the lowpass and high-pass filters associated with the
wavelet functions (Vaidyanathan, 1993). The sparsity factors are

L0 = 2M−1, Lk = 2M−k, k = 1, · · · , M − 1, (7)

and the delays ∆k in Fig. 10, introduced for the purpose of matching the delays of the different
length analysis filters, are given by ∆k = NH0

− NHk
, where NHk

is the length of the kth
analysis filter. This structure yields an additional system delay (compared to a direct-form
FIR structure) equal to ∆D = NH0

. For the modeling of a length N FIR system, the number
of adaptive coefficients of the subfilters Gk(z) (non-zero coefficients of Gk(z

Lk )) should be at
least

Nk =

⌊

N + NFk

Lk

⌋

(8)

where NFk
are the lengths of the corresponding synthesis filters which, when associated to the

analysis filters Hk(z), lead to perfect reconstruction.
The resulting proportionate-type NLMS algorithm, referred here as wavelet-based MPNLMS
with sparse filters (WMPNLMS-SF), is presented in Table 7, where xk(n) is the input signal of
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Fig. 6. MSE evolution for the SPNLMS and NLMS algorithms for white noise input and chan-
nels (a) gm1, (b) gm4 and (c) gm4+noise.

WMPNLMS-TD algorithm with those of Fig. 8, it can be observed that, for colored input,
there is a significant improvement in the performance of the MPNLMS algorithm when it
is applied in the wavelet-domain. The more selective wavelet (Daubechies 4) produced the
fastest convergence, as expected.

4.2 Wavelet-based MPNLMS Algorithm (Sparse Filters)
The wavelet-based proportionate NLMS algorithm proposed in (Petraglia & Barboza, 2008)
employs a wavelet transform and sparse adaptive filters. Illustrated in Fig. 10, the wavelet
transform is represented by a non-uniform filter bank with analysis filters Hk(z), and sparse
adaptive subfilters Gk(z

Lk ) (Petraglia & Torres, 2002). For an octave-band wavelet, the equiv-
alent analysis filters of the M-channel filter bank are (Vaidyanathan, 1993)

H0(z) =
M−2

∏
j=0

H0(z2j
),

Hk(z) = H1(z2M−1−k
)

M−k−2

∏
j=0

H0(z2j
), k = 1, · · · , M − 1, (6)

Initialization (typical values)

δ = 0.01, ε = 0.001, β = 0.25, λ = 0.1, ξ(−1) = 0.96

w(0) =
[

w0(0) w1(0) · · · wN−1(0)
]T

= 0

Processing and Adaptation

For n = 0, 1, 2, · · ·
x(n) =

[

x(n) x(n − 1) · · · x(n − N + 1)
]T

y(n) = x
T(n)w(n)

e(n) = d(n)− y(n)

ξw(n) =
N

N −
√

N



1 −
∑

N−1
j=0 |wj(n)|

√

N ∑
N−1
j=0 |wj(n)|2





ξ(n) = (1 − λ)ξ(n − 1) + λξw(n)

α(n) = 2ξ(n)− 1

For i = 0, 1, · · · , N − 1

gi(n) =
1 − α(n)

2N
+

(1 + α(n))F(|wi(n)|)
2 ∑

N−1
j=0 F(|wj(n)|) + ε

End

Γ(n) = diag{g0(n), · · · , gN−1(n)}

w(n + 1) = w(n) + β
Γ(n)x(n)e(n)

xT(n)Γ(n)x(n) + δ

End

Table 5. Variable-Parameter IMPNLMS Algorithms

where H0(z) and H1(z) are, respectively, the lowpass and high-pass filters associated with the
wavelet functions (Vaidyanathan, 1993). The sparsity factors are

L0 = 2M−1, Lk = 2M−k, k = 1, · · · , M − 1, (7)

and the delays ∆k in Fig. 10, introduced for the purpose of matching the delays of the different
length analysis filters, are given by ∆k = NH0

− NHk
, where NHk

is the length of the kth
analysis filter. This structure yields an additional system delay (compared to a direct-form
FIR structure) equal to ∆D = NH0

. For the modeling of a length N FIR system, the number
of adaptive coefficients of the subfilters Gk(z) (non-zero coefficients of Gk(z

Lk )) should be at
least

Nk =

⌊

N + NFk

Lk

⌋

(8)

where NFk
are the lengths of the corresponding synthesis filters which, when associated to the

analysis filters Hk(z), lead to perfect reconstruction.
The resulting proportionate-type NLMS algorithm, referred here as wavelet-based MPNLMS
with sparse filters (WMPNLMS-SF), is presented in Table 7, where xk(n) is the input signal of
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Fig. 7. MSE evolution for the IMPNLMS and NLMS algorithms for white noise input and
channels (a) gm1, (b) gm4 and (c) gm4+noise.

the k-th subband (x(n) filtered by Hk(z)) and wk,i is the i-th coefficient of Gk(z). For colored in-
put signals, the WMPNLMS-SF algorithm presents faster convergence than the time-domain
MPNLMS algorithm, since its step-size normalization strategy uses the input power at the
different frequency bands. It should be observed that the step-size normalization takes into
account the absolute value of each coefficient in comparison to the values of the corresponding
subfilter coefficients (and not to all coefficients, as is done in the WMPNLMS-TD algorithm
(Deng & Doroslovacki, 2007)). As a result, the large coefficients of a given subfilter get sig-
nificantly more of the update energy assigned to the corresponding subband than the small
ones.
Figure 11 shows the experimental MSE evolution of the WMPNLMS-SF algorithm for a
two-level decomposition (M = 3 subbands) using the following wavelet functions: Haar,
Daubechies 2, Daubechies 4 and Biorthogonal 4.4 (Bior4.4). With such wavelets, the increase
in the complexity (compared to the MPNLMS algorithm) and the delay introduced by the de-
composition are not very large, owing to the reduced orders of the corresponding prototype
filters.
From Figs. 8 and 11 we conclude that, for the colored input signal employed in the simula-
tions, the use of the very simple Haar wavelet transform improves significantly the conver-
gence rate of the MPNLMS algorithm. The fastest convergence of the WMPNLMS-SF algo-
rithm was obtained with the more selective Daubechies 4 and Biorthogonal 4.4 wavelets.
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Fig. 8. MSE evolution for the NLMS, MPNLMS and IMPNLMS algorithms for colored noise
input and channels (a) gm1, (b) gm4 and (c) gm4+noise.

Comparisons with Figs. 9 and 11 indicate that the step-size normalization strategy adopted by
the WMPNLMS-SF method is advantageous when compared to that of the WMPNLMS-TD
method.
The convergence performance of the WMPNLMS-SF algorithm for non-sparse channels can be
improved by using the IMPNLMS algorithm independently for each adaptive subfiter. Figure
12 shows the MSE evolution of the resulting algorithm, referred therein as WIMPNLMS-SF,
for different wavelets with colored input signal. The improvement in the convergence rate for
the dispersive channel gm4+noise can be observed by comparing Figs. 11(c) and 12(c).

5. Conclusions

In this chapter we presented a family of algorithms developed in the last years for improv-
ing the convergence of adaptive filters when modeling sparse impulse responses. The per-
formances of the described techniques, known as proportionate-type LMS algorithms, were
illustrated through computer simulations in the identification of the digital network channels
of ITU-T recommendation G.168. The first proposed approach, the PNLMS algorithm, was
shown to produce fast initial convergence for sparse impulse responses, followed by a sig-
nificant reduction after the fast initial period. Also, its performance was poor for non-sparse
impulse responses. Improved versions of the PNLMS algorithm were then described and
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Fig. 7. MSE evolution for the IMPNLMS and NLMS algorithms for white noise input and
channels (a) gm1, (b) gm4 and (c) gm4+noise.

the k-th subband (x(n) filtered by Hk(z)) and wk,i is the i-th coefficient of Gk(z). For colored in-
put signals, the WMPNLMS-SF algorithm presents faster convergence than the time-domain
MPNLMS algorithm, since its step-size normalization strategy uses the input power at the
different frequency bands. It should be observed that the step-size normalization takes into
account the absolute value of each coefficient in comparison to the values of the corresponding
subfilter coefficients (and not to all coefficients, as is done in the WMPNLMS-TD algorithm
(Deng & Doroslovacki, 2007)). As a result, the large coefficients of a given subfilter get sig-
nificantly more of the update energy assigned to the corresponding subband than the small
ones.
Figure 11 shows the experimental MSE evolution of the WMPNLMS-SF algorithm for a
two-level decomposition (M = 3 subbands) using the following wavelet functions: Haar,
Daubechies 2, Daubechies 4 and Biorthogonal 4.4 (Bior4.4). With such wavelets, the increase
in the complexity (compared to the MPNLMS algorithm) and the delay introduced by the de-
composition are not very large, owing to the reduced orders of the corresponding prototype
filters.
From Figs. 8 and 11 we conclude that, for the colored input signal employed in the simula-
tions, the use of the very simple Haar wavelet transform improves significantly the conver-
gence rate of the MPNLMS algorithm. The fastest convergence of the WMPNLMS-SF algo-
rithm was obtained with the more selective Daubechies 4 and Biorthogonal 4.4 wavelets.
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Fig. 8. MSE evolution for the NLMS, MPNLMS and IMPNLMS algorithms for colored noise
input and channels (a) gm1, (b) gm4 and (c) gm4+noise.

Comparisons with Figs. 9 and 11 indicate that the step-size normalization strategy adopted by
the WMPNLMS-SF method is advantageous when compared to that of the WMPNLMS-TD
method.
The convergence performance of the WMPNLMS-SF algorithm for non-sparse channels can be
improved by using the IMPNLMS algorithm independently for each adaptive subfiter. Figure
12 shows the MSE evolution of the resulting algorithm, referred therein as WIMPNLMS-SF,
for different wavelets with colored input signal. The improvement in the convergence rate for
the dispersive channel gm4+noise can be observed by comparing Figs. 11(c) and 12(c).

5. Conclusions

In this chapter we presented a family of algorithms developed in the last years for improv-
ing the convergence of adaptive filters when modeling sparse impulse responses. The per-
formances of the described techniques, known as proportionate-type LMS algorithms, were
illustrated through computer simulations in the identification of the digital network channels
of ITU-T recommendation G.168. The first proposed approach, the PNLMS algorithm, was
shown to produce fast initial convergence for sparse impulse responses, followed by a sig-
nificant reduction after the fast initial period. Also, its performance was poor for non-sparse
impulse responses. Improved versions of the PNLMS algorithm were then described and
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Initialization (typical values)

T: wavelet transform matrix

δp = δ = 0.01, β = 0.25/N, ρ = 0.01, α = 0.9

w(0) =
[

w0(0) w1(0) · · · wN−1(0)
]T

= 0

Processing and Adaptation

For n = 0, 1, 2, · · ·
x(n) =

[

x(n) x(n − 1) · · · x(n − N + 1)
]T

z(n) = Tx(n)

y(n) = z
T(n)w(n)

e(n) = d(n)− y(n)

γmin(n) = ρmax{δp, F (|w0(n)|) , · · · , F (|wN−1(n)|)}
For i = 0, 1, · · · , N − 1

γi(n) = max{γmin(n), F (|wi(n)|)}
End

For i = 0, 1, · · · , N − 1

gi(n) =
γi(n)

1
N ∑

N−1
j=0 |γj(n)|

pi(n) = αpi(n − 1) + (1 − α) ∗ z2
i (n)

End

D(n) = diag{1/p0(n), · · · , 1/pN−1(n)}
Γ(n) = diag{g0(n), · · · , gN−1(n)}
w(n + 1) = w(n) + βD(n)Γ(n)z(n)e(n)

End

Table 6. WMPNLMS-TD Algorithm

their advantages were verified in the simulation results. Whereas the IPNLMS algorithm pro-
duced enhanced convergence performance when modeling dispersive impulse responses, the
MPNLMS employed a non-linear function of the coefficients in the step-size normalization
in order to obtain optimal convergence rate. The combination of these two techniques and
the use of a sparseness measure of the impulse response resulted in the variable-parameter
IMPNLMS algorithm. The fast convergence rate of the proportionate-type algorithms was
limited to white input signals. In order to extend their performance advantages to colored
input signals, wavelet-domain algorithms, whose step-size normalization takes into account
the value of each coefficient as well as the input signal power in the corresponding frequency
band, were described. Simulations showed that the wavelet-domain PNLMS methods present
significantly faster convergence rate than do the time-domain PNLMS ones for applications
in which the system has sparse impulse responses and is excited with colored input signal.
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Fig. 9. MSE evolution for the WMPNLMS-TD with Haar, Db2 and Db4 wavelets for colored
noise input and channels (a) gm1, (b) gm4 and (c) gm4+noise.
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Initialization (typical values)

T: wavelet transform matrix

δp = δ = 0.01, β = 0.25/N, ρ = 0.01, α = 0.9

w(0) =
[

w0(0) w1(0) · · · wN−1(0)
]T

= 0

Processing and Adaptation

For n = 0, 1, 2, · · ·
x(n) =

[

x(n) x(n − 1) · · · x(n − N + 1)
]T

z(n) = Tx(n)

y(n) = z
T(n)w(n)

e(n) = d(n)− y(n)

γmin(n) = ρmax{δp, F (|w0(n)|) , · · · , F (|wN−1(n)|)}
For i = 0, 1, · · · , N − 1

γi(n) = max{γmin(n), F (|wi(n)|)}
End

For i = 0, 1, · · · , N − 1

gi(n) =
γi(n)

1
N ∑

N−1
j=0 |γj(n)|

pi(n) = αpi(n − 1) + (1 − α) ∗ z2
i (n)

End

D(n) = diag{1/p0(n), · · · , 1/pN−1(n)}
Γ(n) = diag{g0(n), · · · , gN−1(n)}
w(n + 1) = w(n) + βD(n)Γ(n)z(n)e(n)

End

Table 6. WMPNLMS-TD Algorithm

their advantages were verified in the simulation results. Whereas the IPNLMS algorithm pro-
duced enhanced convergence performance when modeling dispersive impulse responses, the
MPNLMS employed a non-linear function of the coefficients in the step-size normalization
in order to obtain optimal convergence rate. The combination of these two techniques and
the use of a sparseness measure of the impulse response resulted in the variable-parameter
IMPNLMS algorithm. The fast convergence rate of the proportionate-type algorithms was
limited to white input signals. In order to extend their performance advantages to colored
input signals, wavelet-domain algorithms, whose step-size normalization takes into account
the value of each coefficient as well as the input signal power in the corresponding frequency
band, were described. Simulations showed that the wavelet-domain PNLMS methods present
significantly faster convergence rate than do the time-domain PNLMS ones for applications
in which the system has sparse impulse responses and is excited with colored input signal.
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Fig. 9. MSE evolution for the WMPNLMS-TD with Haar, Db2 and Db4 wavelets for colored
noise input and channels (a) gm1, (b) gm4 and (c) gm4+noise.
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Initialization

δp = δ = 0.01, β = 0.25, ρ = 0.01

For k = 0, 1, · · · , M − 1

wk(0) =
[

wk,0(0) wk,1(0) · · · wk,Nk−1(0)
]T

= 0

End

Processing and Adaptation

For n = 0, 1, 2, · · ·
For k = 0, 1, · · · , M − 1

xk(n) =

NHk
−1

∑
i=0

hk(i)x(n − i)

xk(n) =
[

xk(n) xk(n−Lk) · · · xk(n−(Nk−1)Lk)
]T

ŷk(n − ∆D) = x
T
k (n)wk(n)

End

y(n) =
M−1

∑
k=0

ŷk(n − ∆D)

e(n) = d(n − ∆D)− y(n)

For k = 0, 1, · · · , M − 1

γmin,k(n) = ρmax{δp, F
(

|wk,0(n)|
)

, · · · , F
(

|wk,Nk
(n)|

)

}
For i = 0, 1, · · · , Nk−1

γk,i(n) = max{γmin,k(n), F
(

|wk,i(n)|
)

}
End

For i = 0, 1, · · · , Nk−1

gk,i(n) =
γk,i(n)

1
Nk

∑
Nk−1

j=0 γk,j(n)

End

Γk(n) = diag{gk,0(n), · · · , gk,N(n)}

wk(n + 1) = wk(n) + β
Γk(n)xk(n)e(n)

xT
k (n)Γk(n)xk(n) + δ

End

End

Table 7. WMPNLMS-SF Algorithm
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Fig. 11. MSE evolution for the WMPNLMS-SF algorithm with Haar, Db2, Db4 and Bior4.4
wavelets and M = 3, for colored noise input and channels (a) gm1, (b) gm4 and (c) gm4+noise.
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Fig. 12. MSE evolution for the WIMPNLMS-SF algorithm with Haar, Db2, Db4 and Bior4.4
wavelets and M = 3, for colored noise input and channels (a) gm1, (b) gm4 and (c) gm4+noise.



New	Adaptive	Algorithms	for	the	Rapid	Identification	of	Sparse	Impulse	Responses 17

Initialization

δp = δ = 0.01, β = 0.25, ρ = 0.01

For k = 0, 1, · · · , M − 1

wk(0) =
[

wk,0(0) wk,1(0) · · · wk,Nk−1(0)
]T

= 0

End

Processing and Adaptation

For n = 0, 1, 2, · · ·
For k = 0, 1, · · · , M − 1

xk(n) =

NHk
−1

∑
i=0

hk(i)x(n − i)

xk(n) =
[

xk(n) xk(n−Lk) · · · xk(n−(Nk−1)Lk)
]T

ŷk(n − ∆D) = x
T
k (n)wk(n)

End

y(n) =
M−1

∑
k=0

ŷk(n − ∆D)

e(n) = d(n − ∆D)− y(n)

For k = 0, 1, · · · , M − 1

γmin,k(n) = ρmax{δp, F
(

|wk,0(n)|
)

, · · · , F
(

|wk,Nk
(n)|

)

}
For i = 0, 1, · · · , Nk−1

γk,i(n) = max{γmin,k(n), F
(

|wk,i(n)|
)

}
End

For i = 0, 1, · · · , Nk−1

gk,i(n) =
γk,i(n)

1
Nk

∑
Nk−1

j=0 γk,j(n)

End

Γk(n) = diag{gk,0(n), · · · , gk,N(n)}

wk(n + 1) = wk(n) + β
Γk(n)xk(n)e(n)

xT
k (n)Γk(n)xk(n) + δ

End

End

Table 7. WMPNLMS-SF Algorithm
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Fig. 11. MSE evolution for the WMPNLMS-SF algorithm with Haar, Db2, Db4 and Bior4.4
wavelets and M = 3, for colored noise input and channels (a) gm1, (b) gm4 and (c) gm4+noise.
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1. Introduction

Array processing techniques aim principally at estimating source Directions Of Arrivals
(DOA’s) based on the observations recorded on a sensor array. The vector-sensor technology
allows the use of polarization as an additional parameter, leading to vector sensor array
processing. In electromagnetics, a vector sensor is composed of six spatially collocated but
orthogonally polarized antennas, measuring all six components (three for the electric and
three for the magnetic fields) of the incident wave. The benefits of considering source
polarization in signal estimation were illustrated in Burgess and Van Veen (1994); Le Bihan et
al. (2007); Li (1993); Miron et al. (2006); Nehorai and Paldi (1994); Rahamim et al. (2003); Weiss
and Friedlander (1993a); Wong and Zoltowski (1997) for diverse signal processing problems.
Most of these algorithms are based on bilinear polarized source mixture models which suffers
from identifiability problems. This means that, without any additional constraint, the steering
vectors of the sources (and implicitly their DOA’s) cannot be uniquely determined by matrix
factorization. The identifiability issues involved in vector sensor applications are investigated
in Ho et al. (1995); Hochwald and Nehorai (1996); Tan et al. (1996a;b).

The use of polarization as a third diversity, in addition to the temporal and spatial diversities,
in vector sensor array processing, leading to a trilinear mixture model, was proposed for the
first time in Miron et al. (2005). Based on this model, a PARAFAC-based algorithm for signal
detection, was later introduced in Zhang and Xu (2007). Multilinear models gave rise to a
great interest in the signal processing community as they exhibit interesting identifiability
properties; their factorization is unique under mild conditions. Several multilinear algorithms
were proposed, mainly in telecommunication domain, using different diversity schemes such
as code diversity Sidiropoulos et al. (2000a), multi-array diversity Sidiropoulos et al. (2000b)
or time-block diversity Rong et al. (2005). For the trilinear mixture model with polarization
diversity, we derived in Guo et al. (2008) the identifiability conditions and showed that
in terms of source separation, the performance of the proposed algorithm is similar to the
classical non-blind techniques.

2
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Nevertheless, the joint estimation of all the three parameters of the sources (DOA, polar-
ization, and temporal sequence) is time-consuming, and it does not always have a practical
interest, especially in array processing applications. A novel stochastic algorithm for DOA
estimation of polarized sources is introduced in this chapter, allowing the estimation of only
two source parameters (DOA and polarization), and thus presenting a smaller computa-
tional complexity than its trilinear version Guo et al. (2008). It is based on a quadrilinear
(fourth-order tensor) representation of the polarized data covariance. The parameters are
then obtained by CANDECOMP/PARAFAC (CP) decomposition the covariance tensor of the
polarized data, using a quadrilinear alternating least squares (QALS) approach. A significant
advantage of the proposed algorithm lies in the fact that the methods based on statistical
properties of the signals proved to outperform deterministic techniques Swindlehurst et al.
(1997), provided that the number of samples is sufficiently high. The performance of the
proposed algorithm is compared in simulations to the trilinear deterministic method, MUSIC
and ESPRIT for polarized sources and to the Cramér-Rao Bound.

This chapter is organized as follows. Section 2 provides some multilinear algebra notions, nec-
essary for the presentation of the multilinear models. In Section 3 we introduce the quadri-
linear model for the covariance of the polarized data and the identifiability conditions for
this model are discussed in Section 4. Section 5 presents the QALS algorithm for parameter
estimation; performance and computational complexity issues are also addressed. Section 6
compares in simulations the quadrilinear algorithm to its trilinear version Guo et al. (2008),
to polarized versions of MUSIC Miron et al. (2005) and ESPRIT Zoltowski and Wong (2000b)
and to the CRB for vector sensor array Nehorai and Paldi (1994). We summarize our findings
in Section 7.

2. Multilinear algebra preliminaries

In multilinear algebra a tensor is a multidimensional array. More formally, an N-way or Nth-
order tensor is an element of the tensor product of N vector spaces, each of which has its
own coordinate system. A first-order tensor is a vector, a second-order tensor is matrix and
tensors of order three or higher are called higher-order tensors. Extending matrix notations to
multilinear algebra we denote by

XXX ∈ CI1×I2×···×IN (1)

a Nth-order tensor with complex entries. In (1), I1, I2, . . . , IN are the dimensions of the N modes
of XXX . The entry (i1, i2, . . . , iN) of XXX is denoted by xi1i2...iN or by (XXX )i1i2...iN . For an overview
of higher-order tensor their applications, the reader is referred to De Lathauwer (1997); Kolda
and Bader (2007). In this section we restrain ourselves to some basic definitions and elemen-
tary operations on tensors, necessary for the understanding of the multilinear models and
algorithms presented in the paper.

Definition 1 (Norm of a tensor). The norm of a tensor XXX ∈ CI1×I2×···×IN is the square root of the
sum of the squares of all its elements, i.e.,

‖XXX‖ �
=

√

√

√

√

I1

∑
i1

I2

∑
i2

· · ·
IN

∑
iN

|xi1i2...iN |
2. (2)

This is analogous to the matrix Frobenius norm.

Definition 2 (Outer product). The outer product of two tensors XXX ∈ CI1×I2×···×IN and YYY ∈
C J1×J2×···×JP is a tensor XXX ◦YYY ∈ CI1×···×IN×J1×···×JP defined by (XXX ◦YYY)i1...iN j1...jp

�
= xi1...iN yj1...jP .

The outer product allows to extend the rank-one matrix definition to tensors.

Definition 3 (Rank-one tensor). An N-way tensor XXX ∈ CI1×I2×···×IN is rank-one if it can be
written as the outer product of N vectors, i.e.,

XXX = a1 ◦ a2 ◦ · · · ◦ aN (3)

with an ∈ CIn .

Tensors can be multiplied together though the notation is much more complex than for ma-
trices. Here we consider only the multiplication of a tensor by a matrix (or a vector) in mode
n.

Definition 4 (n-mode product). The n-mode product of a tensor XXX ∈ CI1×···×In×···×IN with a
matrix U ∈ C J×In is denoted by XXX ×n U and is of size I1 × · · · × In−1 × J × In+1 × · · · × IN . It is
defined as :

(XXX ×n U)i1...in−1 jin+1...iN =
In

∑
in=1

xi1i2...iN ujin . (4)

Several matrix products are important in multilinear algebra formalism, two of which being
recalled here.

Definition 5 (Kronecker product). The Kronecker product of matrices A ∈ CI×J and B ∈ CK×L,
denoted by A ⊗ B, is a matrix of size IK × JL defined by

A ⊗ B =







a11B . . . a1JB
...

. . .
...

aI1B . . . aI JB






(5)

Definition 6 (Khatri-Rao product). Given matrices A ∈ CI×K and B ∈ C J×K, their Khatri-Rao
product is a I J × K matrix defined by

A � B = [a1 ⊗ b1 a2 ⊗ b2 . . . aK ⊗ bK ], (6)

where ak and bk are the the columns of A and B, respectively.

A tensor can be also represented into a matrix form, process known as matricization or unfold-
ing.

Definition 7 (Matricization). The n-mode matricization of a tensor XXX ∈ CI1×···×In×···×IN is a
In × I1 . . . In−1 In+1 . . . IN size matrix denoted by X(n). The tensor element (i1, i2, . . . , iN) maps to
matrix element (in, j) where

j = 1 +
N

∑
k=1,k �=n

(ik − 1)Jk with Jk =
k−1

∏
m=1,m �=n

Im (7)

This operation is generally used in the alternating least squares algorithms for fitting the CP
models, as illustrated in section 5.1.
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Nevertheless, the joint estimation of all the three parameters of the sources (DOA, polar-
ization, and temporal sequence) is time-consuming, and it does not always have a practical
interest, especially in array processing applications. A novel stochastic algorithm for DOA
estimation of polarized sources is introduced in this chapter, allowing the estimation of only
two source parameters (DOA and polarization), and thus presenting a smaller computa-
tional complexity than its trilinear version Guo et al. (2008). It is based on a quadrilinear
(fourth-order tensor) representation of the polarized data covariance. The parameters are
then obtained by CANDECOMP/PARAFAC (CP) decomposition the covariance tensor of the
polarized data, using a quadrilinear alternating least squares (QALS) approach. A significant
advantage of the proposed algorithm lies in the fact that the methods based on statistical
properties of the signals proved to outperform deterministic techniques Swindlehurst et al.
(1997), provided that the number of samples is sufficiently high. The performance of the
proposed algorithm is compared in simulations to the trilinear deterministic method, MUSIC
and ESPRIT for polarized sources and to the Cramér-Rao Bound.

This chapter is organized as follows. Section 2 provides some multilinear algebra notions, nec-
essary for the presentation of the multilinear models. In Section 3 we introduce the quadri-
linear model for the covariance of the polarized data and the identifiability conditions for
this model are discussed in Section 4. Section 5 presents the QALS algorithm for parameter
estimation; performance and computational complexity issues are also addressed. Section 6
compares in simulations the quadrilinear algorithm to its trilinear version Guo et al. (2008),
to polarized versions of MUSIC Miron et al. (2005) and ESPRIT Zoltowski and Wong (2000b)
and to the CRB for vector sensor array Nehorai and Paldi (1994). We summarize our findings
in Section 7.

2. Multilinear algebra preliminaries

In multilinear algebra a tensor is a multidimensional array. More formally, an N-way or Nth-
order tensor is an element of the tensor product of N vector spaces, each of which has its
own coordinate system. A first-order tensor is a vector, a second-order tensor is matrix and
tensors of order three or higher are called higher-order tensors. Extending matrix notations to
multilinear algebra we denote by

XXX ∈ CI1×I2×···×IN (1)

a Nth-order tensor with complex entries. In (1), I1, I2, . . . , IN are the dimensions of the N modes
of XXX . The entry (i1, i2, . . . , iN) of XXX is denoted by xi1i2...iN or by (XXX )i1i2...iN . For an overview
of higher-order tensor their applications, the reader is referred to De Lathauwer (1997); Kolda
and Bader (2007). In this section we restrain ourselves to some basic definitions and elemen-
tary operations on tensors, necessary for the understanding of the multilinear models and
algorithms presented in the paper.

Definition 1 (Norm of a tensor). The norm of a tensor XXX ∈ CI1×I2×···×IN is the square root of the
sum of the squares of all its elements, i.e.,
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The outer product allows to extend the rank-one matrix definition to tensors.

Definition 3 (Rank-one tensor). An N-way tensor XXX ∈ CI1×I2×···×IN is rank-one if it can be
written as the outer product of N vectors, i.e.,

XXX = a1 ◦ a2 ◦ · · · ◦ aN (3)

with an ∈ CIn .

Tensors can be multiplied together though the notation is much more complex than for ma-
trices. Here we consider only the multiplication of a tensor by a matrix (or a vector) in mode
n.

Definition 4 (n-mode product). The n-mode product of a tensor XXX ∈ CI1×···×In×···×IN with a
matrix U ∈ C J×In is denoted by XXX ×n U and is of size I1 × · · · × In−1 × J × In+1 × · · · × IN . It is
defined as :

(XXX ×n U)i1...in−1 jin+1...iN =
In

∑
in=1

xi1i2...iN ujin . (4)

Several matrix products are important in multilinear algebra formalism, two of which being
recalled here.

Definition 5 (Kronecker product). The Kronecker product of matrices A ∈ CI×J and B ∈ CK×L,
denoted by A ⊗ B, is a matrix of size IK × JL defined by

A ⊗ B =







a11B . . . a1JB
...

. . .
...

aI1B . . . aI JB






(5)

Definition 6 (Khatri-Rao product). Given matrices A ∈ CI×K and B ∈ C J×K, their Khatri-Rao
product is a I J × K matrix defined by

A � B = [a1 ⊗ b1 a2 ⊗ b2 . . . aK ⊗ bK ], (6)

where ak and bk are the the columns of A and B, respectively.

A tensor can be also represented into a matrix form, process known as matricization or unfold-
ing.

Definition 7 (Matricization). The n-mode matricization of a tensor XXX ∈ CI1×···×In×···×IN is a
In × I1 . . . In−1 In+1 . . . IN size matrix denoted by X(n). The tensor element (i1, i2, . . . , iN) maps to
matrix element (in, j) where
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This operation is generally used in the alternating least squares algorithms for fitting the CP
models, as illustrated in section 5.1.
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3. The quadrilinear model of the data covariance

We introduce in this section a quadrilinear model for electromagnetic source covariance,
recorded on a six-component vector sensor array. Suppose the sources are completely po-
larized and the propagation takes place in an isotropic, homogeneous medium. We start by
modeling the data measurements under the narrowband assumptions.
Consider an uniform array of M identical sensors spaced by ∆x along the x-axis, collecting
narrowband signals emitted from K (known a priori) spatially distinct far-field sources. For the
kth incoming wave, its DOA can be totally determined by the azimuth angle φk ∈ [0, π) (mea-
sured from +x-axis) and the elevation angle ψk ∈ [−π/2, π/2] (measured from the ground)1,
as shown in Fig. 1.

Fig. 1. 2D-DOA on a vector-sensor array

On an electromagnetic vector sensor, if the incoming wave has unit power, the electric- and

magnetic-field measurements in Cartesian coordinates, e(φk, ψk, αk, βk) � [e(k)x , e(k)y , e(k)z ]T and

h(φk, ψk, αk, βk) � [h(k)x , h(k)y , h(k)z ]T , can be stacked up in a 6 × 1 vector bk Nehorai and Paldi
(1994)

bk �
[

e(φk, ψk, αk, βk)
h(φk, ψk, αk, βk)

]

=

















− sin φk − cos φk sin ψk
cos φk − sin φk sin ψk

0 cos ψk
− cos φk sin ψk sin φk
− sin φk sin ψk − cos φk

cos ψk 0

















︸ ︷︷ ︸

F(φk ,ψk)

gk. (8)

The 6 × 2 matrix Fk � F(φk, ψk) is referred to as the steering matrix Nehorai et al. (1999)
and characterizes the capacity of a vector sensor to convert the information carried on an
impinging polarized plane wave defined in polar coordinates, into the six electromagnetic-
field-associated electric signals in the corresponding Cartesian coordinates. A 2 × 1 complex

1 We assume the sources are all coming from the +y side of the x − z plane.

vector

gk � g(αk, βk) =

[

gφ(αk, βk)
gψ(αk, βk)

]

=

[

cos αk sin αk
− sin αk cos αk

] [

cos βk
j sin βk

]

(9)

is used to depict the polarization state of the kth signal in terms of the orientation angle αk ∈
(−π/2, π/2] and the ellipticity angle βk ∈ [−π/4, π/4] Deschamps (1951). Now we have a
compact expression bk = F(φk, ψk)g(αk, βk) modeling the vector sensor response to the kth
polarized source.
Under the far-field assumption, the spatial response of a M-sensor uniform linear array to the
kth impinging wave, i.e. the steering vector, presents a Vandermonde structure that can be
expressed as

ak � a(φk, ψk) = [1, ak, · · · , aM−1
k ]T , (10)

where ak = exp(jk0∆x cos φk cos ψk) is the inter-sensor phase shift and k0 is the wave number
of the electromagnetic wave.
Let p (p = 1, 2, · · · , 6) index the six field components of the vector bbbk respectively. Define

A � [a1, . . . , aK ] =











1 · · · 1
a1 · · · ak
...

...
aM−1

1 · · · aM−1
K











(11)

a M × K matrix containing the spatial responses of the array to the N sources,

B � [b1, . . . , bK ] = [F1g1, . . . , FKgK ] (12)

a 6 × K matrix containing the polarization responses and

S
�
=







s1 · · · 0
...

. . .
...

0 · · · sK






(13)

a K × K diagonal matrix containing the K source signals at some fixed instant. With these
notations, a snapshot of the output of the array can be organized as a M × 6 matrix

X = ASBT + N (14)

with N a M × 6 matrix expressing the noise contribution on the antenna.
The following assumptions are made

(A1) Sources are zero-mean, stationary, mutually uncorrelated, ergodic processes

(A2) The noise is i.i.d. centered, complex Gaussian process of variance σ2, non-polarized and
spatially white

(A3) The sources have distinct DOAs

We define the 4-way covariance of the received data as the M × 6 × M × 6 array

CCCXX
�
= E{X ◦ X∗} (15)

where E{.} denotes the mathematical expectation operation. We define also the source covari-
ance as the K × K × K × K fourth-order tensor
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3. The quadrilinear model of the data covariance

We introduce in this section a quadrilinear model for electromagnetic source covariance,
recorded on a six-component vector sensor array. Suppose the sources are completely po-
larized and the propagation takes place in an isotropic, homogeneous medium. We start by
modeling the data measurements under the narrowband assumptions.
Consider an uniform array of M identical sensors spaced by ∆x along the x-axis, collecting
narrowband signals emitted from K (known a priori) spatially distinct far-field sources. For the
kth incoming wave, its DOA can be totally determined by the azimuth angle φk ∈ [0, π) (mea-
sured from +x-axis) and the elevation angle ψk ∈ [−π/2, π/2] (measured from the ground)1,
as shown in Fig. 1.

Fig. 1. 2D-DOA on a vector-sensor array
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and characterizes the capacity of a vector sensor to convert the information carried on an
impinging polarized plane wave defined in polar coordinates, into the six electromagnetic-
field-associated electric signals in the corresponding Cartesian coordinates. A 2 × 1 complex

1 We assume the sources are all coming from the +y side of the x − z plane.
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(−π/2, π/2] and the ellipticity angle βk ∈ [−π/4, π/4] Deschamps (1951). Now we have a
compact expression bk = F(φk, ψk)g(αk, βk) modeling the vector sensor response to the kth
polarized source.
Under the far-field assumption, the spatial response of a M-sensor uniform linear array to the
kth impinging wave, i.e. the steering vector, presents a Vandermonde structure that can be
expressed as

ak � a(φk, ψk) = [1, ak, · · · , aM−1
k ]T , (10)

where ak = exp(jk0∆x cos φk cos ψk) is the inter-sensor phase shift and k0 is the wave number
of the electromagnetic wave.
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a K × K diagonal matrix containing the K source signals at some fixed instant. With these
notations, a snapshot of the output of the array can be organized as a M × 6 matrix

X = ASBT + N (14)

with N a M × 6 matrix expressing the noise contribution on the antenna.
The following assumptions are made

(A1) Sources are zero-mean, stationary, mutually uncorrelated, ergodic processes

(A2) The noise is i.i.d. centered, complex Gaussian process of variance σ2, non-polarized and
spatially white

(A3) The sources have distinct DOAs

We define the 4-way covariance of the received data as the M × 6 × M × 6 array

CCCXX
�
= E{X ◦ X∗} (15)

where E{.} denotes the mathematical expectation operation. We define also the source covari-
ance as the K × K × K × K fourth-order tensor
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CCCSS
�
= E{S ◦ S∗} (16)

From (14) and (16) and using assumptions (A1) and (A2) the covariance tensor of the received
data takes the following form

CCCXX = CCCSS ×1 A ×2 B ×3 A∗ ×4 B∗ +NNN (17)

where NNN is a M × 6 × M × 6 tensor containing the noise power on the sensors. Assumption
(A1) implies that CCCSS is a hyperdiagonal tensor (the only non-null entries are those having
all four indices identical), meaning that CCCXX presents a quadrilinear CP structure Harshman
(1970). The inverse problem for the direct model expressed by (17) is the estimation of matrices
A and B starting from the 4-way covariance tensor CCCXX .

4. Identifiability of the quadrilinear model

Before addressing the problem of estimating A and B, the identifiability of the quadrilinear
model (17) must be studied first. The polarized mixture model (17) is said to be identifiable if
A and B can be uniquely determined (up to permutation and scaling indeterminacies) from
CCCXX . In multilinear framework Kruskal’s condition is a sufficient condition for unique CP
decomposition, relying on the concept of Kruskal-rank or (k-rank) Kruskal (1977).

Definition 8 (k-rank). Given a matrix A ∈ CI×J , if every linear combination of l columns has full
column rank, but this condition does not hold for l + 1, then the k-rank of A is l, written as kA = l.

Note that kA ≤ rank(A) ≤ min(I, J), and both equalities hold when rank(A) = J.
Kruskal’s condition was first introduced in Kruskal (1977) for the three-way arrays and gen-
eralized later on to multi-way arrays in Sidiropoulos and Bro (2000). We formulate next
Kruskal’s condition for the quadrilinear mixture model expressed by (17), considering the
noiseless case (NNN in (17) has only zero entries).

Theorem 1 (Kruskal’s condition). Consider the four-way CP model (17). The loading matrices
A and B can be uniquely estimated (up to column permutation and scaling ambiguities), if but not
necessarily

kA + kB + kA∗ + kB∗ ≥ 2K + 3 (18)

This implies
kA + kB ≥ K + 2 (19)

It was proved Tan et al. (1996a) that in the case of vector sensor arrays, the responses of a
vector sensor to every three sources of distinct DOA’s are linearly independent regardless of
their polarization states. This means, under the assumption (A3) that kB ≥ 3. Furthermore, as
A is a Vandermonde matrix, (A3) also guarantees that kA = min(M, K). All these results sum
up into the following corollary:

Corollary 1. Under the assumptions (A1)-(A3), the DOA’s of K uncorrelated sources can be uniquely
determined using an M-element vector sensor array if M ≥ K − 1, regardless of the polarization states
of the incident signals.

This sufficient condition also sets an upper bound on the minimum number of sensors needed
to ensure the identifiability of the polarized mixture model. However, the condition M ≥
K − 1 is not necessary when considering the polarization states, that is, a lower number of

sensors can be used to identify the mixture model, provided that the polarizations of the
sources are different. Also the symmetry properties of CCCXX are not considered and we believe
that they can be used to obtain milder sufficient conditions for ensuring the identifiability.

5. Source parameters estimation

We present next the algorithm used for estimating sources DOA’s starting from the observa-
tions on the array and address some issues regarding the accuracy and the complexity of the
proposed method.

5.1 Algorithm
Supposing that L snapshots of the array are recorded and using (A1) an estimate of the polar-
ized data covariance (15) can be obtained as the temporal sample mean

Ĉ̂ĈCXX =
1
L

L

∑
l=1

X(l) ◦ X∗(l). (20)

For obvious matrix conditioning reasons, the number of snapshots should be greater or equal
to the number of sensors, i.e. L ≥ K.

The algorithm proposed in this section includes three sequential steps, during which the
DOA information is extracted and then refined to yield the final DOA’s estimates. These three
steps are presented next.

5.1.1 Step 1
This first step of the algorithm is the estimation of the loading matrices A and B from Ĉ̂ĈCXX .
This estimation procedure can be accomplished via the Quadrilinear Alternative Least Squares
(QALS) algorithm Bro (1998), as shown next.
Denote by Ĉpq = Ĉ̂ĈCXX(:, p, :, q) the (p, q)th matrix slice (M × M) of the covariance tensor Ĉ̂ĈCXX .
Also note Dp(·) the operator that builds a diagonal matrix from the pth row of another and
∆ = diag

(

E‖s1‖2, . . . , E‖sK‖2), the diagonal matrix containing the powers of the sources. The
matrices A and B can then be determined by minimizing the Least Squares (LS) criterion

φ(σ, ∆, A, B) =
6

∑
p,q=1

∥

∥

∥Ĉpq − A∆Dp(B)Dq(B∗)AH − σ2δpqIM

∥

∥

∥

2

F
(21)

that equals

φ(σ, ∆, A, B) = ∑
p,q

∥

∥

∥
Ĉpq − A∆Dp(B)Dq(B∗)AH

∥

∥

∥

2

F
(22)

− 2σ2 ∑
p
�
{

tr
(

Ĉpp − A∆Dp(B)Dp(B∗)AH
)}

+ 6Mσ4

where tr(·) computes the trace of a matrix and �(·) denotes the real part of a quantity.
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CCCSS
�
= E{S ◦ S∗} (16)

From (14) and (16) and using assumptions (A1) and (A2) the covariance tensor of the received
data takes the following form

CCCXX = CCCSS ×1 A ×2 B ×3 A∗ ×4 B∗ +NNN (17)

where NNN is a M × 6 × M × 6 tensor containing the noise power on the sensors. Assumption
(A1) implies that CCCSS is a hyperdiagonal tensor (the only non-null entries are those having
all four indices identical), meaning that CCCXX presents a quadrilinear CP structure Harshman
(1970). The inverse problem for the direct model expressed by (17) is the estimation of matrices
A and B starting from the 4-way covariance tensor CCCXX .

4. Identifiability of the quadrilinear model

Before addressing the problem of estimating A and B, the identifiability of the quadrilinear
model (17) must be studied first. The polarized mixture model (17) is said to be identifiable if
A and B can be uniquely determined (up to permutation and scaling indeterminacies) from
CCCXX . In multilinear framework Kruskal’s condition is a sufficient condition for unique CP
decomposition, relying on the concept of Kruskal-rank or (k-rank) Kruskal (1977).

Definition 8 (k-rank). Given a matrix A ∈ CI×J , if every linear combination of l columns has full
column rank, but this condition does not hold for l + 1, then the k-rank of A is l, written as kA = l.

Note that kA ≤ rank(A) ≤ min(I, J), and both equalities hold when rank(A) = J.
Kruskal’s condition was first introduced in Kruskal (1977) for the three-way arrays and gen-
eralized later on to multi-way arrays in Sidiropoulos and Bro (2000). We formulate next
Kruskal’s condition for the quadrilinear mixture model expressed by (17), considering the
noiseless case (NNN in (17) has only zero entries).

Theorem 1 (Kruskal’s condition). Consider the four-way CP model (17). The loading matrices
A and B can be uniquely estimated (up to column permutation and scaling ambiguities), if but not
necessarily

kA + kB + kA∗ + kB∗ ≥ 2K + 3 (18)

This implies
kA + kB ≥ K + 2 (19)

It was proved Tan et al. (1996a) that in the case of vector sensor arrays, the responses of a
vector sensor to every three sources of distinct DOA’s are linearly independent regardless of
their polarization states. This means, under the assumption (A3) that kB ≥ 3. Furthermore, as
A is a Vandermonde matrix, (A3) also guarantees that kA = min(M, K). All these results sum
up into the following corollary:

Corollary 1. Under the assumptions (A1)-(A3), the DOA’s of K uncorrelated sources can be uniquely
determined using an M-element vector sensor array if M ≥ K − 1, regardless of the polarization states
of the incident signals.

This sufficient condition also sets an upper bound on the minimum number of sensors needed
to ensure the identifiability of the polarized mixture model. However, the condition M ≥
K − 1 is not necessary when considering the polarization states, that is, a lower number of

sensors can be used to identify the mixture model, provided that the polarizations of the
sources are different. Also the symmetry properties of CCCXX are not considered and we believe
that they can be used to obtain milder sufficient conditions for ensuring the identifiability.

5. Source parameters estimation

We present next the algorithm used for estimating sources DOA’s starting from the observa-
tions on the array and address some issues regarding the accuracy and the complexity of the
proposed method.

5.1 Algorithm
Supposing that L snapshots of the array are recorded and using (A1) an estimate of the polar-
ized data covariance (15) can be obtained as the temporal sample mean

Ĉ̂ĈCXX =
1
L

L

∑
l=1

X(l) ◦ X∗(l). (20)

For obvious matrix conditioning reasons, the number of snapshots should be greater or equal
to the number of sensors, i.e. L ≥ K.

The algorithm proposed in this section includes three sequential steps, during which the
DOA information is extracted and then refined to yield the final DOA’s estimates. These three
steps are presented next.

5.1.1 Step 1
This first step of the algorithm is the estimation of the loading matrices A and B from Ĉ̂ĈCXX .
This estimation procedure can be accomplished via the Quadrilinear Alternative Least Squares
(QALS) algorithm Bro (1998), as shown next.
Denote by Ĉpq = Ĉ̂ĈCXX(:, p, :, q) the (p, q)th matrix slice (M × M) of the covariance tensor Ĉ̂ĈCXX .
Also note Dp(·) the operator that builds a diagonal matrix from the pth row of another and
∆ = diag

(

E‖s1‖2, . . . , E‖sK‖2), the diagonal matrix containing the powers of the sources. The
matrices A and B can then be determined by minimizing the Least Squares (LS) criterion

φ(σ, ∆, A, B) =
6

∑
p,q=1

∥

∥

∥Ĉpq − A∆Dp(B)Dq(B∗)AH − σ2δpqIM

∥

∥

∥

2

F
(21)

that equals

φ(σ, ∆, A, B) = ∑
p,q

∥

∥

∥
Ĉpq − A∆Dp(B)Dq(B∗)AH

∥

∥

∥

2

F
(22)

− 2σ2 ∑
p
�
{

tr
(

Ĉpp − A∆Dp(B)Dp(B∗)AH
)}

+ 6Mσ4

where tr(·) computes the trace of a matrix and �(·) denotes the real part of a quantity.
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φ(σ, ∆, A, B) = ∑
p,q

∥

∥

∥Ĉpq − A∆Dp(B)Dq(B∗)AH
∥

∥

∥

2

F
− 2σ2 ∑

p
�
{

tr
(

Ĉpp − 2M∆

)}

+ 6Mσ4

(23)
Thus, finding A and B is equivalent to the minimization of (23) with respect to A and B, i.e.

{Â, B̂} = min
A,B

ω(∆, A, B) (24)

subject to ‖aaak‖2 = M and ‖bbbk‖2 = 2, where

ω(∆, A, B) = ∑
p,q

∥

∥

∥Ĉpq − A∆Dp(B)Dq(B∗)AH
∥

∥

∥

2

F
(25)

The optimization process in (24) can be implemented using QALS algorithm, briefly summa-
rized as follows.

Algorithm 1 QALS algorithm for four-way symmetric tensors

1: INPUT: the estimated data covariance Ĉ̂ĈCXX and the number of the sources K
2: Initialize the loading matrices A, B randomly, or using ESPRIT Zoltowski and Wong

(2000a) for a faster convergence
3: Set C = A∗ and D = B∗.
4: repeat
5: A = X(1)[(B � C � D)†]T

6: B = X(2)[(C � D � A)†]T

7: C = X(3)[(D � A � B)†]T

8: D = X(4)[(A � B � C)†]T ,
where (·)† denotes Moore-Penrose pseudoinverse of a matrix

9: Update C, D by C := (A∗ + C)/2 and D := (B∗ + D)/2
10: until convergence
11: OUTPUT: estimates of A and B.

Once the Â, B̂ are estimated, the following post-processing is needed for the refined DOA
estimation.

5.1.2 Step 2
The second step of our approach extracts separately the DOA information contained by the
columns of Â (see eq. (10)) and B̂ (see eq. (8)).

First the estimated matrix B̂ is exploited via the physical relationships between the electric and
magnetic field given by the Poynting theorem. Recall the Poynting theorem, which reveals the
mutual orthogonality nature among the three physical quantities related to the kth source: the
electric field ek, the magnetic field hk, and the kth source’s direction of propagation, i.e., the
normalized Poynting vector uk.

uk =





cos φk cos ψk
sin φk cos ψk

sin ψk



 = �
(

ek × h∗
k

‖ek‖ · ‖hk‖

)

. (26)

Equation (26) gives the cross-product DOA estimator, as suggested in Nehorai and Paldi
(1994). An estimate of the Poynting vector for the kth source ûk is thus obtained, using the
previously estimated êk and b̂k.

Secondly, matrix Â is used to extract the DOA information embedded in the Vandermonde
structure of its columns âk.
Given the noisy steering vector â = [â0 â1 · · · âM−1]

T , its Fourier spectrum is given by

A(ω) =
1
M

M−1

∑
m=0

âm exp(−jmω) (27)

as a function of ω.
Given the Vandermonde structure of the steering vectors, the spectrum magnitude |A(ω)| in
the absence of noise is maximum for ω = ω0. In the presence of Gaussian noise, maxω |A(ω)|
provides an maximum likelihood (ML) estimator for ω0 � k0∆x cos φ cos ψ as shown in Rife
and Boorstyn (1974).
In order to get a more accurate estimator of ω0 � k0∆x cos φ cos ψ, we use the following
processing steps.

1) We take uniformly Q (Q ≥ M) samples from the spectrum A(ω), say {A(2πq/Q)}Q−1
q=0 ,

and find the coarse estimate ω̂ = 2πq̆/Q so that A(2πq̆/Q) has the maximum magni-
tude. These spectrum samples are identified via the fast Fourier transform (FFT) over
the zero-padded Q-element sequence {â0, . . . , âM−1, 0, . . . , 0}.

2) Initialized with this coarse estimate, the fine estimate of ω0 can be sought by maximizing
|A(ω)|. For example, the quasi-Newton method (see, e.g., Nocedal and Wright (2006))

can be used to find the maximizer ω̂0 over the local range
(

2π(q̆−1)
Q , 2π(q̆+1)

Q

)

.

The normalized phase-shift can then be obtained as � = (k0∆x)−1 arg(ω̂0).

5.1.3 Step 3
In the third step, the two DOA information, obtained at Step 2, are combined in order to
get a refined estimation of the DOA parameters φ and ψ. This step can be formulated as the
following non-linear optimization problem

min
ψ,φ

∥

∥

∥

∥

∥

∥





cos φ cos ψ
sin φ cos ψ

sin ψ



− û

∥

∥

∥

∥

∥

∥

subject to cos φ cos ψ = �. (28)

A closed form solution to (28) can be found by transforming it into an alternate problem of 3-D
geometry, i.e. finding the point on the vertically posed circle cos φ cos ψ = � which minimizes
its Euclidean distance to the point û, as shown in Fig. 2.
To solve this problem, we do the orthogonal projection of û onto the plane x = � in the 3-D
space, then join the perpendicular foot with the center of the circle by a piece of line segment.
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φ(σ, ∆, A, B) = ∑
p,q

∥

∥

∥Ĉpq − A∆Dp(B)Dq(B∗)AH
∥

∥

∥

2

F
− 2σ2 ∑

p
�
{

tr
(

Ĉpp − 2M∆

)}

+ 6Mσ4

(23)
Thus, finding A and B is equivalent to the minimization of (23) with respect to A and B, i.e.

{Â, B̂} = min
A,B

ω(∆, A, B) (24)

subject to ‖aaak‖2 = M and ‖bbbk‖2 = 2, where

ω(∆, A, B) = ∑
p,q

∥

∥

∥Ĉpq − A∆Dp(B)Dq(B∗)AH
∥

∥

∥

2

F
(25)

The optimization process in (24) can be implemented using QALS algorithm, briefly summa-
rized as follows.

Algorithm 1 QALS algorithm for four-way symmetric tensors

1: INPUT: the estimated data covariance Ĉ̂ĈCXX and the number of the sources K
2: Initialize the loading matrices A, B randomly, or using ESPRIT Zoltowski and Wong

(2000a) for a faster convergence
3: Set C = A∗ and D = B∗.
4: repeat
5: A = X(1)[(B � C � D)†]T

6: B = X(2)[(C � D � A)†]T

7: C = X(3)[(D � A � B)†]T

8: D = X(4)[(A � B � C)†]T ,
where (·)† denotes Moore-Penrose pseudoinverse of a matrix

9: Update C, D by C := (A∗ + C)/2 and D := (B∗ + D)/2
10: until convergence
11: OUTPUT: estimates of A and B.

Once the Â, B̂ are estimated, the following post-processing is needed for the refined DOA
estimation.

5.1.2 Step 2
The second step of our approach extracts separately the DOA information contained by the
columns of Â (see eq. (10)) and B̂ (see eq. (8)).

First the estimated matrix B̂ is exploited via the physical relationships between the electric and
magnetic field given by the Poynting theorem. Recall the Poynting theorem, which reveals the
mutual orthogonality nature among the three physical quantities related to the kth source: the
electric field ek, the magnetic field hk, and the kth source’s direction of propagation, i.e., the
normalized Poynting vector uk.

uk =





cos φk cos ψk
sin φk cos ψk

sin ψk



 = �
(

ek × h∗
k

‖ek‖ · ‖hk‖

)

. (26)

Equation (26) gives the cross-product DOA estimator, as suggested in Nehorai and Paldi
(1994). An estimate of the Poynting vector for the kth source ûk is thus obtained, using the
previously estimated êk and b̂k.

Secondly, matrix Â is used to extract the DOA information embedded in the Vandermonde
structure of its columns âk.
Given the noisy steering vector â = [â0 â1 · · · âM−1]

T , its Fourier spectrum is given by

A(ω) =
1
M

M−1

∑
m=0

âm exp(−jmω) (27)

as a function of ω.
Given the Vandermonde structure of the steering vectors, the spectrum magnitude |A(ω)| in
the absence of noise is maximum for ω = ω0. In the presence of Gaussian noise, maxω |A(ω)|
provides an maximum likelihood (ML) estimator for ω0 � k0∆x cos φ cos ψ as shown in Rife
and Boorstyn (1974).
In order to get a more accurate estimator of ω0 � k0∆x cos φ cos ψ, we use the following
processing steps.

1) We take uniformly Q (Q ≥ M) samples from the spectrum A(ω), say {A(2πq/Q)}Q−1
q=0 ,

and find the coarse estimate ω̂ = 2πq̆/Q so that A(2πq̆/Q) has the maximum magni-
tude. These spectrum samples are identified via the fast Fourier transform (FFT) over
the zero-padded Q-element sequence {â0, . . . , âM−1, 0, . . . , 0}.

2) Initialized with this coarse estimate, the fine estimate of ω0 can be sought by maximizing
|A(ω)|. For example, the quasi-Newton method (see, e.g., Nocedal and Wright (2006))

can be used to find the maximizer ω̂0 over the local range
(

2π(q̆−1)
Q , 2π(q̆+1)

Q

)

.

The normalized phase-shift can then be obtained as � = (k0∆x)−1 arg(ω̂0).

5.1.3 Step 3
In the third step, the two DOA information, obtained at Step 2, are combined in order to
get a refined estimation of the DOA parameters φ and ψ. This step can be formulated as the
following non-linear optimization problem

min
ψ,φ

∥

∥

∥

∥

∥

∥





cos φ cos ψ
sin φ cos ψ

sin ψ



− û

∥

∥

∥

∥

∥

∥

subject to cos φ cos ψ = �. (28)

A closed form solution to (28) can be found by transforming it into an alternate problem of 3-D
geometry, i.e. finding the point on the vertically posed circle cos φ cos ψ = � which minimizes
its Euclidean distance to the point û, as shown in Fig. 2.
To solve this problem, we do the orthogonal projection of û onto the plane x = � in the 3-D
space, then join the perpendicular foot with the center of the circle by a piece of line segment.
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plane x = �
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Fig. 2. Illustration of the geometrical solution to the optimization problem (28). The vector �OP represents
the coarse estimate of Poynting vector û. It is projected orthogonally onto the x = � plane, forming a
shadow cast O′Q, where O′ is the center of the circle of center O on the plane given in the polar coordinates
as cos φ cos ψ = �. The refined estimate, obtained this way, lies on O′Q. As it is also constrained on the
circle, it can be sought as their intersection point Q.

This line segment collides with the circumference of the circle, yielding an intersection point,
that is the minimizer of the problem.
Let û � [û1 û2 û3]

T and define κ � û3/û2, then the intersection point is given by

[

� ±
√

1−�2

1+κ2 ±|κ|
√

1−�2

1+κ2

]T
(29)

where the signs are taken the same as their corresponding entries of vector û. Thus, the az-
imuth and elevation angles estimates are given by

φ̂ =







arctan 1
|�|

√

1−�2

1+κ2 , if � ≥ 0

π − arctan 1
|�|

√

1−�2

1+κ2 , if � < 0
(30a)

ψ̂ = arcsin

√

�2 +
1 − �2

1 + κ2 , (30b)

which completes the DOA estimation procedure. The polarization parameters can be obtained
in a similar way from B̂.
It is noteworthy that this algorithm is not necessarily limited to uniform linear arrays. It can
be applied to arrays of arbitrary configuration, with minimal modifications.

5.2 Estimator accuracy and algorithm complexity issues
This subsection aims at giving some analysis elements on the accuracy and complexity of the
proposed algorithm (QALS) used for the DOA estimation.

An exhaustive and rigorous performance analysis of the proposed algorithm is far from
being obvious. However, using some simple arguments, we provide elements giving some
insights into the understanding of the performance of the QALS and allowing to interpret the
simulation results presented in section 6.

Cramér-Rao bounds were derived in Liu and Sidiropoulos (2001) for the decomposition of
multi-ways arrays and in Nehorai and Paldi (1994) for vector sensor arrays. It was shown Liu
and Sidiropoulos (2001) that higher dimensionality benefits in terms of CRB for a given data
set. To be specific, consider a data set represented by a four-way CP model. It is obvious that,
unfolding it along one dimension, it can also be represented by a three-way model. The result
of Liu and Sidiropoulos (2001) states that than a quadrilinear estimator normally yields better
performance than a trilinear one. In other word, the use of a four-way ALS on the covariance
tensor is better sounded that performing a three-way ALS on the unfolded covariance tensor.
A comparaison can be conducted with respect to the three-way CP estimator used in Guo et
al. (2008), that will be denoted TALS. The addressed question is the following : is it better to
perform the trilinear decomposition of the 3-way raw data tensor or the quadriliear decom-
position of the 4-way convariance tensor ?
To compare the accuracy of the two algorithms we remind that the variance of an unbiased

linear estimator of a set of independant parameters is of the order of O
(

P
N σ2

)

, where P is the
number of parameters to estimate and N is the number of samples.
Coming back to the QALS and TALS methods, the main difference between them is that the
trilinear approach estimates (in addition to A and B), the K temporal sequences of size L.
More precisely, the number of parameters to estimate equals (6 + M + L)K for the three-way
approach and (6 + M)K for the quadrilinear method. Nevertheless, TALS is directly applied
on the three-way raw data, meaning that the number of available observations (samples) is
6ML while QALS is based on the covariance of the data which, because of the symmetry of the
covariance tensor, reduces the samples number to half of the entries of Ĉ̂ĈCXX , that is 18M2. The
point is that the noise power for the covariance of the data is reduced by the averaging in (20)

to σ2/L. If we resume, the estimation variance for TALS is of the order of O
(

(6+M+L)K
6ML σ2

)

and of O
(

(6+M)K
18M2

σ2

L

)

for QALS. Let us now analyse the typical situation consisting in having

a large number of time samples. For large values of L, (L � (M + 6)), the variance of TALS

tends to a constant value O
(

K
6M σ2

)

while for QALS it tends to 0. This means that QALS
improves continuously with the sample size while this is not the case for TALS. This analysis
also applies to the case of MUSIC and ESPRIT since both also work on time averaged data.

We address next some computational complexity aspects for the two previously discussed
algorithms. Generally, for an N-way array of size I1 × I2 × · · · × IN , the complexity of its CP
decomposition in a sum of K rank-one tensors, using ALS algorithm is O(K ∏

N
n=1 In) Rajih and

Comon (2005), for each iteration. Thus, for one iteration, the number of elementary operations
involved is QALS is of order O(62KM2) and of the order of O(6KML) for TALS. Normally
6M � L, meaning that for large data sets QALS should be much faster than its trilinear
counterpart. In general, the number of iterations required for the decomposition convergence,
is not determined by the data size only, but is also influenced by the initialisation and the
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Fig. 2. Illustration of the geometrical solution to the optimization problem (28). The vector �OP represents
the coarse estimate of Poynting vector û. It is projected orthogonally onto the x = � plane, forming a
shadow cast O′Q, where O′ is the center of the circle of center O on the plane given in the polar coordinates
as cos φ cos ψ = �. The refined estimate, obtained this way, lies on O′Q. As it is also constrained on the
circle, it can be sought as their intersection point Q.

This line segment collides with the circumference of the circle, yielding an intersection point,
that is the minimizer of the problem.
Let û � [û1 û2 û3]

T and define κ � û3/û2, then the intersection point is given by

[

� ±
√

1−�2

1+κ2 ±|κ|
√

1−�2

1+κ2

]T
(29)

where the signs are taken the same as their corresponding entries of vector û. Thus, the az-
imuth and elevation angles estimates are given by

φ̂ =







arctan 1
|�|

√

1−�2

1+κ2 , if � ≥ 0

π − arctan 1
|�|

√

1−�2

1+κ2 , if � < 0
(30a)

ψ̂ = arcsin

√

�2 +
1 − �2

1 + κ2 , (30b)

which completes the DOA estimation procedure. The polarization parameters can be obtained
in a similar way from B̂.
It is noteworthy that this algorithm is not necessarily limited to uniform linear arrays. It can
be applied to arrays of arbitrary configuration, with minimal modifications.

5.2 Estimator accuracy and algorithm complexity issues
This subsection aims at giving some analysis elements on the accuracy and complexity of the
proposed algorithm (QALS) used for the DOA estimation.

An exhaustive and rigorous performance analysis of the proposed algorithm is far from
being obvious. However, using some simple arguments, we provide elements giving some
insights into the understanding of the performance of the QALS and allowing to interpret the
simulation results presented in section 6.

Cramér-Rao bounds were derived in Liu and Sidiropoulos (2001) for the decomposition of
multi-ways arrays and in Nehorai and Paldi (1994) for vector sensor arrays. It was shown Liu
and Sidiropoulos (2001) that higher dimensionality benefits in terms of CRB for a given data
set. To be specific, consider a data set represented by a four-way CP model. It is obvious that,
unfolding it along one dimension, it can also be represented by a three-way model. The result
of Liu and Sidiropoulos (2001) states that than a quadrilinear estimator normally yields better
performance than a trilinear one. In other word, the use of a four-way ALS on the covariance
tensor is better sounded that performing a three-way ALS on the unfolded covariance tensor.
A comparaison can be conducted with respect to the three-way CP estimator used in Guo et
al. (2008), that will be denoted TALS. The addressed question is the following : is it better to
perform the trilinear decomposition of the 3-way raw data tensor or the quadriliear decom-
position of the 4-way convariance tensor ?
To compare the accuracy of the two algorithms we remind that the variance of an unbiased

linear estimator of a set of independant parameters is of the order of O
(

P
N σ2

)

, where P is the
number of parameters to estimate and N is the number of samples.
Coming back to the QALS and TALS methods, the main difference between them is that the
trilinear approach estimates (in addition to A and B), the K temporal sequences of size L.
More precisely, the number of parameters to estimate equals (6 + M + L)K for the three-way
approach and (6 + M)K for the quadrilinear method. Nevertheless, TALS is directly applied
on the three-way raw data, meaning that the number of available observations (samples) is
6ML while QALS is based on the covariance of the data which, because of the symmetry of the
covariance tensor, reduces the samples number to half of the entries of Ĉ̂ĈCXX , that is 18M2. The
point is that the noise power for the covariance of the data is reduced by the averaging in (20)

to σ2/L. If we resume, the estimation variance for TALS is of the order of O
(

(6+M+L)K
6ML σ2

)

and of O
(

(6+M)K
18M2

σ2

L

)

for QALS. Let us now analyse the typical situation consisting in having

a large number of time samples. For large values of L, (L � (M + 6)), the variance of TALS

tends to a constant value O
(

K
6M σ2

)

while for QALS it tends to 0. This means that QALS
improves continuously with the sample size while this is not the case for TALS. This analysis
also applies to the case of MUSIC and ESPRIT since both also work on time averaged data.

We address next some computational complexity aspects for the two previously discussed
algorithms. Generally, for an N-way array of size I1 × I2 × · · · × IN , the complexity of its CP
decomposition in a sum of K rank-one tensors, using ALS algorithm is O(K ∏

N
n=1 In) Rajih and

Comon (2005), for each iteration. Thus, for one iteration, the number of elementary operations
involved is QALS is of order O(62KM2) and of the order of O(6KML) for TALS. Normally
6M � L, meaning that for large data sets QALS should be much faster than its trilinear
counterpart. In general, the number of iterations required for the decomposition convergence,
is not determined by the data size only, but is also influenced by the initialisation and the
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parameter to estimate. This makes an exact theoretical analysis of the algorithms complexity
rather difficult. Moreover, trilinear factorization algorithms have been extensively studied
over the last two decades, resulting in improved, fast versions of ALS such as COMFAC2,
while the algorithms for quadrilinear factorizations remained basic. This makes an objective
comparison of the complexity of the two algorithms even more difficult.
Compared to MUSIC-like algorithms, which are also based on the estimation of the data co-
variance, the main advantage of QALS is the identifiability of the model. While MUSIC gen-
erally needs an exhaustive grid search for the estimation of the source parameters, the quadri-
linear method yields directly the steering and the polarization vectors for each source.

6. Simulations and results

In this section, some typical examples are considered to illustrate the performance of the
proposed algorithm with respect to different aspects. In all the simulations, we assume the
inter-element spacing between two adjacent vector sensors is half-wavelength, i.e., ∆x = λ/2
and each point on the figures is obtained through R = 500 independent Monte Carlo runs.
We divided this section into two parts. The first aims at illustrating the efficiency of the novel
method for the estimation of both DOA parameters (azimuth and elevation angles) and the
second shows the effects of different parameters on the method. Comparisons are conducted
to recent high-resolution eigenstructure-based algorithms for polarized sources and to the
CRB Nehorai and Paldi (1994).

Example 1: This example is designed to show the efficiency of the proposed algorithm using
a uniform linear array of vector sensors for the 2D DOA estimation problem. It is compared
to MUSIC algorithm for polarized sources, presented under different versions in Ferrara and
Parks (1983); Gong et al. (2009); Miron et al. (2005); Weiss and Friedlander (1993b), to TALS
Guo et al. (2008) and the Cramér-Rao bound for vector sensor arrays proposed by Nehorai
Nehorai and Paldi (1994). A number of K = 2 equal power, uncorrelated sources are consid-
ered. The DOA’s are set to be φ1 = 20◦, ψ1 = 5◦ for the first source and φ2 = 30◦, ψ2 = 10◦

for the other; the polarization states are α1 = α2 = 45◦, β1 = −β2 = 15◦. In the simula-
tions, M = 7 sensors are used and in total L = 100 temporal snapshots are available. The
performance is evaluated in terms of root-mean-square error (RMSE). In the following simu-
lations we convert the angular RMSE from radians to degrees to make the comparisons more
intuitive. The performances of these algorithms are shown in Fig. 3(a) and (b) versus the in-
creasing signal-to-noise ratio (SNR). The SNR is defined per source and per field component
(6M field components in all). One can observe that all the algorithms present similar per-
formance and eventually achieve the CRB for high SNR’s (above 0 dB in this scenario). At
low SNR’s, nonetheless, our algorithm outperforms MUSIC, presenting a lower SNR thresh-
old (about 8 dB) for a meaningful estimate. CP methods (TALS and QALS), which are based
on the LS criterion, are demonstrated to be less sensitive to the noise than MUSIC. This con-
firms the results presented in Liu and Sidiropoulos (2001) that higher dimension (an increased
structure of the data) benefits in terms of estimation accuracy.
Example 2: We examine next the performance of QALS in the presence of four uncorrelated
sources. For simplicity, we assume all the elevation angles are zero, ψk = 0◦ for k = 1, . . . , 4,
and some typical values are chosen for the azimuth angles, respectively: φ1 = 10◦, φ2 = 20◦,

2 COMFAC is a fast implementation of trilinear ALS working with a compressed version of the data
Sidiropoulos et al. (2000a)
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Fig. 3. RMSE of the DOA estimation versus SNR in the presence of two uncorrelated sources
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parameter to estimate. This makes an exact theoretical analysis of the algorithms complexity
rather difficult. Moreover, trilinear factorization algorithms have been extensively studied
over the last two decades, resulting in improved, fast versions of ALS such as COMFAC2,
while the algorithms for quadrilinear factorizations remained basic. This makes an objective
comparison of the complexity of the two algorithms even more difficult.
Compared to MUSIC-like algorithms, which are also based on the estimation of the data co-
variance, the main advantage of QALS is the identifiability of the model. While MUSIC gen-
erally needs an exhaustive grid search for the estimation of the source parameters, the quadri-
linear method yields directly the steering and the polarization vectors for each source.

6. Simulations and results

In this section, some typical examples are considered to illustrate the performance of the
proposed algorithm with respect to different aspects. In all the simulations, we assume the
inter-element spacing between two adjacent vector sensors is half-wavelength, i.e., ∆x = λ/2
and each point on the figures is obtained through R = 500 independent Monte Carlo runs.
We divided this section into two parts. The first aims at illustrating the efficiency of the novel
method for the estimation of both DOA parameters (azimuth and elevation angles) and the
second shows the effects of different parameters on the method. Comparisons are conducted
to recent high-resolution eigenstructure-based algorithms for polarized sources and to the
CRB Nehorai and Paldi (1994).

Example 1: This example is designed to show the efficiency of the proposed algorithm using
a uniform linear array of vector sensors for the 2D DOA estimation problem. It is compared
to MUSIC algorithm for polarized sources, presented under different versions in Ferrara and
Parks (1983); Gong et al. (2009); Miron et al. (2005); Weiss and Friedlander (1993b), to TALS
Guo et al. (2008) and the Cramér-Rao bound for vector sensor arrays proposed by Nehorai
Nehorai and Paldi (1994). A number of K = 2 equal power, uncorrelated sources are consid-
ered. The DOA’s are set to be φ1 = 20◦, ψ1 = 5◦ for the first source and φ2 = 30◦, ψ2 = 10◦

for the other; the polarization states are α1 = α2 = 45◦, β1 = −β2 = 15◦. In the simula-
tions, M = 7 sensors are used and in total L = 100 temporal snapshots are available. The
performance is evaluated in terms of root-mean-square error (RMSE). In the following simu-
lations we convert the angular RMSE from radians to degrees to make the comparisons more
intuitive. The performances of these algorithms are shown in Fig. 3(a) and (b) versus the in-
creasing signal-to-noise ratio (SNR). The SNR is defined per source and per field component
(6M field components in all). One can observe that all the algorithms present similar per-
formance and eventually achieve the CRB for high SNR’s (above 0 dB in this scenario). At
low SNR’s, nonetheless, our algorithm outperforms MUSIC, presenting a lower SNR thresh-
old (about 8 dB) for a meaningful estimate. CP methods (TALS and QALS), which are based
on the LS criterion, are demonstrated to be less sensitive to the noise than MUSIC. This con-
firms the results presented in Liu and Sidiropoulos (2001) that higher dimension (an increased
structure of the data) benefits in terms of estimation accuracy.
Example 2: We examine next the performance of QALS in the presence of four uncorrelated
sources. For simplicity, we assume all the elevation angles are zero, ψk = 0◦ for k = 1, . . . , 4,
and some typical values are chosen for the azimuth angles, respectively: φ1 = 10◦, φ2 = 20◦,

2 COMFAC is a fast implementation of trilinear ALS working with a compressed version of the data
Sidiropoulos et al. (2000a)
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Fig. 3. RMSE of the DOA estimation versus SNR in the presence of two uncorrelated sources
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Fig. 4. RMSE of azimuth angle estimation versus SNR for the second source in the presence of
four uncorrelated sources

φ1 = 30◦, φ1 = 40◦. The polarizations parameters are α2 = −45◦, β2 = −15◦ for the second
source and for the others, the sources have equal orientation and ellipticity angles, 45◦ and 15◦

respectively. We keep the same configuration of the vector sensor array as in example 1. For
this example we compare our algorithm to polarized ESPRIT Zoltowski and Wong (2000a;b)
as well. The following three sets of simulations are designed with respect to the increasing
value of SNR, number of vector sensors and snapshots.
Fig. 4 shows the comparison between the four algorithms as the SNR increases. Once again,
the advantage of the multilinear approaches in tackling DOA problem at low SNR’s can be
observed. The quadrilinear approach seems to perform better than TALS as the SNR increases.
The MUSIC algorithm is more sensitive to the noise than all the others, yet it reaches the CRB
as the SNR is high enough. The estimate obtained by ESPRIT is mildly biased.
Next, we show the effect of the number of vector sensors on the estimators. The SNR is fixed
to 20 dB and all the other simulation settings are preserved. The results are illustrated on
Fig. 5. One can see that the DOA’s of the four sources can be uniquely identified with only
two vector sensors (RMSE around 1◦), which substantiates our statement on the identifiablity
of the model in Section 4. As expected, the estimation accuracy is reduced by decreasing the
number of vector sensors, and the loss becomes important when only few sensors are present
(four sensors in this case). Again ESPRIT yieds biased estimates. For the trilinear method,
it is shown that its performance limitation, observed on Fig. 4, can be tackled by using more
sensors, meaning that the array aperture is a key parameter for TALS. The MUSIC method
shows mild advantages over the quadrilinear one in the case of few sensors (less than four
sensors), yet the two yield comparable performance as the number of vector sensors increases
(superior to the other two methods).
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Fig. 5. RMSE of azimuth angle estimation versus the number of vector sensors for the second
source in the presence of four uncorrelated sources

Finally, we fix the SNR at 20 dB, while keeping the other experimental settings the same as
in Fig. 4, except for an increasing number of snapshots L which varies from 10 to 1000. Fig. 6
shows the varying RMSE with respect to the number of snapshots in estimating azimuth an-
gle of the second source. Once again, the proposed algorithm performs better than TALS.
Moreover as L becomes important, one can see that TALS tends to a constant value while the
RMSE for QALS continues to decrease, which confirms the theoretical deductions presented
in subsection 5.2.

7. Conclusions

In this paper we introduced a novel algorithm for DOA estimation for polarized sources,
based on a four-way PARAFAC representation of the data covariance. A quadrilinear alter-
nated least squares procedure is used to estimate the steering vectors and the polarization
vectors of the sources. Compared to MUSIC for polarized sources, the proposed algorithm
ensures the mixture model identifiability; thus it avoids the exhaustive grid search over the
parameters space, typical to eigestructure algorithms. An upper bound on the minimum num-
ber of sensors needed to ensure the identifiability of the mixture model is derived. Given the
symmetric structure of the data covariance, our algorithm presents a smaller complexity per
iteration compared to three-way PARAFAC applied directly on the raw data. In terms of
estimation, the proposed algorithm presents slightly better performance than MUSIC and ES-
PRIT, thanks to its higher dimensionality and it clearly outperforms the three-way algorithm
when the number of temporal samples becomes important. The variance of our algorithm
decreases with an increase in the sample size while for the three-way method it tends asymp-
totically to a constant value.
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Fig. 4. RMSE of azimuth angle estimation versus SNR for the second source in the presence of
four uncorrelated sources

φ1 = 30◦, φ1 = 40◦. The polarizations parameters are α2 = −45◦, β2 = −15◦ for the second
source and for the others, the sources have equal orientation and ellipticity angles, 45◦ and 15◦

respectively. We keep the same configuration of the vector sensor array as in example 1. For
this example we compare our algorithm to polarized ESPRIT Zoltowski and Wong (2000a;b)
as well. The following three sets of simulations are designed with respect to the increasing
value of SNR, number of vector sensors and snapshots.
Fig. 4 shows the comparison between the four algorithms as the SNR increases. Once again,
the advantage of the multilinear approaches in tackling DOA problem at low SNR’s can be
observed. The quadrilinear approach seems to perform better than TALS as the SNR increases.
The MUSIC algorithm is more sensitive to the noise than all the others, yet it reaches the CRB
as the SNR is high enough. The estimate obtained by ESPRIT is mildly biased.
Next, we show the effect of the number of vector sensors on the estimators. The SNR is fixed
to 20 dB and all the other simulation settings are preserved. The results are illustrated on
Fig. 5. One can see that the DOA’s of the four sources can be uniquely identified with only
two vector sensors (RMSE around 1◦), which substantiates our statement on the identifiablity
of the model in Section 4. As expected, the estimation accuracy is reduced by decreasing the
number of vector sensors, and the loss becomes important when only few sensors are present
(four sensors in this case). Again ESPRIT yieds biased estimates. For the trilinear method,
it is shown that its performance limitation, observed on Fig. 4, can be tackled by using more
sensors, meaning that the array aperture is a key parameter for TALS. The MUSIC method
shows mild advantages over the quadrilinear one in the case of few sensors (less than four
sensors), yet the two yield comparable performance as the number of vector sensors increases
(superior to the other two methods).
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Finally, we fix the SNR at 20 dB, while keeping the other experimental settings the same as
in Fig. 4, except for an increasing number of snapshots L which varies from 10 to 1000. Fig. 6
shows the varying RMSE with respect to the number of snapshots in estimating azimuth an-
gle of the second source. Once again, the proposed algorithm performs better than TALS.
Moreover as L becomes important, one can see that TALS tends to a constant value while the
RMSE for QALS continues to decrease, which confirms the theoretical deductions presented
in subsection 5.2.

7. Conclusions

In this paper we introduced a novel algorithm for DOA estimation for polarized sources,
based on a four-way PARAFAC representation of the data covariance. A quadrilinear alter-
nated least squares procedure is used to estimate the steering vectors and the polarization
vectors of the sources. Compared to MUSIC for polarized sources, the proposed algorithm
ensures the mixture model identifiability; thus it avoids the exhaustive grid search over the
parameters space, typical to eigestructure algorithms. An upper bound on the minimum num-
ber of sensors needed to ensure the identifiability of the mixture model is derived. Given the
symmetric structure of the data covariance, our algorithm presents a smaller complexity per
iteration compared to three-way PARAFAC applied directly on the raw data. In terms of
estimation, the proposed algorithm presents slightly better performance than MUSIC and ES-
PRIT, thanks to its higher dimensionality and it clearly outperforms the three-way algorithm
when the number of temporal samples becomes important. The variance of our algorithm
decreases with an increase in the sample size while for the three-way method it tends asymp-
totically to a constant value.
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Fig. 6. RMSE of azimuth angle estimation versus the number of snapshots for the second
source in the presence of four uncorrelated sources

Future works should focus on developing faster algorithms for four-way PARAFAC factor-
ization in order to take full advantage of the lower complexity of the algorithm. Also, the
symmetry of the covariance tensor must be taken into account to derive lower bounds on the
minimum number of sensors needed to ensure the source mixture identifiability.
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Fig. 6. RMSE of azimuth angle estimation versus the number of snapshots for the second
source in the presence of four uncorrelated sources

Future works should focus on developing faster algorithms for four-way PARAFAC factor-
ization in order to take full advantage of the lower complexity of the algorithm. Also, the
symmetry of the covariance tensor must be taken into account to derive lower bounds on the
minimum number of sensors needed to ensure the source mixture identifiability.
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1. Abstract

This book chapter deals with the generation of auditory-inspired spectro-temporal features
aimed at audio coding. To do so, we first generate sparse audio representations we call
spikegrams, using projections on gammatone or gammachirp kernels that generate neural
spikes. Unlike Fourier-based representations, these representations are powerful at identify-
ing auditory events, such as onsets, offsets, transients and harmonic structures. We show that
the introduction of adaptiveness in the selection of gammachirp kernels enhances the com-
pression rate compared to the case where the kernels are non-adaptive. We also integrate a
masking model that helps reduce bitrate without loss of perceptible audio quality. We then
quantize coding values using the genetic algorithm that is more optimal than uniform quan-
tization for this framework. We finally propose a method to extract frequent auditory objects
(patterns) in the aforementioned sparse representations. The extracted frequency-domain pat-
terns (auditory objects) help us address spikes (auditory events) collectively rather than indi-
vidually. When audio compression is needed, the different patterns are stored in a small code-
book that can be used to efficiently encode audio materials in a lossless way. The approach is
applied to different audio signals and results are discussed and compared. This work is a first
step towards the design of a high-quality auditory-inspired “object-based" audio coder.

2. Introduction

Non-stationary and time-relative structures such as transients, timing relations among acous-
tic events, and harmonic periodicities provide important cues for different types of audio
processing techniques including audio coding, speech recognition, audio localization, and
auditory scene analysis. Obtaining these cues is a difficult task. The most important reason
why it is so difficult is that most approaches to signal representation/analysis are block-based,
i.e. the signal is processed piecewise in a series of discrete blocks. Therefore, transients and
non-stationary periodicities in the signal can be temporally smeared across blocks. Moreover,
large changes in the representation of an acoustic event can occur depending on the arbitrary
alignment of the processing blocks with events in the signal. Signal analysis techniques such
as windowing or the choice of the transform can reduce these effects, but it would be prefer-
able if the representation was insensitive to signal shifts. Shift-invariance alone, however,
is not a sufficient constraint on designing a general sound processing algorithm. A desir-
able representation should capture the underlying 2D-time-frequency structures, so that they
are more directly observable and well represented at low bit rates (Smith & Lewicki, 2005).
These structures must be easily extractable as auditory objects for further processing in cod-
ing, recognition, etc.

3
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The aim of this chapter is to first introduce sparse biologically-inspired coding and then pro-
pose an auditory-inspired coding scheme, which includes many characteristics of the auditory
pathway such as sparse coding, masking, auditory object extraction, and recognition (see Fig.
6). In the next section we will see how sparse codes are generated and why they are efficient.

3. Sparse Coding

Research on sparse coding is generally conducted almost independently by two group of re-
searchers: signal processing engineers and biophysicists. In this chapter, we will try to make
a link between these two realms. In a mathematical sense, sparse coding generally refers to
a representation where a small number of components are active. In the biological realm,
a sparse code generally refers to a representation where a small number of neurons are ac-
tive with the majority of neurons being inactive or showing low activity (Graham & Field,
2006). Over the last decade, mathematical explorations into the statistics of natural auditory
and visual scenes have led to the observation that these scenes, as complex and varied as
they appear, have an underlying structure that is sparse. Therefore, one can learn a possibly
overcomplete basis1 set such that only a small fraction of the basis functions is necessary to
describe a given audio or video signal. In section 5.1, we will see how these codes can be
generated by projecting a given signal onto a set of overcomplete kernels. When the cell’s
amplitude is different from zero, we say that the neuron or cell is active and has emitted a
spike. To show the analogy between sparse 2-D representations and the underlying neural
activity in the auditory or visual pathway, we call the 2-D sparse representation spikegram (in
contrast with spectrograms) and the components of a sparse representation cells or neurons
throughout this chapter.
In a sparse code, the dimensionality of the analyzed signal is maintained (or even increased).
However, the number of cells responding to any particular instance of the input signal is min-
imized. Over the population of likely inputs, every cell has the same probability of producing
a response but the probability is low for any given cell (Field, 1994). In other words, we have
a high probability of no response and a high probability of high response, but a reduction
in the probability of a mid-level response for a given cell. We can thus increase the peaki-
ness (kurtosis) of the histogram of cell activity and be able to reduce the total number of bits
(entropy) required to code a given signal in sparse codes by using any known arithmetic cod-
ing approach. The sparse coding paradigm is in contrast with approaches based on Principal
Component Analysis (PCA) (or Karhunen-Loeve transform), where the aim is to reduce the
number of signifcant signal components. Fig. 1 shows the conceptual differences between the
two approaches as described above.
Normally, sparseness occurs in space (population sparseness) or in time (lifetime sparseness).
Population sparseness means that our 2-D sparse representation (spikegram) has very few
active cells at each instance of time, while lifetime sparseness means that each cell in the
representation is acitve only for a small fraction of the time span of the audio/video signal.

3.1 Sparse Coding and ICA
Sparse coding as described in this chapter can also be related to Independent Component
Analysis (ICA) (Hyvarinen et al., 2009). In fact for some signals (i.e., an ensemble of natu-
ral images), the maximization of sparseness for a linear sparse code is basically the same as

1 A set of bases in which the number of kernels/atoms is higher than the dimension of the audio/video
signal

Fig. 1. Conceptual differences between sparse representations and PCA/Karhunen-Loeve
transform (reproduced from (Field, 1994)). Note that in some cases the dimensionality of
the sparse code is even higher than the input signal.

the maximization of non-gaussianity in the context of overcomplete ICA (Hyvarinen et al.,
2009). Karklin and Lewicki also discussed the limits of applicability of the aforementioned
equivalence in (Karklin & Lewicki, 2005) (Karklin & Lewicki, 2009). However, in the general
case where components (cell activities) are not statistically independent (i.e., small patches of
natural images) and noise is present in the system, maximizing sparseness is not equivalent
to maximizing non-gaussianity and as a consequence ICA is not equivalent to sparse coding
anymore.

4. Advantages of Sparse Coding

In this section we give some reasons (among others) on why sparse coding is such a powerful
tool in the processing of audio and video materials.

Signal-to-Noise Ratio
A sparse coding scheme can increase the signal-to-noise ratio (Field, 1994). In a sparse code,
a small subset of cells represents all the variance present in the signal (remember that most of
the cells are inactive in a sparse code). Therefore, that small active subset must have a high
response relative to the cells that are inactive (or have outputs equal to zero). Hencce, the
probability of detecting the correct signal in the presence of noise is increased in the sparse
coding paradigm compared to the case of a transform (e.g., Fourier Transform) where the
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imized. Over the population of likely inputs, every cell has the same probability of producing
a response but the probability is low for any given cell (Field, 1994). In other words, we have
a high probability of no response and a high probability of high response, but a reduction
in the probability of a mid-level response for a given cell. We can thus increase the peaki-
ness (kurtosis) of the histogram of cell activity and be able to reduce the total number of bits
(entropy) required to code a given signal in sparse codes by using any known arithmetic cod-
ing approach. The sparse coding paradigm is in contrast with approaches based on Principal
Component Analysis (PCA) (or Karhunen-Loeve transform), where the aim is to reduce the
number of signifcant signal components. Fig. 1 shows the conceptual differences between the
two approaches as described above.
Normally, sparseness occurs in space (population sparseness) or in time (lifetime sparseness).
Population sparseness means that our 2-D sparse representation (spikegram) has very few
active cells at each instance of time, while lifetime sparseness means that each cell in the
representation is acitve only for a small fraction of the time span of the audio/video signal.

3.1 Sparse Coding and ICA
Sparse coding as described in this chapter can also be related to Independent Component
Analysis (ICA) (Hyvarinen et al., 2009). In fact for some signals (i.e., an ensemble of natu-
ral images), the maximization of sparseness for a linear sparse code is basically the same as
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the maximization of non-gaussianity in the context of overcomplete ICA (Hyvarinen et al.,
2009). Karklin and Lewicki also discussed the limits of applicability of the aforementioned
equivalence in (Karklin & Lewicki, 2005) (Karklin & Lewicki, 2009). However, in the general
case where components (cell activities) are not statistically independent (i.e., small patches of
natural images) and noise is present in the system, maximizing sparseness is not equivalent
to maximizing non-gaussianity and as a consequence ICA is not equivalent to sparse coding
anymore.

4. Advantages of Sparse Coding

In this section we give some reasons (among others) on why sparse coding is such a powerful
tool in the processing of audio and video materials.

Signal-to-Noise Ratio
A sparse coding scheme can increase the signal-to-noise ratio (Field, 1994). In a sparse code,
a small subset of cells represents all the variance present in the signal (remember that most of
the cells are inactive in a sparse code). Therefore, that small active subset must have a high
response relative to the cells that are inactive (or have outputs equal to zero). Hencce, the
probability of detecting the correct signal in the presence of noise is increased in the sparse
coding paradigm compared to the case of a transform (e.g., Fourier Transform) where the
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variance of the signal is spread more uniformly over all coefficients. It can also be shown that
sparse/overcomplete coding is optimal when a transmission channel is affected by quantiza-
tion noise and is of limited capacity (see (Doi et al., 2007) and (Doi & Lewicki, 2005)).

Correspondence and Feature Detection
In an ideal sparse code, the activity of any particular basis function has a low probability.
Since the response of each cell is relatively rare, tasks that require matching of features should
be more successful, since the search space is only limited to those active cells (Field, 1994).
It has also be shown that the inclusion of a non-negativeness constraint into the extraction of
sparse codes can generate representations that are part-based (Pichevar & Rouat, 2008) (Lee
& Seung, 1999) (Hoyer, 2004). It is presumably easier to find simple parts (primitives) in an
object than identifying complex shapes. In addition, complex shapes can be charachterized
by the relationship between parts. Therefore, it seems that non-negative sparse coding can be
potentially considered as a powerful tool in pattern recognition.

Storage and Retrieval with Associative Memory
It has been shown in the literature that when the inputs to an associative memory2 network
are sparse, the network can store more patterns and provide more effective retrieval with
partial information (Field, 1994) (Furber et al., 2007).
As a simple argument of why sparse codes are efficient for storage and retrieval, Graham
and Field (Graham & Field, 2006) gave the follwoing example. Consider a collection of 5x5
pixel images that each contain one block letter of the alphabet. If we looked at the histogram
of any given pixel, we might discover that the pixel was on roughly half the time. How-
ever, if we were to represent these letters with templates that respond uniquely to each letter,
each template would respond just 1/26th of the time. This letter code is more sparse-and
more efficient-relative to a pixel code. Although no information is lost, the letter code would
produce the lowest information rate. Moreover, a representation that was letter-based (and
sparse) would provide a more efficient means of learning about the association between let-
ters. If the associations were between individiual pixels, a relatively complex set of statistical
relationships would be required to describe the co-occurences of letters (e.g., between the Q
and U). Sparseness can assit in learning since each unit is providing a relatively complete
representation of the local structure.

Shift Invariance
In transform-based (block-based) coding (e.g., Fourier Transforms), representations are sen-
sitive to the arbitrary alignment of the blocks (analysis window) (see Fig. 2). Even wavelets
are shift variant with respect to dilations of the input signal, and in two dimensons, rotations
of the input signal (Simoncelli et al., 1992). However, with sparse coding techniques as de-
fined in this manuscript this sensitivity problem is completely solved, since the kernels are
positioned arbitrarily and independently (Smith & Lewicki, 2005).

4.1 Physiological evidence for sparse coding
Much of the discussion in recent years regarding sparse coding has come from the the theoret-
ical and computational communities but there is substantial physiological evidence for sparse

2 An associative memory is a dynamical system that saves memory attributes in its state space via attac-
tors. The idea of associative memory is that when a memory clue is presented, the actual memory that
is most like the clue will be recapitulated (see (Haykin, 2008) for details).

Fig. 2. Block-based representations are sensitive to temporal shifts. The top panel shows a
speech waveform with two sets of overlaid Hamming windows, A1-3 (continuous lines above
waveform) and B1-3(dashed lines below waveform). In the three lower panels, the power
spectrum (jagged) and Linear Prediction Coding (LPC) spectrum of hamming windows offset
by <5ms are overlaid (A, continuous; B, dahsed). In either of these, small shifts (e.g., from
A2 to B2) can lead to large changes in the representation (reproduced from (Smith & Lewicki,
2005)).

coding in most biological systems. One neurophysiological theory that predicts the presence
of sparse codes in the neural system is the efficient coding theory (Barlow, 1961) (Simoncelli &
Olshausen, 2001). Efficient coding theory states that a sensory system should preserve infor-
mation about its input while reducing the redundancy of the employed code (Karklin, 2007).
As stated earlier, an efficient way of reducing redundancy is to make cell activity as sparse as
possible (both in time and space). On the experimental side, Lennie (Lennie, 2003) estimated
that given the limited resources of a neuron (i.e., limited energy consumption), the maximum
number of active neurons is only 1/50th of any population of cortical neurons at any given
time (see also (Baddeley, 1996) for a discussion on the energy efficiency of sparse codes). De-
Weese and colleagues (DeWeese et al., 2003), recording from auditory neurons in the rat, have
demonstrated that neurons in A1 (a specific cortical area) can reliably produce a signle spike in
response to a sound. Also, evidence from olfactory systems in insects, somatosensory neurons
in rat, and recording from rat hippocampus all demonstrate highly sparse responses (Graham
& Field, 2006).
Sparse coding in its extreme forms a representation called “grandmother cell" code. In such
a code, each object in the world (e.g., a grandmother) is represented by a single cell. Some
evidence from neurophysiology may be linked to the presence of this very hierarchical repre-
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variance of the signal is spread more uniformly over all coefficients. It can also be shown that
sparse/overcomplete coding is optimal when a transmission channel is affected by quantiza-
tion noise and is of limited capacity (see (Doi et al., 2007) and (Doi & Lewicki, 2005)).

Correspondence and Feature Detection
In an ideal sparse code, the activity of any particular basis function has a low probability.
Since the response of each cell is relatively rare, tasks that require matching of features should
be more successful, since the search space is only limited to those active cells (Field, 1994).
It has also be shown that the inclusion of a non-negativeness constraint into the extraction of
sparse codes can generate representations that are part-based (Pichevar & Rouat, 2008) (Lee
& Seung, 1999) (Hoyer, 2004). It is presumably easier to find simple parts (primitives) in an
object than identifying complex shapes. In addition, complex shapes can be charachterized
by the relationship between parts. Therefore, it seems that non-negative sparse coding can be
potentially considered as a powerful tool in pattern recognition.

Storage and Retrieval with Associative Memory
It has been shown in the literature that when the inputs to an associative memory2 network
are sparse, the network can store more patterns and provide more effective retrieval with
partial information (Field, 1994) (Furber et al., 2007).
As a simple argument of why sparse codes are efficient for storage and retrieval, Graham
and Field (Graham & Field, 2006) gave the follwoing example. Consider a collection of 5x5
pixel images that each contain one block letter of the alphabet. If we looked at the histogram
of any given pixel, we might discover that the pixel was on roughly half the time. How-
ever, if we were to represent these letters with templates that respond uniquely to each letter,
each template would respond just 1/26th of the time. This letter code is more sparse-and
more efficient-relative to a pixel code. Although no information is lost, the letter code would
produce the lowest information rate. Moreover, a representation that was letter-based (and
sparse) would provide a more efficient means of learning about the association between let-
ters. If the associations were between individiual pixels, a relatively complex set of statistical
relationships would be required to describe the co-occurences of letters (e.g., between the Q
and U). Sparseness can assit in learning since each unit is providing a relatively complete
representation of the local structure.

Shift Invariance
In transform-based (block-based) coding (e.g., Fourier Transforms), representations are sen-
sitive to the arbitrary alignment of the blocks (analysis window) (see Fig. 2). Even wavelets
are shift variant with respect to dilations of the input signal, and in two dimensons, rotations
of the input signal (Simoncelli et al., 1992). However, with sparse coding techniques as de-
fined in this manuscript this sensitivity problem is completely solved, since the kernels are
positioned arbitrarily and independently (Smith & Lewicki, 2005).

4.1 Physiological evidence for sparse coding
Much of the discussion in recent years regarding sparse coding has come from the the theoret-
ical and computational communities but there is substantial physiological evidence for sparse

2 An associative memory is a dynamical system that saves memory attributes in its state space via attac-
tors. The idea of associative memory is that when a memory clue is presented, the actual memory that
is most like the clue will be recapitulated (see (Haykin, 2008) for details).

Fig. 2. Block-based representations are sensitive to temporal shifts. The top panel shows a
speech waveform with two sets of overlaid Hamming windows, A1-3 (continuous lines above
waveform) and B1-3(dashed lines below waveform). In the three lower panels, the power
spectrum (jagged) and Linear Prediction Coding (LPC) spectrum of hamming windows offset
by <5ms are overlaid (A, continuous; B, dahsed). In either of these, small shifts (e.g., from
A2 to B2) can lead to large changes in the representation (reproduced from (Smith & Lewicki,
2005)).

coding in most biological systems. One neurophysiological theory that predicts the presence
of sparse codes in the neural system is the efficient coding theory (Barlow, 1961) (Simoncelli &
Olshausen, 2001). Efficient coding theory states that a sensory system should preserve infor-
mation about its input while reducing the redundancy of the employed code (Karklin, 2007).
As stated earlier, an efficient way of reducing redundancy is to make cell activity as sparse as
possible (both in time and space). On the experimental side, Lennie (Lennie, 2003) estimated
that given the limited resources of a neuron (i.e., limited energy consumption), the maximum
number of active neurons is only 1/50th of any population of cortical neurons at any given
time (see also (Baddeley, 1996) for a discussion on the energy efficiency of sparse codes). De-
Weese and colleagues (DeWeese et al., 2003), recording from auditory neurons in the rat, have
demonstrated that neurons in A1 (a specific cortical area) can reliably produce a signle spike in
response to a sound. Also, evidence from olfactory systems in insects, somatosensory neurons
in rat, and recording from rat hippocampus all demonstrate highly sparse responses (Graham
& Field, 2006).
Sparse coding in its extreme forms a representation called “grandmother cell" code. In such
a code, each object in the world (e.g., a grandmother) is represented by a single cell. Some
evidence from neurophysiology may be linked to the presence of this very hierarchical repre-
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sentation of information (Afraz et al., 2006). However, this coding scheme does not seem to
be the prevelant mode of coding in sensory systems.
Sparse coding prevents accidental conjunction of attributes, which is related to the so-called
binding problem (Barlow, 1961) (von der Malsburg, 1999) (Wang, 2005) (Pichevar et al., 2006).
Accidental conjunction is the process in which different features from different stimuli are as-
sociated together, giving birth to illusions or even hallucinations. Although, sparsely coded
features are not mutually exclusive, they nonetheless occur infrequently. Therefore, the ac-
cidental conjunction occurs rarely and not more frequently than in real life where “illusory
conjunction" (the illusion to associate two different features from different stimuli together)
occurs rarely.

5. The Mathematics of Sparse Coding

In most cases, in order to generate a sparse representation we need to extract an overcomplete
representation. In an overcomplete representation, the number of basis vectors (kernels) is
greater than the real dimensionality (number of non-zero eigenvalues in the covariance ma-
trix of the signal) of the input. In order to generate such overcomplete representations, the
common approach consists of matching the best kernels to different acoustic cues using dif-
ferent convergence criteria such as the residual energy. However, the minimization of the
energy of the residual (error) signal is not sufficient to get an overcomplete representation of
an input signal. Other constraints such as sparseness must be considered in order to have a
unique solution. Thus, sparse codes are generated using matching pursuit by matching the
most optimal kernels to the signal.

5.1 Generating Overcomplete Representations with Matching Pursuit (MP)
Matching Pursuit (MP) is a greedy search algorithm (Tropp, 2004) that can be used to extract
sparse representations over an overcomplete set of kernels. Here is a simple analogy showing
how MP works. Imagine you want to buy a coffee that costs X units with a limited number
of coins of higher and lower values. You first pick higher valued coins until you cannot use
them anymore to cover the differnce between the sum of your picked up coins and X. You then
switch to lower-valued coins to reach the amount X and continue with smaller and smaller
coins till either there is no smaller coin left or you reach X units. MP is doing the exact same
thing in the signal domain. It tries to reconstruct a given signal x(t) by decreasing the energy
of the atom used to shape the signal at each iteration. In mathematical notations, the signal
x(t) can be decomposed into the overcomplete kernels as follow

x(t) =
M

∑
m=1

nm

∑
i=1

am
i gm(t − τm

i ) + rx(t), (1)

where τm
i and am

i are the temporal position and amplitude of the i-th instance of the kernel
gm, respectively. The notation nm indicates the number of instances of gm, which need not be
the same across kernels. In addition, the kernels are not restricted in form or length.
In order to find adequate τm

i , am
i , and gm matching pursuit can be used. In this technique the

signal x(t) is decomposed over a set of kernels so as to capture the structure of the signal. The
approach consists of iteratively approximating the input signal with successive orthogonal
projections onto some basis. The signal can be decomposed into

x(t) =< x(t), gm > gm + rx(t), (2)

where < x(t), gm > is the inner product between the signal and the kernel and is equivalent
to am in Eq. 1. rx(t) is the residual signal.
It can be shown (Goodwin & Vetterli, 1999) that the computational load of the matching pur-
suit can be reduced, if one saves values of all correlations in memory or finds an analytical
formulation for the correlation given specific kernels.

Fig. 3. Spikegram of the harpsichord using the gammatone matching pursuit algorithm (spike
amplitudes are not represented). Each dot represents the time and the channel where a spike
is fired.

5.2 Shape of Kernels
In the previous section we showed how a signal x(t) can be projected onto a basis of kernels
gm. The question we address in this section is to find optimal bases for different types of sig-
nals (e.g., image, audio). As mentioned before, the efficient coding theory states that sensory
systems might have evolved to highly efficient coding strategies to maximize the information
conveyed to the brain while minimizing the required energy and neural ressources. This fact
can be the starting point to finding “optimal waveforms "gm for different sensory signals.

5.2.1 Best Kernels for Audio
Smith and Lewicki (Smith & Lewicki, 2006) found the optimal basis gm ∈ G for environmental
sounds by maximizing the Maximum Likelihood (ML) p(x∣G) given that the prior probability
of a spike, p(s), is sparse. Note that the ML part of the optimization deals with the maximiza-
tion of the information transfer to the brain and the sparseness prior minimizes the energy
consumption. Therefore, the optimization here is totally inspired by the efficient coding the-
ory. In mathematical notation, the kernel functions, gm, are optimized by performing gradient
ascent on the log data probability (including ML and sparseness terms),

E =
∂

∂gm
log p(x∣G) =

∂

∂gm
[log p(x∣G, ŝ) + log(p(ŝ))] (3)

If we assume that the noise present in the system is gaussian, Eq. 3 can be rewritten as:

E =
1
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∑
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i [x − x̂]τm

i
(4)
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of a spike, p(s), is sparse. Note that the ML part of the optimization deals with the maximiza-
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If we assume that the noise present in the system is gaussian, Eq. 3 can be rewritten as:

E =
1
σe

∑
i

am
i [x − x̂]τm

i
(4)



Signal	Processing44

where [x − x̂]τm
i

indicates the residual error over the extent of kernel gm at position τm
i and ŝ is

the estimated s. At the start of the training, Smith and Lewicki initialized gm as Gaussian noise
and trained (found optimal gm) by running the optimization on a database of natural sounds.
The natural sounds ensemble used in training combined a collection of mammalian vocal-
izations with two classes of environmental sounds: ambient sounds (rustling brush, wind,
flowing water) and transients (snapping twigs, crunching leaves, impacts of stone or woood).
Results from optimization show only slight differences between the optimal kernels obtained
by Eq. 3 and the gammatone/gammachirp (Irino & Patterson, 2006) family of filters that ap-
proximate cochlea in the inner ear (see Fig. 4). However, as pointed out by Smith and Lewicki,
totally different kernels will be obtained, if we restrain our training set to only a subclass of
environmental sound or if we change the type of signal used as the training set. In the re-
maining of this chapter, we use the safe assumption that the physiologically optimal kernels
for audio are the gammatone/gammachirp filters.

Fig. 4. Efficient coding of a combined sound ensemble consisting of environmental sounds
and vocalization yields filters similar to the gammatone/gammachirp family. The impulse
response of some of the optimal filters are shown here (reporduced from (Lewicki, 2002)).

5.2.2 Best kernels for Image
By using the same efficient coding theory, and by following the same steps as for extracting the
optimal basis gm for audio (i.e., optimizing an ML with sparseness prior and Eq. 3), Olshausen
and Field found that the physiologically optimal kernels for image are Gabor wavelets (Ol-
shausen & Field, 1996) (see Fig. 5). Since our focus in this chapter is on audio coding, we refer
the reader to (Olshausen & Field, 1996) (among others) for furhter discussion on the extraction
of optimal kernels for images.

Fig. 5. Results of the search for optimal kernels using maximum likelihood with sparseness
prior on 12x12 pixel images drawn from natural scenes. The kernels are Gabor-like. Repro-
duced from (Olshausen & Field, 1996).

6. A New Paradigm for Audio Coding

In the second half of this chapter, we will briefly describe the biologically-inspired audio coder
we have developped based on the concepts already presented in the first half of this chapter
(i.e., sparse coding).

6.1 The Bio-Inspired Audio Coder
The analysis/synthesis part of our universal audio codec is based on the generation of
auditory-inspired sparse 2-D representations of audio signals, dubbed as spikegrams. The
spikegrams are generated by projecting the signal onto a set of overcomplete adaptive gam-
machirp (gammatones with additional tuning parameters) kernels (see section 6.2.2). The
adaptiveness is a key feature we introduced in Matching Pursuit (MP) to increase the effi-
ciency of the proposed method (see section 6.2.2). An auditory masking model has been de-
veloped and integrated into the MP algorithm to extract audible spikes (see section 7). In
addition a differential encoder of spike parameters based on graph theory is proposed in
(Pichevar, Najaf-Zadeh, Lahdili & Thibault, 2008). The quantization of the spikes is given
in section 8. We finally propose a frequent pattern discovery block in section 10. The block
diagram of all the building blocks of the receiver and transmitter of our proposed universal
audio coder is depicted in Fig. 6 of which the graph-based optimization of the differential
encoder is explained in (Pichevar, Najaf-Zadeh, Lahdili & Thibault, 2008).
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Fig. 6. Block diagram of our proposed Universal Bio-Inspired Audio Coder.

6.2 Generation of the spike-based representation
We use here the concept of generating sparse overcomplete representations as described in
section 5 to design a biologically-inspired sparse audio coder. In section 5.2, we saw that the
gammatone family of kernels is the optimal class of kernels according to the efficient coding
theory. Therefore, they are used in our approach. In addition, using asymmetric kernels such
as gammatone/gammachirp atoms is that they do not create pre-echos at onsets (Goodwin
& Vetterli, 1999). However, very asymmetric kernels such as damped sinusoids (Goodwin
& Vetterli, 1999) are not able to model harmonic signals suitably. On the other hand, gam-
matone/gammachirp kernels have additional parameters that control their attack and decay
parts (degree of symmetry), which are modified suitably according to the nature of the signal
in our proposed technique. As described in section 5, the approach used to find the projections
is an iterative one. In this section, we will compare two variants of the projection technique.
The first variant, which is non-adaptive, is roughly similar to the general approach used in
(Smith & Lewicki, 2006), which we applied to the specific task of audio coding. However, we
proposed the second adaptive variant in (Pichevar et al., 2007), which takes advantage of the
additional parameters of the gammachirp kernels and the inherent nonlinearity of the audi-
tory pathway (Irino & Patterson, 2001)(Irino & Patterson, 2006). Some details on each variant
are given below.

6.2.1 Non-Adaptive Paradigm
In the non-adaptive paradigm, only gammatone filters are used. The impulse response of a
gammatone filter is given by

g( fc, t) = t3e−2πbt cos(2π fct) t > 0, (5)

where fc is the center frequency of the filter, distributed on Equal Rectangular Bandwith (ERB)
scales. At each step (iteration), the signal is projected onto the gammatone kernels (with dif-
ferent center frequencies and different time delays). The center frequency and time delay that
give the maximum projection are chosen and a spike with the value of the projection is added
to the “auditory representation" at the corresponding center frequency and time delay (see
Fig. 3). The signal is decomposed into the projections on gammatone kernels plus a residual
signal rx(t) (see Eqs. 1 and 2).

6.2.2 Adaptive Paradigm
In the adaptive paradigm, gammachirp filters are used. The impulse response of a gam-
machirp filter with the corresponding tuning parameters (b,l,c) is given below

g( fc, t, b, l, c) = tl−1e−2πbtcos(2π fct + c lnt) t > 0. (6)

It has been shown that the gammachirp filters minimize the scale/time uncertainty (Irino &
Patterson, 2001). In this approach the chirp factor c, l, and b are found adaptively at each step.
The chirp factor c allows us to slightly modify the instantaneous frequency of the kernels, l
and b control the attack and decay of the kernels. However, searching the three parameters in
the parameter space is a very computationally intensive task. Therefore, we use a suboptimal
search (Gribonval, 2001) in which, we use the same gammatone filters as the ones used in the
non-adaptive paradigm with values of l and b given in (Irino & Patterson, 2001). This step
gives us the center frequency and start time (t0) of the best gammatone matching filter. We
also keep the second best frequency (gammatone kernel) and start time.

Gmax1 = argmax
f ,t0

{∣< r, g( f , t0, b, l, c) >∣} , g ∈ G (7)

Gmax2 = argmax
f ,t0

{∣< r, g( f , t0, b, l, c) >∣} , g ∈ G − Gmax1 (8)

For the sake of simplicity, we use f instead of fc in Eqs. 8 to 11. We then use the information
found in the first step to find c. In other words, we keep only the set of the best two kernels in
step one, and try to find the best chirp factor given g ∈ Gmax1 ∪ Gmax2.

Gmaxc = argmax
c

{∣< r, g( f , t0, b, l, c) >∣} . (9)

We then use the information found in the second step to find the best b for g ∈ Gmaxc in Eq.
10, and finally find the best l among g ∈ Gmaxb in Eq. 11.

Gmaxb = argmax
b

{∣< r, g( f , t0, b, l, c) >∣} (10)

Gmaxl = argmax
l

{∣< r, g( f , t0, b, l, c) >∣} . (11)

Therefore, six parameters are extracted in the adaptive technique for the “auditory represen-
tation": center frequencies, chirp factors (c), time delays, spike amplitudes, b, and l. The last
two parameters control the attack and the decay slopes of the kernels. Although, there are ad-
ditional parameters in this second variant, as shown later, the adaptive technique contributes
to better coding gains. The reason for this is that we need a much smaller number of filters
(in the filterbank) and a smaller number of iterations to achieve the same SNR, which roughly
reflects the audio quality.



New	Trends	in	Biologically-Inspired	Audio	Coding 47

Fig. 6. Block diagram of our proposed Universal Bio-Inspired Audio Coder.
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Speech Castanet Percussion
Adapt. Non-Adapt. Adapt. Non-Adapt. Adapt. Non-Adapt.

Number of spikes 10492 35208 6510 24580 9430 29370
Spike gain 0.13N 0.44N 0.08N 0.30N 0.12N 0.37N
Bitrate (bit/sample) 1.98 3.07 1.54 3.03 1.93 2.90

Table 1. Comparison of the adaptive and non-adaptive schemes for spike generation for three
different audio signals. The average saving in bitrate over all materials is around 45%. N is
the signal length (number of samples in the signal).

6.3 Comparison of Adaptive and Non-Adaptive Paradigms
In this section we compare the performance of the adaptive and non-adaptive schemes. Re-
sults and a comparison of the two different schemes in terms of bitrate and number of spikes
extracted for high quality (scale 4 on ITU-R impairment scale) are given in Table 1. With the
adaptive scheme, we observe an average drop of 45% in the bitrate compared to the non-
adaptive approach. The spike gain (decrease in spikes for a given signal of N samples) de-
creases drastically when the adaptive paradigm is used as well. Fig. 7 compares the adaptive
to the non-adaptive approach for different numbers of cochlear channels (the number of center
frequencies used in the gammatone kernels).

Fig. 7. Comparison of the adaptive and non-adaptive spike coding schemes of speech for
different number of channels. In this figure, only the chirp factor is adapted. For the case
where all three parameters are adapted see Fig. 3 in (Pichevar et al., 2007).

7. Masking of Spikes

In previous sections, we showed how sparse representations based on spikes can be generated
using our proposed alogrithm based on MP. We also showed how we can increase the perfor-
mance of our system by shaping adaptively the kernels used in MP to our signal. However,
in the previous section we generated a sparse signal that is close to the original signal in the
mean-squared error sense and we ignored the effects of perceptual masking on the generation
of the signal. In fact, we will see later in this section that some of the spikes generated in
section 6 are not perceptible by the human ear. To this end, we will first review the basics of
masking in the auditory system.

7.1 Fundamentals of Masking
Auditory masking occurs when the perception of one sound (the maskee) is affected by the
presence of another sound (the masker). This happens because the original neural activity
caused by the first signal is reduced by the neural activity of the other sound in the brain.
Masking can be classified in two distinct categories. In temporal (non-simultaneous masking)
the masker and the maskee are not present at the same time. In the case of a spikegram, the
temporal masking is present when two spikes are fired in the same channel (two dots in the
same horizontal line on the spikegram) and are relatively close in time. On the other hand,
simultaneous masking happens when two spikes fire at the same time in different channels.
Fig. 8 outlines the mechanism of different types of masking. The masker (a spike on the
spikegram) is presented. This masker can potentially mask another spike (or make the pres-
ence of another spike inaudible) if the latter falls within the pre- or post-synaptic curves with
an amplitude below the curve or if it is applied simultaneously with a frequency close enough
to the masker and with the appropriate amplitude.

Fig. 8. Temporal masking of the human ear. Pre-masking occurs prior to masker onset and
lasts only a few milliseconds; Post-masking may persist for more than 100 milliseconds after
masker removal (after (Painter & Spanias, 2000))
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Speech Castanet Percussion
Adapt. Non-Adapt. Adapt. Non-Adapt. Adapt. Non-Adapt.

Number of spikes 10492 35208 6510 24580 9430 29370
Spike gain 0.13N 0.44N 0.08N 0.30N 0.12N 0.37N
Bitrate (bit/sample) 1.98 3.07 1.54 3.03 1.93 2.90

Table 1. Comparison of the adaptive and non-adaptive schemes for spike generation for three
different audio signals. The average saving in bitrate over all materials is around 45%. N is
the signal length (number of samples in the signal).
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Fig. 7. Comparison of the adaptive and non-adaptive spike coding schemes of speech for
different number of channels. In this figure, only the chirp factor is adapted. For the case
where all three parameters are adapted see Fig. 3 in (Pichevar et al., 2007).
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temporal masking is present when two spikes are fired in the same channel (two dots in the
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Fig. 8. Temporal masking of the human ear. Pre-masking occurs prior to masker onset and
lasts only a few milliseconds; Post-masking may persist for more than 100 milliseconds after
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Audio Mean Subj. Mean Sub. PEAQ Obj. PEAQ Obj.
Material Score for MP Score for PMP Score for MP Score for PMP
Susan Vega -0.7500 -0.9667 -0.593 -0.330

Trumpet -0.9667 -0.4333 -1.809 -0.791
Orchestra -0.7667 -0.4000 -1.239 -0.915
Harpsichord -0.5000 -0.3667 -1.699 -0.867
Bagpipe -0.4000 -0.2000 -0.765 -0.502
Glockenspiel -0.2000 -0.333 -0.925 -1.266
Plucked Strings -0.4667 -0.2667 -1.050 -1.050

Table 2. Mean subjective and objective scores for a few audio files processed with MP and
PMP. Objective Difference Grade (ODG) are shown in the table for subjective tests.

7.2 Perceptual Matching Pursuit
Based on the masking mechanism explained above, we proposed in (Najaf-Zadeh et al., 2008)
the Perceptual Matching Pursuit, which basically extend MP to the perceptual domain. By
doing so, only an audible kernel is extracted at each iteration. Moreover, contrary to the
matching pursuit algorithm, PMP will stop decomposing an audio signal once there is no
audible part left in the residual. Details of how the pre- and post-masking curves as in Fig. 8
are extracted for spikegrams as well as the simultaneous masking are given in (Najaf-Zadeh
et al., 2008). Here, in table 2 we give results on how PMP retains the same audio quality as
MP. In order to verify the objective scores, we conducted a semi-formal listening test, based
on the ITU.R BS. 1116 method, to evaluate the quality of the test signals. Six subjects took part
in a Ştriple stimulus hidden referenceŤ test and listened to the audio materials (presented in
Table 2) over the headphone in a quiet room. The CRC SEAQ software was used in the test
which allowed the listener to seamlessly switch among the three stimuli. In each trial, the
stimuli ŞAŤ was always the reference stimulus known by the subject. Two other stimuli, ŞBŤ
or ŞCŤ, were either a hidden reference, identical to ŞAŤ, or a synthesized version of the same
audio material. None of ŞBŤ or ŞCŤ was known to the subject. The listener had to identify
the synthesized version (either ŞBŤ or ŞCŤ) and to grade its quality relative to that of the
reference on ŞAŤ. The grading scale was continuous from 1 (very annoying) to 5 (no difference
between the reference and the synthesized file). The average subjective scores for MP and
PMP were 4.4214 and 4.5762, and the standard deviations of the scores were 0.2522 and 0.2612
respectively. Values in Table 2 are the mapping of the subjective test scores (between 1 and 5) to
the Objective Difference Grade (ODG) that varies between -4 to +4, according to the ITU.R BS
1116 standard. Positive values in the ODG represents evaluation errors by subjects (basically
errors in identifying the hidden reference), while negative values are the subjective scores,
with 0 being the case where no difference between the reference and the coded material is
detected by the subject3 and -4 representing the biggest difference between the reference and
the coded signal. Although the confidence intervals for the subjective scores are overlapping,
the majority of the test materials received higher subjective scores for PMP, which is consistent
with the objective evaluation. The reader may notice that PMP reduces the total number of
spikes to be extracted for the same audio quality, thus requires lower bitrate for the same
audio quality.

3 http://www.itu.int/rec/R-REC-BS.1116-1-199710-I/e

8. Quantization of Spikes

The amplitude of spikes generated in spikegrams should be quantized before transmission.
The cost function we use to find the optimal levels of quantization is a trade-off between
the quality of reconstruction and the number of bits required to code each modulus. More
precisely, given the vector of quantization levels (codebook) q, the cost function to optimize is
given by (R is the bitrate and D is the distortion):

ˆE(q) = D + λR =
∥∑i α̂igi − ∑i αigi∥2

∥∑i αigi + η∥γ + λH(f̂f), (12)

where η = 10−5, γ = 0.001 are set empirically using informal listening tests. The entropy,
ˆE(q), is computed using the absolute value of spike amplitudes. f̂f is the vector of quantized
amplitudes and is computed as follows:

α̂i = qi if qi−1 < αi < qi (13)

H(f̂f) is the per spike entropy in bits needed to encode the information content of each element
of f̂f defined as:

H(f̂f) = −∑
i

pi(α̂i)log2 pi(α̂i), (14)

where pi(α̂i) is the probability density function of α̂i. The way the quantizer is defined in
Eq. 13 reduces the dead zone problem (defined in (Neff & Zakhor, 2000)). To proceed with
the optimization at a given number of quantization levels, we randomly set the initial values
(initial population) for the qi and perform Genetic Algorithm to find optimal solutions. The
goal of the weighting in the denominator of D (Eq. 12) is to give a better reconstruction of
low-energy parts of the signal.
Note that in Eq. 12 many different α̂i can contribute to the reconstruction of the original sig-
nal at a given instance of time t, which is not the case when quantization is applied on time
samples (Lloyd algorithm). Therefore, the optimal α̂k are not statistically independent. In
addition, in contrast with transform-based coder quantizations (done for instance with Lloyd
algorithm), gk are a few atoms selected from a large set of different atoms (tens of thousand) in
the dictionary and there is an entropy maximization term in our cost function. It is therefore
impossible to derive a closed-form theoretical solution for the optimal α̂i in the case of sparse
representations. Hence, we should use adaptive optimization techniques. In order to avoid
local minima, in (Pichevar, Najaf-Zadeh, Thibault & Lahdili, 2008) we derived optimal quan-
tization levels using Genetic Algorithm (GA) (Mitchell, 1998). Results obtained in (Pichevar,
Najaf-Zadeh, Thibault & Lahdili, 2008) showed that the optimal quantizer is not linear in the
case of spikegrams.

9. Piecewise Uniform Quantization

Running GA for each signal is a time consuming task. In addition, sending a new codebook
for each signal type and/or frame is an overhead we may want to avoid. In this section we
propose faster ways to find a suboptimal solution to the quantization results that keeps trans-
parency in quality. The goal is achieved by performing a piecewise uniform approximation of
the codebook by using the histogram of the moduli.
Fig. 9 shows the optimal quantization levels (qi) for four different types of signals. The optimal
signal is obtained using the GA algorithm explained in the previous section.
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doing so, only an audible kernel is extracted at each iteration. Moreover, contrary to the
matching pursuit algorithm, PMP will stop decomposing an audio signal once there is no
audible part left in the residual. Details of how the pre- and post-masking curves as in Fig. 8
are extracted for spikegrams as well as the simultaneous masking are given in (Najaf-Zadeh
et al., 2008). Here, in table 2 we give results on how PMP retains the same audio quality as
MP. In order to verify the objective scores, we conducted a semi-formal listening test, based
on the ITU.R BS. 1116 method, to evaluate the quality of the test signals. Six subjects took part
in a Ştriple stimulus hidden referenceŤ test and listened to the audio materials (presented in
Table 2) over the headphone in a quiet room. The CRC SEAQ software was used in the test
which allowed the listener to seamlessly switch among the three stimuli. In each trial, the
stimuli ŞAŤ was always the reference stimulus known by the subject. Two other stimuli, ŞBŤ
or ŞCŤ, were either a hidden reference, identical to ŞAŤ, or a synthesized version of the same
audio material. None of ŞBŤ or ŞCŤ was known to the subject. The listener had to identify
the synthesized version (either ŞBŤ or ŞCŤ) and to grade its quality relative to that of the
reference on ŞAŤ. The grading scale was continuous from 1 (very annoying) to 5 (no difference
between the reference and the synthesized file). The average subjective scores for MP and
PMP were 4.4214 and 4.5762, and the standard deviations of the scores were 0.2522 and 0.2612
respectively. Values in Table 2 are the mapping of the subjective test scores (between 1 and 5) to
the Objective Difference Grade (ODG) that varies between -4 to +4, according to the ITU.R BS
1116 standard. Positive values in the ODG represents evaluation errors by subjects (basically
errors in identifying the hidden reference), while negative values are the subjective scores,
with 0 being the case where no difference between the reference and the coded material is
detected by the subject3 and -4 representing the biggest difference between the reference and
the coded signal. Although the confidence intervals for the subjective scores are overlapping,
the majority of the test materials received higher subjective scores for PMP, which is consistent
with the objective evaluation. The reader may notice that PMP reduces the total number of
spikes to be extracted for the same audio quality, thus requires lower bitrate for the same
audio quality.
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The amplitude of spikes generated in spikegrams should be quantized before transmission.
The cost function we use to find the optimal levels of quantization is a trade-off between
the quality of reconstruction and the number of bits required to code each modulus. More
precisely, given the vector of quantization levels (codebook) q, the cost function to optimize is
given by (R is the bitrate and D is the distortion):
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ˆE(q), is computed using the absolute value of spike amplitudes. f̂f is the vector of quantized
amplitudes and is computed as follows:
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H(f̂f) is the per spike entropy in bits needed to encode the information content of each element
of f̂f defined as:

H(f̂f) = −∑
i

pi(α̂i)log2 pi(α̂i), (14)

where pi(α̂i) is the probability density function of α̂i. The way the quantizer is defined in
Eq. 13 reduces the dead zone problem (defined in (Neff & Zakhor, 2000)). To proceed with
the optimization at a given number of quantization levels, we randomly set the initial values
(initial population) for the qi and perform Genetic Algorithm to find optimal solutions. The
goal of the weighting in the denominator of D (Eq. 12) is to give a better reconstruction of
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Note that in Eq. 12 many different α̂i can contribute to the reconstruction of the original sig-
nal at a given instance of time t, which is not the case when quantization is applied on time
samples (Lloyd algorithm). Therefore, the optimal α̂k are not statistically independent. In
addition, in contrast with transform-based coder quantizations (done for instance with Lloyd
algorithm), gk are a few atoms selected from a large set of different atoms (tens of thousand) in
the dictionary and there is an entropy maximization term in our cost function. It is therefore
impossible to derive a closed-form theoretical solution for the optimal α̂i in the case of sparse
representations. Hence, we should use adaptive optimization techniques. In order to avoid
local minima, in (Pichevar, Najaf-Zadeh, Thibault & Lahdili, 2008) we derived optimal quan-
tization levels using Genetic Algorithm (GA) (Mitchell, 1998). Results obtained in (Pichevar,
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case of spikegrams.
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Running GA for each signal is a time consuming task. In addition, sending a new codebook
for each signal type and/or frame is an overhead we may want to avoid. In this section we
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parency in quality. The goal is achieved by performing a piecewise uniform approximation of
the codebook by using the histogram of the moduli.
Fig. 9 shows the optimal quantization levels (qi) for four different types of signals. The optimal
signal is obtained using the GA algorithm explained in the previous section.



Signal	Processing52

0 5 10 15 20 25 30 35
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Quantization Index

O
p

ti
m

a
l Q

u
a

n
ti

za
ti

o
n

 L
e

v
e

ls

 

 

Speech
Castanet
Harpsichord
Percussion

Fig. 9. Optimal quantization levels for different sound categories. Spike amplitudes are nor-
malized to one.

As we can see, the optimal levels can be approximated as piecewise linear segments (meaning
that the quantizer is ”piecewise" linear). The optimal levels are updated by the following
method for each one-second-long frame:

• Find the 40-bin histogram h of the spike amplitudes.

• Threshold the histogram by the sign function so that ht = sign(h) to find spike ampli-
tude clusters (concentrations). Smooth out the curves by applying a moving average
filter with the following impulse response: m(n) = ∑k 0.125δ(n − k) for k = 1, 2, ...8.

• Set a crossing threshold of 0.4 on the smoothed curve. Each time the curve crosses the
threshold, define a new uniform quantizer between the two last threshold crossings.

9.1 Results from Piecewise Uniform Quantization
For the different signal types we used in section 2.3, we proceeded with the fast piecewise uni-
form quantization described in the previous subsection. We noticed that the 32-level quantizer
gives only near-transparent coding results with CRC-SEAQ (see Table 3) for the piecewise
uniform quantizer. However, the quality is transparent when 64 levels are used. These ob-
servations have been confirmed with informal listening tests. This behavior is due to the fact
that the 64-level quantizer has more uniform quantization levels than the 32-level quantizer.
Therefore, we recommend the 64-level quantizer when the piecewise uniform approximation
is used.
The overall codec bitrate can be computed by combining the bitrate in Tables 1-3 of (Pichevar
et al., 2007) for the unquantized case and values for amplitude quantization in Table 3 of this
article.

CRC-SEAQ
32-Levels 64 Levels

Percussion -1.30 -0.25
Castanet -0.50 -0.10
Harpsichord -1.10 -0.15
Speech -0.95 -0.44

Table 3. Comparison of 32-level and 64-level piecewise uniform quantizers for different audio
signals. A CRC-SEAQ score between 0 and -1 is associated with transparent quality. No
codebook side information is sent to the receiver in this case.

10. Extraction of Patterns in Spikegrams

As mentioned in previous sections, the spike activity of each channel can be associated to
the activity of a neuron tuned to the center frequency of that channel. The ultimate goal in
the pattern recognition paradigm is to find a generative neural architecture (such as a synfire
chain (Abeles, 1991) or a polychronous network (Izhikevich, 2006)) that is able to generate
a spikegram such as the one we extract by MP (see Fig. 3) for a given audio signal. How-
ever, for the time being we proposed a solution to a simplified version of the aforementioned
problem in (Pichevar & Najaf-Zadeh, 2009). In fact, we propose to extract “channel-based or
frequency-domain patterns" in our generated spikegrams using temporal data mining (Man-
nila et al., 1997) (Patnaik et al., 2008). Since these patterns are repeated frequently in the signal
and are the building blocks of the audio signal, we may call them auditory objects (Breg-
man, 1994). In contrast with other approaches (i.e., Harmonic Matching Pursuit and Meta-
Molecular Matching Pursuit) that are able to extract some predefined sound structures such
as harmonics (Krstulovic et al., 2005) very precisely, our proposed approach is able to extract
patterns without any a priori knowledge of the type of structure present in the sound. The
reader may also refer to (Karklin, 2007) and (Karklin & Lewicki, 2009) for another approach to
extract statistical dependencies in a sparse representation that uses latent (hidden) variables
to exploit higher order statistics.

10.1 Frequent Episode Discovery
The frequent episode discovery framework was proposed by Mannila and colleagues (Man-
nila et al., 1997) and enhanced in (Laxman et al., 2007). Patnaik et al. (Patnaik et al., 2008)
extended previous results to the processing of neurophysiological data. The frequent episode
discovery fits in the general paradigm of temporal data mining. The method can be applied to
either serial episodes (ordered set of events) or to parallel episodes (unordered set of events).
A frequent episode is one whose frequency exceeds a user specified threshold. Given an
episode occurrence, we call the largest time difference between any two events constituting
the occurrence as the span of the occurrence and we use this span as a temporal constraint in
the algorithm. The details of the algorithm can be found in (Pichevar & Najaf-Zadeh, 2009).
In (Pichevar & Najaf-Zadeh, 2009), we showed that the extraction of patterns in the spikegram
is biased towards denser regions. Therefore we proposed a 3-pass extraction algorithm in
which extracted patterns are subtracted from the original signal at each pass and explore
sparser regions as well.
Fig. 10 shows the extracted patterns for each of the three distinct passes for percussion. Since
unordered episodes are discovered, the order of appearance of spikes in different channels
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Fig. 9. Optimal quantization levels for different sound categories. Spike amplitudes are nor-
malized to one.

As we can see, the optimal levels can be approximated as piecewise linear segments (meaning
that the quantizer is ”piecewise" linear). The optimal levels are updated by the following
method for each one-second-long frame:

• Find the 40-bin histogram h of the spike amplitudes.

• Threshold the histogram by the sign function so that ht = sign(h) to find spike ampli-
tude clusters (concentrations). Smooth out the curves by applying a moving average
filter with the following impulse response: m(n) = ∑k 0.125δ(n − k) for k = 1, 2, ...8.

• Set a crossing threshold of 0.4 on the smoothed curve. Each time the curve crosses the
threshold, define a new uniform quantizer between the two last threshold crossings.

9.1 Results from Piecewise Uniform Quantization
For the different signal types we used in section 2.3, we proceeded with the fast piecewise uni-
form quantization described in the previous subsection. We noticed that the 32-level quantizer
gives only near-transparent coding results with CRC-SEAQ (see Table 3) for the piecewise
uniform quantizer. However, the quality is transparent when 64 levels are used. These ob-
servations have been confirmed with informal listening tests. This behavior is due to the fact
that the 64-level quantizer has more uniform quantization levels than the 32-level quantizer.
Therefore, we recommend the 64-level quantizer when the piecewise uniform approximation
is used.
The overall codec bitrate can be computed by combining the bitrate in Tables 1-3 of (Pichevar
et al., 2007) for the unquantized case and values for amplitude quantization in Table 3 of this
article.

CRC-SEAQ
32-Levels 64 Levels

Percussion -1.30 -0.25
Castanet -0.50 -0.10
Harpsichord -1.10 -0.15
Speech -0.95 -0.44

Table 3. Comparison of 32-level and 64-level piecewise uniform quantizers for different audio
signals. A CRC-SEAQ score between 0 and -1 is associated with transparent quality. No
codebook side information is sent to the receiver in this case.

10. Extraction of Patterns in Spikegrams

As mentioned in previous sections, the spike activity of each channel can be associated to
the activity of a neuron tuned to the center frequency of that channel. The ultimate goal in
the pattern recognition paradigm is to find a generative neural architecture (such as a synfire
chain (Abeles, 1991) or a polychronous network (Izhikevich, 2006)) that is able to generate
a spikegram such as the one we extract by MP (see Fig. 3) for a given audio signal. How-
ever, for the time being we proposed a solution to a simplified version of the aforementioned
problem in (Pichevar & Najaf-Zadeh, 2009). In fact, we propose to extract “channel-based or
frequency-domain patterns" in our generated spikegrams using temporal data mining (Man-
nila et al., 1997) (Patnaik et al., 2008). Since these patterns are repeated frequently in the signal
and are the building blocks of the audio signal, we may call them auditory objects (Breg-
man, 1994). In contrast with other approaches (i.e., Harmonic Matching Pursuit and Meta-
Molecular Matching Pursuit) that are able to extract some predefined sound structures such
as harmonics (Krstulovic et al., 2005) very precisely, our proposed approach is able to extract
patterns without any a priori knowledge of the type of structure present in the sound. The
reader may also refer to (Karklin, 2007) and (Karklin & Lewicki, 2009) for another approach to
extract statistical dependencies in a sparse representation that uses latent (hidden) variables
to exploit higher order statistics.

10.1 Frequent Episode Discovery
The frequent episode discovery framework was proposed by Mannila and colleagues (Man-
nila et al., 1997) and enhanced in (Laxman et al., 2007). Patnaik et al. (Patnaik et al., 2008)
extended previous results to the processing of neurophysiological data. The frequent episode
discovery fits in the general paradigm of temporal data mining. The method can be applied to
either serial episodes (ordered set of events) or to parallel episodes (unordered set of events).
A frequent episode is one whose frequency exceeds a user specified threshold. Given an
episode occurrence, we call the largest time difference between any two events constituting
the occurrence as the span of the occurrence and we use this span as a temporal constraint in
the algorithm. The details of the algorithm can be found in (Pichevar & Najaf-Zadeh, 2009).
In (Pichevar & Najaf-Zadeh, 2009), we showed that the extraction of patterns in the spikegram
is biased towards denser regions. Therefore we proposed a 3-pass extraction algorithm in
which extracted patterns are subtracted from the original signal at each pass and explore
sparser regions as well.
Fig. 10 shows the extracted patterns for each of the three distinct passes for percussion. Since
unordered episodes are discovered, the order of appearance of spikes in different channels
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Percussion Pass 1 Pass 2 Pass 3 Overall
No. extracted spikes 1682 771 335 2788
No. codebook elements 47 36 11 94
Codebook size in bits 2200 1976 320 4496
Raw bit saving 9968 4403 1820 16191
Effective bit saving 7768 2427 1500 11695

Castanet Pass 1 Pass 2 Pass 3 Overall
No. extracted Spikes 596 684 580 1860
No. codebook elements 8 20 37 65
Codebook size in bits 440 1436 2340 4216
Raw bit saving 2660 4095 3253 10008
Effective bit saving 2220 2659 913 5792

Speech Pass 1 Pass 2 Pass 3 Overall
No. extracted Spikes 1262 689 395 2346
No. codebook elements 8 21 11 40
Codebook size in bits 338 1053 288 1679
Raw bit saving 3238 3859 2250 11026
Effective bit saving 2899 2806 1962 7667

Table 4. Results for a 3-Pass pattern extraction on 1-second frames. Percussion: The total
number of bits to address channels when no pattern recognition is used equals 23704 and the
saving in addressing channels due to our algorithm is 49%. Castanet: The total number of bits
to address channels when no pattern recognition is used is 21982 and there is a saving of 26%
with our proposed algorithm. Speech: The total number of bits to address channels when no
pattern recognition is used is 19118 and there is a saving of 40%.

can change for a given pattern. However, the channels in which spike activity occurs are the
same for all similar patterns. In other words the patterns are similar up to a permutation in
the order of appearance of each spike. Fig. 10 also shows that our 3-pass algorithm is able to
extract patterns in the high, low and mid-frequency ranges, while a 1-pass algorithm would
have penalized some sparser spikegram regions.
In Table 4, the number of extracted spikes is shown for each pass and the raw bit saving
and effective bit saving in addressing channels as described above are given for percussion,
castanet, and speech. Our algorithm was able to extract between 1860 and 2788 spikes in
different episodes out of the total 4000 spikes. The longest pattern found in percussion is 13-
spike long and is repeated on average 17 times in the signal frame, while the longest pattern
for castanet is 14-spike long and is repeated 33 times on average in frames. In the meantime,
the longest pattern for speech is 100-spike element and is repeated 8 times on average in the
frames. Results show that the bitrate coding gain obtained in addressing frequency channels
ranges from 26 % to 49% depending on signal type. Note that since the pattern extraction
coding is lossless, the informal subjective quality evaluations in (Pichevar et al., 2007) for the
audio materials still hold when our new audio extraction paradigm is applied.

Fig. 10. Spikegrams (dots) and the most relevant extracted patterns (lines) at each of the 3
passes for percussion for a 250 ms frame. Different colors/grayscales represent different
episodes. Only spikes not discovered during the previous pass are depicted at each pass.
Note that since unordered episodes are discovered, patterns are similar up to a permutation
in the temporal order.
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We outlined in this chapter, a new type of emergent signal coding called sparse represen-
tation, which is able to preserve the exact timing of acoustical events and edges of images.
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Percussion Pass 1 Pass 2 Pass 3 Overall
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Codebook size in bits 440 1436 2340 4216
Raw bit saving 2660 4095 3253 10008
Effective bit saving 2220 2659 913 5792

Speech Pass 1 Pass 2 Pass 3 Overall
No. extracted Spikes 1262 689 395 2346
No. codebook elements 8 21 11 40
Codebook size in bits 338 1053 288 1679
Raw bit saving 3238 3859 2250 11026
Effective bit saving 2899 2806 1962 7667

Table 4. Results for a 3-Pass pattern extraction on 1-second frames. Percussion: The total
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saving in addressing channels due to our algorithm is 49%. Castanet: The total number of bits
to address channels when no pattern recognition is used is 21982 and there is a saving of 26%
with our proposed algorithm. Speech: The total number of bits to address channels when no
pattern recognition is used is 19118 and there is a saving of 40%.
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Sparse codes have also other interesting properties such as shift invariance. Furthermore, we
discussed the biological plausibiltiy of sparse representations in the brain when it comes to
the processing of audio and video. We then described our proposed audio coder, which is
a merger of sparse coding with biologically-inspired coding. We showed how sparse code
generation (spikegrams), masking, quantization and pattern extraction can be done in our
proposed framework. Our proposed approach is a first step towards the development of an
object-based universal audio coder. Object-based coders belong to a totally new generation
of coders that can potentially reduce current achievable bitrates by an order of magnitude; as
an analogy, consider the amount of information we can save by transmitting only the color,
radius, and position of a given circle in a visual scene instead of sending all pixels of that circle
one by one!
In a future work, we will extract the structural dependencies of spike amplitudes and/or other
parameters in the spikegram such as the chirp factor, etc. We will also investigate the design
of a generative neural model based on spikegrams. Formal subjective listening tests for the
overall system will be conducted in the future. In order to speed up the spikegram extraction
of audio signals, we have conducted preliminary tests on replacing the MP stage (see Fig.
6) by neural circuitry that can be implemented on embedded and parallel hardware. We will
further explore this avenue in a future work. The application of different ideas outlined in this
chapter (i.e., pattern recognition and masking model) are not limited to spikegrams and can
be applied to other sparse representations found in the literature. In addition, the frequency
episode discovery algorithm discussed in this article can be used in other applications such as
speech recognition, sound source separation, and audio classification.
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1. Introduction

A classical problem is to analyse a signal (function) by decomposing it into suitable building
blocks, then approximate it by truncating the expansion. Well-known examples are Fourier
transform and its localized version, the Short Time Fourier transform (sometimes called the
Gabor transform), and the wavelet transform. In the best case, the elementary blocks form
a basis in the space of signals, with the pleasant consequence that the expansion coefficients
are uniquely defined. Unfortunately, this is not always possible and often one has to resort to
frames. In image processing, in particular, two-dimensional wavelets are by now a standard
tool in image processing, under the two concurrent approaches, the Discrete Wavelet Trans-
form (DWT), based on the concept of multiresolution analysis, and the Continuous Wavelet
Transform (CWT). While the former usually leads to wavelet bases, the CWT has to be dis-
cretized for numerical implementation and produces in general only frames.
Nowadays, many situations yield data on spherical surfaces. For instance, in Earth and Space
sciences (geography, geodesy, meteorology, astronomy, cosmology, etc), in crystallography
(texture analysis of crystals), in medicine (some organs are regarded as sphere-like surfaces),
or in computer graphics (modelling of closed surfaces as the graph of a function defined on
the sphere). So one needs a suitable analysis tool for such data. In the spherical case, the
Fourier transform amounts to an expansion in spherical harmonics, whose support is the
whole sphere. Fourier analysis on the sphere is thus global and cumbersome. Therefore many
different methods have been proposed to replace it with some sort of wavelet analysis.
In addition, some data may live on more complicated manifolds, such as a two-sheeted hyper-
boloid, in cosmology for instance (an open expanding model of the universe). In optics also,
in the catadioptric image processing, where a sensor overlooks a mirror with the shape of a
hyperboloid or a paraboloid. Another example is a closed sphere-like surface, that is, a surface
obtained from a sphere by a smooth deformation. Thus it would be useful to have a wavelet
transform available on such manifolds as well.
In this chapter, we will review the various aspects of the wavelet transform on the two-sphere,
both continuous and discrete, with some emphasis on the construction of bases and frames.
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We will also quickly indicate generalizations to other curved manifolds. Besides the original
papers, partial reviews of some of this material may be found in (Antoine & Vandergheynst,
2007; Antoine & Roşca, 2008). The present chapter is an elaboration of the paper (Roşca &
Antoine, 2008).

2. The CWT on the two-sphere

2.1 Heuristics
We consider first the extension of the CWT to the two sphere S2 = {x ∈ R3, ‖x‖ = 1}.
A complete solution was obtained in (Antoine & Vandergheynst, 1999; Antoine et al., 2002)
by a group-theoretical method (which actually works in any dimension (Antoine & Van-
dergheynst, 1998)). As it is well-known in the planar case, the design of a CWT on a given
manifold X starts by identifying the operations one wants to perform on the finite energy
signals living on X, that is, functions in L2(X, dν), where ν is a suitable measure on X. Next
one realizes these operations by unitary operators on L2(X, dν) and one looks for a possible
group-theoretical derivation.
In the case of the two-sphere S2, the required transformations are of two types: (i) motions,
which are realized by rotations � ∈ SO(3), and (ii) dilations of some sort by a scale factor
a ∈ R∗

+. The problem is how to define properly the dilation on the sphere S2. The solution
proposed in (Antoine & Vandergheynst, 1999; Antoine et al., 2002) consists in lifting onto the
sphere, by inverse stereographic projection, the usual radial dilation in the tangent plane at the
South Pole. More precisely, one proceeds in three steps: Project a point A ∈ S2 onto the point
B in the tangent plane, perform the usual 2-D dilation B �→ Ba by a factor a, and project back
to Aa ∈ S2. The map A �→ Aa is the stereographic dilation.
Now, the Hilbert space of spherical signals is L2(S2, dµ), where dµ = sin θ dθ dϕ, θ ∈ [0, π]
is the colatitude angle, ϕ ∈ [0, 2π) the longitude angle, ω = (θ, ϕ) ∈ S2. In that space, the
desired operations are realized by the following unitary operators:

. rotation R� : (R� f )(ω) = f (�−1ω), � ∈ SO(3), (1)

. dilation Da : (Da f )(ω) = λ(a, θ)1/2 f (ω1/a), a ∈ R∗
+. (2)

In relation (2), ωa := (θa, ϕ), θa is defined by cot θa
2 = a cot θ

2 for a > 0 and the normalization
factor (Radon-Nikodym derivative, cocycle) , given as

λ(a, θ)1/2 := 2a [(a2 − 1) cos θ + (a2 + 1)]−1, (3)

is needed for compensating the noninvariance under dilation of the natural measure dµ(ω)
on S2. Thus, starting from a function ψ ∈ L2(S2), we consider the whole family it generates,
namely, {ψ�,a := R�Daψ, � ∈ SO(3), a > 0}.
By analogy with the plane case, the spherical wavelet transform of a function f ∈ L2(S2), with
respect to the wavelet ψ, will be defined as

Wψ f (�, a) := 〈ψ�,a| f 〉. (4)

The question, of course, is to determine which functions ψ can qualify as wavelets, that is,
to determine the wavelet admissibility condition. Apart from an educated guess, the natural
way to find the answer is through a group-theoretical analysis, mimicking the familiar one of
planar 2-D wavelets.

2.2 The group-theoretical or coherent state approach
As a matter of fact, this spherical CWT was obtained in (Antoine & Vandergheynst, 1999) by
the group-theoretical approach familiar in the planar 2-D case. The point is to embed the
rotations from SO(3) and the dilations into the Lorentz group SOo(3, 1), the argument being
that this group is the conformal group both of the sphere S2 and of the tangent plane R2. The
embedding results from the so-called Iwasawa decomposition:

SOo(3, 1) = SO(3) · A · N,

where A ∼ SOo(1, 1) ∼ R ∼ R+
∗ (boosts in the z-direction) and N ∼ C.

Then it turns out that the Lorentz group SOo(3, 1) has a transitive action on the sphere S2.
In particular, a boost from A corresponds to a stereographic dilation. Now SOo(3, 1) has a
natural unitary representation U in L2(S2, dµ), namely,

[U(g) f ] (ω) = λ(g, ω)1/2 f
(

g−1ω
)

, for g ∈ SOo(3, 1), f ∈ L2(S2, dµ), (5)

where λ(g, ω) ≡ λ(a, θ) is the Radon-Nikodym derivative (3).
Thus the parameter space of the spherical CWT is the quotient

X = SOo(3, 1)/N ∼ SO(3) · A,

which is not a group. Therefore, in order to apply the general formalism, we must introduce a
section σ : X → SOo(3, 1) and consider the reduced representation U(σ(�, a)). Choosing the
natural (Iwasawa) section σ(�, a) = � a, � ∈ SO(3), a ∈ A, we obtain

U(σ(�, a)) = U(� a) = U(�)U(a) = R� Da, (6)

exactly as before, in (1)-(2).
The following three propositions show that the representation (5) has all the properties that
are required to generate a useful CWT. First of all, it is square integrable on the quotient man-
ifold X = SOo(3, 1)/N � SO(3) · R+

∗ . For simplicity, we shall identify these two isomorphic
manifolds.

Proposition 2.1. The UIR (5) is square integrable on X modulo the section σ, that is, there exist
nonzero (admissible) vectors ψ ∈ L2(S2, dµ) such that

∫ ∞

0

da
a3

∫

SO(3)
d� |〈U(σ(�, a))ψ|φ〉|2 := 〈φ|Aψφ〉 < ∞, for all φ ∈ L2(S2, dµ) . (7)

Here d� is the left invariant (Haar) measure on SO(3).
The resolution operator (also called frame operator) Aψ is diagonal in Fourier space (i.e., it is a
Fourier multiplier):

Âψ f (l, m) = Gψ(l) f̂ (l, m), (8)

where

Gψ(l) =
8π2

2l + 1 ∑
|m|�l

∫ ∞

0

da
a3 |ψ̂a(l, m)|2, for all l ∈ N, (9)

and ψ̂a(l, m) = 〈Ym
l |ψa〉, where Ym

l is a spherical harmonic and ψa := Daψ.

Next, we have an exact admissibility condition on the wavelets (this condition was also de-
rived by Holschneider (1996)).
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We will also quickly indicate generalizations to other curved manifolds. Besides the original
papers, partial reviews of some of this material may be found in (Antoine & Vandergheynst,
2007; Antoine & Roşca, 2008). The present chapter is an elaboration of the paper (Roşca &
Antoine, 2008).

2. The CWT on the two-sphere

2.1 Heuristics
We consider first the extension of the CWT to the two sphere S2 = {x ∈ R3, ‖x‖ = 1}.
A complete solution was obtained in (Antoine & Vandergheynst, 1999; Antoine et al., 2002)
by a group-theoretical method (which actually works in any dimension (Antoine & Van-
dergheynst, 1998)). As it is well-known in the planar case, the design of a CWT on a given
manifold X starts by identifying the operations one wants to perform on the finite energy
signals living on X, that is, functions in L2(X, dν), where ν is a suitable measure on X. Next
one realizes these operations by unitary operators on L2(X, dν) and one looks for a possible
group-theoretical derivation.
In the case of the two-sphere S2, the required transformations are of two types: (i) motions,
which are realized by rotations � ∈ SO(3), and (ii) dilations of some sort by a scale factor
a ∈ R∗

+. The problem is how to define properly the dilation on the sphere S2. The solution
proposed in (Antoine & Vandergheynst, 1999; Antoine et al., 2002) consists in lifting onto the
sphere, by inverse stereographic projection, the usual radial dilation in the tangent plane at the
South Pole. More precisely, one proceeds in three steps: Project a point A ∈ S2 onto the point
B in the tangent plane, perform the usual 2-D dilation B �→ Ba by a factor a, and project back
to Aa ∈ S2. The map A �→ Aa is the stereographic dilation.
Now, the Hilbert space of spherical signals is L2(S2, dµ), where dµ = sin θ dθ dϕ, θ ∈ [0, π]
is the colatitude angle, ϕ ∈ [0, 2π) the longitude angle, ω = (θ, ϕ) ∈ S2. In that space, the
desired operations are realized by the following unitary operators:

. rotation R� : (R� f )(ω) = f (�−1ω), � ∈ SO(3), (1)

. dilation Da : (Da f )(ω) = λ(a, θ)1/2 f (ω1/a), a ∈ R∗
+. (2)

In relation (2), ωa := (θa, ϕ), θa is defined by cot θa
2 = a cot θ

2 for a > 0 and the normalization
factor (Radon-Nikodym derivative, cocycle) , given as

λ(a, θ)1/2 := 2a [(a2 − 1) cos θ + (a2 + 1)]−1, (3)

is needed for compensating the noninvariance under dilation of the natural measure dµ(ω)
on S2. Thus, starting from a function ψ ∈ L2(S2), we consider the whole family it generates,
namely, {ψ�,a := R�Daψ, � ∈ SO(3), a > 0}.
By analogy with the plane case, the spherical wavelet transform of a function f ∈ L2(S2), with
respect to the wavelet ψ, will be defined as

Wψ f (�, a) := 〈ψ�,a| f 〉. (4)

The question, of course, is to determine which functions ψ can qualify as wavelets, that is,
to determine the wavelet admissibility condition. Apart from an educated guess, the natural
way to find the answer is through a group-theoretical analysis, mimicking the familiar one of
planar 2-D wavelets.

2.2 The group-theoretical or coherent state approach
As a matter of fact, this spherical CWT was obtained in (Antoine & Vandergheynst, 1999) by
the group-theoretical approach familiar in the planar 2-D case. The point is to embed the
rotations from SO(3) and the dilations into the Lorentz group SOo(3, 1), the argument being
that this group is the conformal group both of the sphere S2 and of the tangent plane R2. The
embedding results from the so-called Iwasawa decomposition:

SOo(3, 1) = SO(3) · A · N,

where A ∼ SOo(1, 1) ∼ R ∼ R+
∗ (boosts in the z-direction) and N ∼ C.

Then it turns out that the Lorentz group SOo(3, 1) has a transitive action on the sphere S2.
In particular, a boost from A corresponds to a stereographic dilation. Now SOo(3, 1) has a
natural unitary representation U in L2(S2, dµ), namely,

[U(g) f ] (ω) = λ(g, ω)1/2 f
(

g−1ω
)

, for g ∈ SOo(3, 1), f ∈ L2(S2, dµ), (5)

where λ(g, ω) ≡ λ(a, θ) is the Radon-Nikodym derivative (3).
Thus the parameter space of the spherical CWT is the quotient

X = SOo(3, 1)/N ∼ SO(3) · A,

which is not a group. Therefore, in order to apply the general formalism, we must introduce a
section σ : X → SOo(3, 1) and consider the reduced representation U(σ(�, a)). Choosing the
natural (Iwasawa) section σ(�, a) = � a, � ∈ SO(3), a ∈ A, we obtain

U(σ(�, a)) = U(� a) = U(�)U(a) = R� Da, (6)

exactly as before, in (1)-(2).
The following three propositions show that the representation (5) has all the properties that
are required to generate a useful CWT. First of all, it is square integrable on the quotient man-
ifold X = SOo(3, 1)/N � SO(3) · R+

∗ . For simplicity, we shall identify these two isomorphic
manifolds.

Proposition 2.1. The UIR (5) is square integrable on X modulo the section σ, that is, there exist
nonzero (admissible) vectors ψ ∈ L2(S2, dµ) such that

∫ ∞

0

da
a3

∫

SO(3)
d� |〈U(σ(�, a))ψ|φ〉|2 := 〈φ|Aψφ〉 < ∞, for all φ ∈ L2(S2, dµ) . (7)

Here d� is the left invariant (Haar) measure on SO(3).
The resolution operator (also called frame operator) Aψ is diagonal in Fourier space (i.e., it is a
Fourier multiplier):

Âψ f (l, m) = Gψ(l) f̂ (l, m), (8)

where

Gψ(l) =
8π2

2l + 1 ∑
|m|�l

∫ ∞

0

da
a3 |ψ̂a(l, m)|2, for all l ∈ N, (9)

and ψ̂a(l, m) = 〈Ym
l |ψa〉, where Ym

l is a spherical harmonic and ψa := Daψ.

Next, we have an exact admissibility condition on the wavelets (this condition was also de-
rived by Holschneider (1996)).
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Proposition 2.2. An admissible wavelet is a function ψ ∈ L2(S2, dµ) for which there exists a positive
constant c < ∞ such that Gψ(l) � c, for all l ∈ N. Equivalently, the function ψ ∈ L2(S2, dµ) is an
admissible wavelet if and only if the resolution operator Aψ is bounded and invertible.

As in the plane case (Antoine et al., 2004), there is also a weaker admissibility condition on ψ:

∫

S2

ψ(θ, ϕ)

1 − cos θ
dµ(ω) = 0. (10)

Here too, this condition is only necessary in general, but it becomes sufficient under mild
regularity conditions on ψ. This is clearly similar to the “zero mean" condition of wavelets on
the line or the plane. As in the flat case, it implies that the spherical CWT acts as a local filter,
in the sense that it selects the components of a signal that are similar to ψ, which is assumed
to be well localized.
Finally, our spherical wavelets generate continuous frames. Indeed:

Proposition 2.3. For any admissible wavelet ψ such that
∫ 2π

0 dϕ ψ(θ, ϕ) �= 0, the family {ψa,� :=
R� Daψ : a > 0, � ∈ SO(3)} is a continuous frame, that is, there exist two constants m > 0 and
M < ∞ such that

m ‖φ‖2 �
∫ ∞

0

da
a3

∫

SO(3)
d� |〈ψa,�|φ〉|2 � M ‖φ‖2, for all φ ∈ L2(S2, dµ), (11)

or, equivalently, there exist two positive constants d > 0 and c < ∞ such that

d � Gψ(l) � c, for all l ∈ N

(in other words, the operators Aψ and A−1
ψ are both bounded).

Note that the condition
∫ 2π

0 dϕ ψ(θ, ϕ) �≡ 0 is automatically satisfied for any nonzero axi-
symmetric (zonal) wavelet. The frame so obtained is not tight, unless Gψ(l) = const. For an
axisymmetric wavelet, ψ̂a(l, m) ≡ ψ̂a(l) is independent of m, hence tightness would require
that Gψ(l) = 8π2 ∫ ∞

0 a−3da |ψ̂a(l)|2 = const, which seems difficult to obtain.
With all the ingredients thus available, we may now define the spherical CWT as in (4),
namely,

Definition 2.4. Given the admissible wavelet ψ, the spherical CWT of a function f ∈ L2(S2, dµ)
with respect to ψ is defined as

Wψ f (�, a) := 〈ψ�,a| f 〉 =
∫

S2
[R�Daψ](ω) f (ω) dµ(ω). (12)

As in the planar case, this spherical CWT may be inverted and one gets the following recon-
struction formula. For f ∈ L2(S2) and ψ an admissible wavelet such that

∫ 2π
0 ψ(θ, ϕ) dϕ �= 0,

one has
f (ω) =

∫

R∗
+

∫

SO(3)
Wψ f (�, a)[A−1

ψ R�Daψ](ω) a−3 da d�.

In addition, the spherical CWT has two important properties:
(1) It has a correct Euclidean limit. By this we mean that, if we construct the transform on a
sphere of radius R and then let R → ∞, the spherical CWT tends to the usual planar 2-D

CWT on the tangent plane at the South Pole. We refer to (Antoine & Vandergheynst, 1999) for
mathematical details.
(2) Unlike the usual 2-D CWT, which is fully covariant with respect to translations, rota-
tions and dilations, the spherical CWT is only partially covariant. It is covariant under mo-
tions on S2: for any �o ∈ SO(3), the transform of the rotated signal f (�−1

o ω) is the function
Wψ f (�−1

o �, a). But it is not covariant under dilations. Indeed the wavelet transform of the
dilated signal (Dao f )(ω) = λ(ao, θ)1/2 f (ω1/ao ) is 〈U(g)ψ| f 〉, with g = a−1

o �a, and the latter,
while a well-defined element of SOo(3, 1), is not of the form σ(�′, a′). This reflects the fact that
the parameter space X of the spherical CWT is not a group, but only a homogeneous space.
A byproduct of this analysis is a complete equivalence between the spherical CWT and the
usual planar CWT in the tangent plane, in the sense that the stereographic projection induces
a unitary map π : L2(S2) → L2(R2). This fact allows one to lift any plane wavelet, including
directional ones, onto the sphere by inverse stereographic projection. The same technique will
be used in Section 3.3 below for lifting the discrete WT onto the sphere and thus generating
orthogonal wavelet bases on it.
The advantages of this method are that it is easy to implement (the wavelet ψ is given explic-
itly), it leaves a large freedom in choosing the mother wavelet ψ, it allows the use of directional
wavelets, it preserves smoothness and it gives no distortion around poles, since all points of
S2 are equivalent under the action of the operator R�. However, it is computationally inten-
sive. As for the disadvantages, the method yields only frames, not bases, as we will see in the
next section.
Although this spherical CWT was originally obtained by a group-theoretical method, this
mathematically sophisticated approach may be short-circuited if one remarks that it is
uniquely determined by the geometry, in the sense that it suffices to impose conformal behav-
ior of the relevant maps. More precisely, the stereographic projection is the unique conformal
diffeomorphism from the sphere to its tangent plane at the South Pole. Similarly, the stereo-
graphic dilation (2) is the unique longitude-preserving dilation on the sphere that is conformal
(Wiaux et al., 2005). Thus one gets the formula (12) directly, without the group-theoretical cal-
culation.
There is an alternative that also leads to a half-continuous wavelet representation on S2. It
consists in using the so-called harmonic dilation instead of the stereographic one. This dilation
acts on the Fourier coefficients of a function f , that is, the numbers f̂�,m := 〈Ym

� | f 〉S2 , where
{Ym

� , � ∈ N, m = −�, . . . , �} is the orthonormal basis of spherical harmonics in L2(S2). The
dilation da is defined by the relation

(̂da f )�,m := fa�,m, a > 0.

This technique, originally due to Holschneider (1996) and Freeden & Windheuser (1997), has
recently been revived in the applications to astrophysics (Wiaux et al., 2008). However, al-
though this definition leads to a well-defined, uniquely invertible wavelet representation,
with steerable wavelets and full rotation invariance, there is no proof so far that it yields a
frame. Hence one may question the stability of the reconstruction process, since it is the lower
frame bound that guarantees it.

2.3 Spherical frames
The spherical CWT (12) may be discretized and one obtains frames, either half-continuous
(only the scale variable a is discretized) or fully discrete (Antoine et al., 2002; Bogdanova et al.,



Constructing	wavelet	frames	and	orthogonal	wavelet	bases	on	the	sphere 63

Proposition 2.2. An admissible wavelet is a function ψ ∈ L2(S2, dµ) for which there exists a positive
constant c < ∞ such that Gψ(l) � c, for all l ∈ N. Equivalently, the function ψ ∈ L2(S2, dµ) is an
admissible wavelet if and only if the resolution operator Aψ is bounded and invertible.

As in the plane case (Antoine et al., 2004), there is also a weaker admissibility condition on ψ:

∫

S2

ψ(θ, ϕ)

1 − cos θ
dµ(ω) = 0. (10)

Here too, this condition is only necessary in general, but it becomes sufficient under mild
regularity conditions on ψ. This is clearly similar to the “zero mean" condition of wavelets on
the line or the plane. As in the flat case, it implies that the spherical CWT acts as a local filter,
in the sense that it selects the components of a signal that are similar to ψ, which is assumed
to be well localized.
Finally, our spherical wavelets generate continuous frames. Indeed:

Proposition 2.3. For any admissible wavelet ψ such that
∫ 2π

0 dϕ ψ(θ, ϕ) �= 0, the family {ψa,� :=
R� Daψ : a > 0, � ∈ SO(3)} is a continuous frame, that is, there exist two constants m > 0 and
M < ∞ such that

m ‖φ‖2 �
∫ ∞

0

da
a3

∫

SO(3)
d� |〈ψa,�|φ〉|2 � M ‖φ‖2, for all φ ∈ L2(S2, dµ), (11)

or, equivalently, there exist two positive constants d > 0 and c < ∞ such that

d � Gψ(l) � c, for all l ∈ N

(in other words, the operators Aψ and A−1
ψ are both bounded).

Note that the condition
∫ 2π

0 dϕ ψ(θ, ϕ) �≡ 0 is automatically satisfied for any nonzero axi-
symmetric (zonal) wavelet. The frame so obtained is not tight, unless Gψ(l) = const. For an
axisymmetric wavelet, ψ̂a(l, m) ≡ ψ̂a(l) is independent of m, hence tightness would require
that Gψ(l) = 8π2 ∫ ∞

0 a−3da |ψ̂a(l)|2 = const, which seems difficult to obtain.
With all the ingredients thus available, we may now define the spherical CWT as in (4),
namely,

Definition 2.4. Given the admissible wavelet ψ, the spherical CWT of a function f ∈ L2(S2, dµ)
with respect to ψ is defined as

Wψ f (�, a) := 〈ψ�,a| f 〉 =
∫

S2
[R�Daψ](ω) f (ω) dµ(ω). (12)

As in the planar case, this spherical CWT may be inverted and one gets the following recon-
struction formula. For f ∈ L2(S2) and ψ an admissible wavelet such that

∫ 2π
0 ψ(θ, ϕ) dϕ �= 0,

one has
f (ω) =

∫

R∗
+

∫

SO(3)
Wψ f (�, a)[A−1

ψ R�Daψ](ω) a−3 da d�.

In addition, the spherical CWT has two important properties:
(1) It has a correct Euclidean limit. By this we mean that, if we construct the transform on a
sphere of radius R and then let R → ∞, the spherical CWT tends to the usual planar 2-D

CWT on the tangent plane at the South Pole. We refer to (Antoine & Vandergheynst, 1999) for
mathematical details.
(2) Unlike the usual 2-D CWT, which is fully covariant with respect to translations, rota-
tions and dilations, the spherical CWT is only partially covariant. It is covariant under mo-
tions on S2: for any �o ∈ SO(3), the transform of the rotated signal f (�−1

o ω) is the function
Wψ f (�−1

o �, a). But it is not covariant under dilations. Indeed the wavelet transform of the
dilated signal (Dao f )(ω) = λ(ao, θ)1/2 f (ω1/ao ) is 〈U(g)ψ| f 〉, with g = a−1

o �a, and the latter,
while a well-defined element of SOo(3, 1), is not of the form σ(�′, a′). This reflects the fact that
the parameter space X of the spherical CWT is not a group, but only a homogeneous space.
A byproduct of this analysis is a complete equivalence between the spherical CWT and the
usual planar CWT in the tangent plane, in the sense that the stereographic projection induces
a unitary map π : L2(S2) → L2(R2). This fact allows one to lift any plane wavelet, including
directional ones, onto the sphere by inverse stereographic projection. The same technique will
be used in Section 3.3 below for lifting the discrete WT onto the sphere and thus generating
orthogonal wavelet bases on it.
The advantages of this method are that it is easy to implement (the wavelet ψ is given explic-
itly), it leaves a large freedom in choosing the mother wavelet ψ, it allows the use of directional
wavelets, it preserves smoothness and it gives no distortion around poles, since all points of
S2 are equivalent under the action of the operator R�. However, it is computationally inten-
sive. As for the disadvantages, the method yields only frames, not bases, as we will see in the
next section.
Although this spherical CWT was originally obtained by a group-theoretical method, this
mathematically sophisticated approach may be short-circuited if one remarks that it is
uniquely determined by the geometry, in the sense that it suffices to impose conformal behav-
ior of the relevant maps. More precisely, the stereographic projection is the unique conformal
diffeomorphism from the sphere to its tangent plane at the South Pole. Similarly, the stereo-
graphic dilation (2) is the unique longitude-preserving dilation on the sphere that is conformal
(Wiaux et al., 2005). Thus one gets the formula (12) directly, without the group-theoretical cal-
culation.
There is an alternative that also leads to a half-continuous wavelet representation on S2. It
consists in using the so-called harmonic dilation instead of the stereographic one. This dilation
acts on the Fourier coefficients of a function f , that is, the numbers f̂�,m := 〈Ym

� | f 〉S2 , where
{Ym

� , � ∈ N, m = −�, . . . , �} is the orthonormal basis of spherical harmonics in L2(S2). The
dilation da is defined by the relation

(̂da f )�,m := fa�,m, a > 0.

This technique, originally due to Holschneider (1996) and Freeden & Windheuser (1997), has
recently been revived in the applications to astrophysics (Wiaux et al., 2008). However, al-
though this definition leads to a well-defined, uniquely invertible wavelet representation,
with steerable wavelets and full rotation invariance, there is no proof so far that it yields a
frame. Hence one may question the stability of the reconstruction process, since it is the lower
frame bound that guarantees it.

2.3 Spherical frames
The spherical CWT (12) may be discretized and one obtains frames, either half-continuous
(only the scale variable a is discretized) or fully discrete (Antoine et al., 2002; Bogdanova et al.,
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2005). To be more precise, one gets generalized frames, called weighted frames and controlled
frames, respectively. They are defined as follows (Jacques, 2004; Bogdanova et al., 2005; Balazs
et al., 2009).
Let {φn : n ∈ I} be a countable family of vectors in a (separable) Hilbert space H (the index set
I may be finite or infinite). Then, the family {φn} is a weighted frame in H if there are positive
weights wn and two constants m > 0 and M < ∞ such that

m ‖ f ‖2 � ∑
n∈I

wn |〈φn| f 〉|2 � M ‖ f ‖2, for all f ∈ H. (13)

The family {φn} is a controlled frame in H if there is a positive bounded operator C, with
bounded inverse, such that

m ‖ f ‖2 � ∑
n∈I

〈φn| f 〉 〈 f |Cφn〉 � M ‖ f ‖2, for all f ∈ H. (14)

Clearly this reduces to standard frames for wn = const and C = I, respectively.
These two notions are in fact mathematically equivalent to the classical notion of frame,
namely, a family of vectors {φn} is a weighted frame, resp. a controlled frame, if and only if it
is a frame in the standard sense (with different frame bounds, of course) (Balazs et al., 2009).
However, this is not true numerically, the convergence properties of the respective frame ex-
pansions may be quite different (Antoine et al., 2004; Bogdanova et al., 2005). And, indeed, the
new notions were introduced precisely for improving the convergence of the reconstruction
process.
Following Bogdanova et al. (2005), we first build a half-continuous spherical frame, by dis-
cretizing the scale variable only, while keeping continuous the position variable on the sphere.
We choose the half-continuous grid Λ = {(ω, aj) : ω ∈ S2, j ∈ Z, aj > aj+1}, where
A = {aj : j ∈ Z} is an arbitrary decreasing sequence of scales, and νj := (aj − aj+1)/a3

j are

weights that mimic the natural (Haar) measure da/a3. Then a tight frame might be obtained,
as shown in following proposition.

Proposition 2.5. Let A = {aj : j ∈ Z} be a decreasing sequence of scales. If ψ is an axisymmetric
wavelet for which there exist two constants m,M ∈ R∗

+ such that

m � gψ(l) � M, for all l ∈ N, (15)

where
gψ(l) =

4π

2l + 1 ∑
j∈Z

νj |ψ̂aj (l, 0)|2,

then any function f ∈ L2(S2, dµ) may be reconstructed from the corresponding family of spherical
wavelets, as

f (ω) = ∑
j∈Z

νj

∫

S2
dµ(ω′)Wψ f (ω′, aj)

[
�−1

ψ R[ω′ ]Daj ψ
]
(ω′), (16)

where �ψ is the (discretized) resolution operator defined by �̂−1
ψ h(l, m) = gψ(l)−1 h(l, m).

Note that the resolution operator �ψ is simply the discretized version of the continuous reso-
lution operator Aψ. Clearly (16) may be interpreted as a (weighted) tight frame controlled by
the operator �−1

ψ .

Next, still following Bogdanova et al. (2005), one designs a fully discrete spherical frame by
discretizing all the variables. The scale variable is discretized as before. As for the positions,
we choose an equiangular grid Gj indexed by the scale level:

Gj = {ωjpq = (θjp, ϕjq) ∈ S2 : θjp =
(2p+1)π

4Bj
, ϕjq =

qπ
Bj
}, (17)

for p, q ∈ Nj := {n ∈ N : n < 2Bj} and some range of bandwidths B = {Bj ∈ 2N : j ∈ Z}.
Note that, in (17), the values {θjp} constitute a pseudo-spectral grid, with nodes on the zeros
of a Chebyshev polynomial of degree 2Bj. Their virtue is the existence of an exact quadrature
rule (Driscoll & Healy, 1994), namely,

∫

S2
dµ(ω) f (ω) = ∑

p,q∈Nj

wjp f (ωjpq), (18)

with certain (explicit) weights wjp > 0 and for every band-limited function f ∈ L2(S2, dµ)

of bandwidth Bj (i.e., f̂ (l, m) = 0 for all l � Bj). Thus the complete discretization grid is
Λ(A,B) = {(aj, ωjpq) : j ∈ Z, p, q ∈ Nj}.
For this choice of discretization grid, one obtains a discrete weighted, nontight frame, controlled
by the operator A−1

ψ , namely, {ψjpq = R[ωjpq ]Daj ψ : j ∈ Z, p, q ∈ Nj} (Bogdanova et al., 2005):

m ‖ f ‖2 � ∑
j∈Z

∑
p,q∈Nj

νjwjp Wψ f (ωjpq, aj) W̃ψ f (ωjpq, aj) � M ‖ f ‖2, (19)

where νj = (aj − aj+1)/a3
j are the same positive weights as in Proposition 2.5 and

W̃ψ f (�, a) := 〈ψ̃a,�| f 〉 = 〈A−1
ψ R�Daψ| f 〉. (20)

A sufficient condition for (19) to hold may be given, but it is very complicated, involving the
determinant of an ∞-dimensional matrix, unless f is band-limited. As usual, when the frame
bounds are close enough, approximate reconstruction formulas may be used. The conver-
gence of the process may still be improved by combining the reconstruction with a conjugate
gradient algorithm.
As a matter of fact, no discretization scheme leading to a wavelet basis is known and, in prac-
tice, the method applies to band-limited functions only. This entails high redundancy and thus
a higher computing cost, which is not suitable for large data sets. There is also the problem of
finding an appropriate discretization grid which leads to good frames. Some of them, e.g. the
equi-angular grid Λ(A,B) described above, yield exact quadrature rules for the integration of
band-limited signals on S2, but other ones (typically, the familiar HEALPix) are only approxi-
mate. This is actually a general feature: when discretizing a CWT, it is not easy to prove that
a given discretization leads to a frame, even less to a good frame or a tight frame.
For all those reasons, one would prefer to try and build directly a DWT on the sphere.

3. The DWT on the sphere

3.1 General requirements
Many authors have designed methods for constructing discrete spherical wavelets. All of
them have advantages and drawbacks. These may be characterized in terms of several prop-
erties which are desirable for any efficient wavelet analysis, planar or spherical (a thorough
discussion of this topic may be found in Antoine & Roşca (2008)).
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2005). To be more precise, one gets generalized frames, called weighted frames and controlled
frames, respectively. They are defined as follows (Jacques, 2004; Bogdanova et al., 2005; Balazs
et al., 2009).
Let {φn : n ∈ I} be a countable family of vectors in a (separable) Hilbert space H (the index set
I may be finite or infinite). Then, the family {φn} is a weighted frame in H if there are positive
weights wn and two constants m > 0 and M < ∞ such that

m ‖ f ‖2 � ∑
n∈I

wn |〈φn| f 〉|2 � M ‖ f ‖2, for all f ∈ H. (13)

The family {φn} is a controlled frame in H if there is a positive bounded operator C, with
bounded inverse, such that

m ‖ f ‖2 � ∑
n∈I

〈φn| f 〉 〈 f |Cφn〉 � M ‖ f ‖2, for all f ∈ H. (14)

Clearly this reduces to standard frames for wn = const and C = I, respectively.
These two notions are in fact mathematically equivalent to the classical notion of frame,
namely, a family of vectors {φn} is a weighted frame, resp. a controlled frame, if and only if it
is a frame in the standard sense (with different frame bounds, of course) (Balazs et al., 2009).
However, this is not true numerically, the convergence properties of the respective frame ex-
pansions may be quite different (Antoine et al., 2004; Bogdanova et al., 2005). And, indeed, the
new notions were introduced precisely for improving the convergence of the reconstruction
process.
Following Bogdanova et al. (2005), we first build a half-continuous spherical frame, by dis-
cretizing the scale variable only, while keeping continuous the position variable on the sphere.
We choose the half-continuous grid Λ = {(ω, aj) : ω ∈ S2, j ∈ Z, aj > aj+1}, where
A = {aj : j ∈ Z} is an arbitrary decreasing sequence of scales, and νj := (aj − aj+1)/a3

j are

weights that mimic the natural (Haar) measure da/a3. Then a tight frame might be obtained,
as shown in following proposition.

Proposition 2.5. Let A = {aj : j ∈ Z} be a decreasing sequence of scales. If ψ is an axisymmetric
wavelet for which there exist two constants m,M ∈ R∗

+ such that

m � gψ(l) � M, for all l ∈ N, (15)

where
gψ(l) =

4π

2l + 1 ∑
j∈Z

νj |ψ̂aj (l, 0)|2,

then any function f ∈ L2(S2, dµ) may be reconstructed from the corresponding family of spherical
wavelets, as

f (ω) = ∑
j∈Z

νj

∫

S2
dµ(ω′)Wψ f (ω′, aj)

[
�−1

ψ R[ω′ ]Daj ψ
]
(ω′), (16)

where �ψ is the (discretized) resolution operator defined by �̂−1
ψ h(l, m) = gψ(l)−1 h(l, m).

Note that the resolution operator �ψ is simply the discretized version of the continuous reso-
lution operator Aψ. Clearly (16) may be interpreted as a (weighted) tight frame controlled by
the operator �−1

ψ .

Next, still following Bogdanova et al. (2005), one designs a fully discrete spherical frame by
discretizing all the variables. The scale variable is discretized as before. As for the positions,
we choose an equiangular grid Gj indexed by the scale level:

Gj = {ωjpq = (θjp, ϕjq) ∈ S2 : θjp =
(2p+1)π

4Bj
, ϕjq =

qπ
Bj
}, (17)

for p, q ∈ Nj := {n ∈ N : n < 2Bj} and some range of bandwidths B = {Bj ∈ 2N : j ∈ Z}.
Note that, in (17), the values {θjp} constitute a pseudo-spectral grid, with nodes on the zeros
of a Chebyshev polynomial of degree 2Bj. Their virtue is the existence of an exact quadrature
rule (Driscoll & Healy, 1994), namely,

∫

S2
dµ(ω) f (ω) = ∑

p,q∈Nj

wjp f (ωjpq), (18)

with certain (explicit) weights wjp > 0 and for every band-limited function f ∈ L2(S2, dµ)

of bandwidth Bj (i.e., f̂ (l, m) = 0 for all l � Bj). Thus the complete discretization grid is
Λ(A,B) = {(aj, ωjpq) : j ∈ Z, p, q ∈ Nj}.
For this choice of discretization grid, one obtains a discrete weighted, nontight frame, controlled
by the operator A−1

ψ , namely, {ψjpq = R[ωjpq ]Daj ψ : j ∈ Z, p, q ∈ Nj} (Bogdanova et al., 2005):

m ‖ f ‖2 � ∑
j∈Z

∑
p,q∈Nj

νjwjp Wψ f (ωjpq, aj) W̃ψ f (ωjpq, aj) � M ‖ f ‖2, (19)

where νj = (aj − aj+1)/a3
j are the same positive weights as in Proposition 2.5 and

W̃ψ f (�, a) := 〈ψ̃a,�| f 〉 = 〈A−1
ψ R�Daψ| f 〉. (20)

A sufficient condition for (19) to hold may be given, but it is very complicated, involving the
determinant of an ∞-dimensional matrix, unless f is band-limited. As usual, when the frame
bounds are close enough, approximate reconstruction formulas may be used. The conver-
gence of the process may still be improved by combining the reconstruction with a conjugate
gradient algorithm.
As a matter of fact, no discretization scheme leading to a wavelet basis is known and, in prac-
tice, the method applies to band-limited functions only. This entails high redundancy and thus
a higher computing cost, which is not suitable for large data sets. There is also the problem of
finding an appropriate discretization grid which leads to good frames. Some of them, e.g. the
equi-angular grid Λ(A,B) described above, yield exact quadrature rules for the integration of
band-limited signals on S2, but other ones (typically, the familiar HEALPix) are only approxi-
mate. This is actually a general feature: when discretizing a CWT, it is not easy to prove that
a given discretization leads to a frame, even less to a good frame or a tight frame.
For all those reasons, one would prefer to try and build directly a DWT on the sphere.

3. The DWT on the sphere

3.1 General requirements
Many authors have designed methods for constructing discrete spherical wavelets. All of
them have advantages and drawbacks. These may be characterized in terms of several prop-
erties which are desirable for any efficient wavelet analysis, planar or spherical (a thorough
discussion of this topic may be found in Antoine & Roşca (2008)).
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· Basis: The redundancy of frames leads to nonunique expansions. Moreover, the existing
constructions of spherical frames are sometimes computationally heavy and often applicable
only to band-limited functions. Thus, in some applications, genuine bases are preferable.
· Orthogonality: This method leads to orthogonal reconstruction matrices, whose inversion is
trivial. Thus, orthogonal bases are good for compression, but this is not always sufficient:
sparsity of reconstruction matrices is still needed in the case of large data sets.
· Local support: This is crucial when working with large data sets, since it yields sparse ma-
trices in the implementation of the algorithms. Also, it prevents spreading of “tails" during
approximation.1

· Continuity, smoothness: These properties are always desirable in approximation, but not easily
achieved.

3.2 Some known methods
Let us quote a few of those methods, with focus on the properties just mentioned, without
being exhaustive. A more comprehensive review, with all references to original papers, may
be found in (Antoine & Roşca, 2008).

(1) The spherical DWT using spherical harmonics

Various constructions of discrete spherical wavelets using spherical harmonics may be found
in the literature, leading to frames or bases. The advantages of this method is that it produces
no distortion (since no pole has a privileged role) and that it preserves smoothness of the
wavelets. However, the wavelets so obtained have in general a localized support, but not a
local one, i.e., it covers the whole sphere. Since this implies full reconstruction matrices, the
result is not suitable for large amount of data. Examples are the works of Potts et al. (1996) or
Freeden & Schreiner (1997).

(2) The spherical DWT via polar coordinates

The polar coordinate map ρ : I = [0, π]× [0, 2π) → S2 has the familiar form

ρ : (θ, ϕ) �→ (cos ϕ sin θ, sin ϕ sin θ, cos θ) .

A problem here is continuity. Indeed a continuous function f defined on I remains continuous
after mapping it onto S2 if and only if f (θ, 0) = f (θ, 2π), for all θ ∈ [0, π], and there exists two
constants PN , PS such that f (0, ϕ) = PN and f (π, ϕ) = PS, for all ϕ ∈ [0, 2π). Unfortunately,
these continuity conditions are not easily satisfied by wavelets on intervals.
The obvious advantage of this approach is that many data sets are given in polar coordi-
nates and thus one does not need to perform additional interpolation when implementing.
However, there are disadvantages. First, no known construction gives both continuity and
local support. Next, there are distortions around the poles: ρ maps the whole segment
{(0, ϕ), ϕ ∈ [0, 2π)} onto the North Pole, and the whole segment {(π, ϕ), ϕ ∈ [0, 2π)} onto
the South Pole. Representative examples are papers by Dahlke et al. (1995) or Weinreich (2001).

(3) The spherical DWT via radial projection from a convex polyhedron

Let S2 be the unit sphere centered in 0 and let Γ be a convex polyhedron, containing 0 in its
interior and with triangular faces (if some faces are non-triangular, one simply triangularizes

1 A wavelet has local support if it vanishes identically outside a small region. It is localized if it is negligible
outside a small region, so that it may have (small, but nonzero) “tails" there. Since these tails may spread
in the process of approximation of data and spoil their good localization properties, local support is
definitely preferred (see the example in (Roşca & Antoine, 2009)).

them). The idea of the method, due to one of us (Roşca, 2005; 2007a;b), is to obtain wavelets on
S2 first by moving planar wavelets to wavelets defined on the faces of Γ and then projecting
these radially onto S2. This proceeds as follows. Let Ω = ∂Γ denote the boundary of Γ and let
p : Ω → S2 denote the radial projection from the origin:

p(x, y, z) = ρ · (x, y, z), where ρ := ρ(x, y, z) = 1/
√

x2 + y2 + z2.

Let T denote the set of triangular faces of Γ and consider the following weighted scalar prod-
uct on L2(S2):

〈F|G〉Γ = ∑
T∈T

∫

p(T)
F(ζ) G(ζ)wT(ζ) dµ(ζ), ζ = (ζ1, ζ2, ζ3) ∈ S2, F, G ∈ L2(S2). (21)

Here wT(ζ1, ζ2, ζ3) = 2d2
T |aTζ1 + bTζ2 + cTζ3|−3, with aT , bT , cT , dT the coefficients of

x, y, z, 1, respectively, in the determinant
∣

∣

∣

∣

∣

∣

∣
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x y z 1
x1 y1 z1 1
x2 y2 z2 1
x3 y3 z3 1

∣

∣

∣

∣

∣

∣

∣

∣

= aT x + bTy + cTz + dT1,

where (xi, yi, zi), i = 1, 2, 3, are the vertices of the planar triangle T ∈ T . Then one proves that
the norm ‖·‖Γ := 〈·|·〉1/2

Γ
is equivalent to the usual norm in L2(S2), i.e., there exist constants

mΓ > 0, MΓ < ∞ such that

mΓ ‖ f ‖Γ � ‖ f ‖2 � MΓ ‖ f ‖Γ , ∀ f ∈ L2(S2).

Explicit expressions for optimal bounds mΓ and MΓ are given in (Roşca, 2009).
The resulting wavelets are orthogonal with respect to the weighted scalar product (21) on
L2(S2). This method offers many advantages: no distortion around the poles, possible
construction of continuous and locally supported stable wavelet bases, local support of the
wavelets (leading to sparse matrices), easy implementation, possible extension to sphere-like
surfaces (Roşca, 2006). As a disadvantage, we may note the lack of smoothness of the wavelets.
(4) Needlets
A new class of discrete spherical wavelets, called needlets, has been introduced recently (Nar-
cowich et al., 2006a;b; Baldi et al., 2009). These functions, which are actually special spherical
harmonics kernels, are derived by combining three ideas, namely, a Littlewood-Paley decom-
position, a suitable distribution of (finitely many) points on the sphere, called centers, and an
exact quadrature rule. The dilation takes place in the space of spherical harmonics, effectively
in Fourier space, i.e., it is a harmonic dilation as described at the end of Section 2.2. The
upshot is a new class of tight frames on the sphere. The frame functions are both compactly
supported in the frequency domain (i.e., band-limited in l) and almost exponentially localized
around each center. When combined with a new statistical method, they offer a powerful tool
for analysing CMB (WMAP) data, e.g. for analysing the cross-correlation between the latter
and galaxy counts from sky surveys (Pietrobon et al., 2006; Marinucci et al., 2008). They have
also found nice applications in statistics (Baldi et al., 2008; 2009).
As a matter of fact, no construction so far has led to wavelet bases on the sphere which are
simultaneously continuous (or smoother), orthogonal and locally supported, although any two
of these three conditions may be met at the same time. This suggests to try another approach.
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· Basis: The redundancy of frames leads to nonunique expansions. Moreover, the existing
constructions of spherical frames are sometimes computationally heavy and often applicable
only to band-limited functions. Thus, in some applications, genuine bases are preferable.
· Orthogonality: This method leads to orthogonal reconstruction matrices, whose inversion is
trivial. Thus, orthogonal bases are good for compression, but this is not always sufficient:
sparsity of reconstruction matrices is still needed in the case of large data sets.
· Local support: This is crucial when working with large data sets, since it yields sparse ma-
trices in the implementation of the algorithms. Also, it prevents spreading of “tails" during
approximation.1

· Continuity, smoothness: These properties are always desirable in approximation, but not easily
achieved.

3.2 Some known methods
Let us quote a few of those methods, with focus on the properties just mentioned, without
being exhaustive. A more comprehensive review, with all references to original papers, may
be found in (Antoine & Roşca, 2008).

(1) The spherical DWT using spherical harmonics

Various constructions of discrete spherical wavelets using spherical harmonics may be found
in the literature, leading to frames or bases. The advantages of this method is that it produces
no distortion (since no pole has a privileged role) and that it preserves smoothness of the
wavelets. However, the wavelets so obtained have in general a localized support, but not a
local one, i.e., it covers the whole sphere. Since this implies full reconstruction matrices, the
result is not suitable for large amount of data. Examples are the works of Potts et al. (1996) or
Freeden & Schreiner (1997).

(2) The spherical DWT via polar coordinates

The polar coordinate map ρ : I = [0, π]× [0, 2π) → S2 has the familiar form

ρ : (θ, ϕ) �→ (cos ϕ sin θ, sin ϕ sin θ, cos θ) .

A problem here is continuity. Indeed a continuous function f defined on I remains continuous
after mapping it onto S2 if and only if f (θ, 0) = f (θ, 2π), for all θ ∈ [0, π], and there exists two
constants PN , PS such that f (0, ϕ) = PN and f (π, ϕ) = PS, for all ϕ ∈ [0, 2π). Unfortunately,
these continuity conditions are not easily satisfied by wavelets on intervals.
The obvious advantage of this approach is that many data sets are given in polar coordi-
nates and thus one does not need to perform additional interpolation when implementing.
However, there are disadvantages. First, no known construction gives both continuity and
local support. Next, there are distortions around the poles: ρ maps the whole segment
{(0, ϕ), ϕ ∈ [0, 2π)} onto the North Pole, and the whole segment {(π, ϕ), ϕ ∈ [0, 2π)} onto
the South Pole. Representative examples are papers by Dahlke et al. (1995) or Weinreich (2001).

(3) The spherical DWT via radial projection from a convex polyhedron

Let S2 be the unit sphere centered in 0 and let Γ be a convex polyhedron, containing 0 in its
interior and with triangular faces (if some faces are non-triangular, one simply triangularizes

1 A wavelet has local support if it vanishes identically outside a small region. It is localized if it is negligible
outside a small region, so that it may have (small, but nonzero) “tails" there. Since these tails may spread
in the process of approximation of data and spoil their good localization properties, local support is
definitely preferred (see the example in (Roşca & Antoine, 2009)).

them). The idea of the method, due to one of us (Roşca, 2005; 2007a;b), is to obtain wavelets on
S2 first by moving planar wavelets to wavelets defined on the faces of Γ and then projecting
these radially onto S2. This proceeds as follows. Let Ω = ∂Γ denote the boundary of Γ and let
p : Ω → S2 denote the radial projection from the origin:

p(x, y, z) = ρ · (x, y, z), where ρ := ρ(x, y, z) = 1/
√

x2 + y2 + z2.

Let T denote the set of triangular faces of Γ and consider the following weighted scalar prod-
uct on L2(S2):

〈F|G〉Γ = ∑
T∈T

∫

p(T)
F(ζ) G(ζ)wT(ζ) dµ(ζ), ζ = (ζ1, ζ2, ζ3) ∈ S2, F, G ∈ L2(S2). (21)

Here wT(ζ1, ζ2, ζ3) = 2d2
T |aTζ1 + bTζ2 + cTζ3|−3, with aT , bT , cT , dT the coefficients of
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where (xi, yi, zi), i = 1, 2, 3, are the vertices of the planar triangle T ∈ T . Then one proves that
the norm ‖·‖Γ := 〈·|·〉1/2

Γ
is equivalent to the usual norm in L2(S2), i.e., there exist constants

mΓ > 0, MΓ < ∞ such that

mΓ ‖ f ‖Γ � ‖ f ‖2 � MΓ ‖ f ‖Γ , ∀ f ∈ L2(S2).

Explicit expressions for optimal bounds mΓ and MΓ are given in (Roşca, 2009).
The resulting wavelets are orthogonal with respect to the weighted scalar product (21) on
L2(S2). This method offers many advantages: no distortion around the poles, possible
construction of continuous and locally supported stable wavelet bases, local support of the
wavelets (leading to sparse matrices), easy implementation, possible extension to sphere-like
surfaces (Roşca, 2006). As a disadvantage, we may note the lack of smoothness of the wavelets.
(4) Needlets
A new class of discrete spherical wavelets, called needlets, has been introduced recently (Nar-
cowich et al., 2006a;b; Baldi et al., 2009). These functions, which are actually special spherical
harmonics kernels, are derived by combining three ideas, namely, a Littlewood-Paley decom-
position, a suitable distribution of (finitely many) points on the sphere, called centers, and an
exact quadrature rule. The dilation takes place in the space of spherical harmonics, effectively
in Fourier space, i.e., it is a harmonic dilation as described at the end of Section 2.2. The
upshot is a new class of tight frames on the sphere. The frame functions are both compactly
supported in the frequency domain (i.e., band-limited in l) and almost exponentially localized
around each center. When combined with a new statistical method, they offer a powerful tool
for analysing CMB (WMAP) data, e.g. for analysing the cross-correlation between the latter
and galaxy counts from sky surveys (Pietrobon et al., 2006; Marinucci et al., 2008). They have
also found nice applications in statistics (Baldi et al., 2008; 2009).
As a matter of fact, no construction so far has led to wavelet bases on the sphere which are
simultaneously continuous (or smoother), orthogonal and locally supported, although any two
of these three conditions may be met at the same time. This suggests to try another approach.
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3.3 Lifting the DWT from the plane to the sphere
The method we propose consists in lifting wavelets from the tangent plane to the sphere by in-
verse stereographic projection (Roşca & Antoine, 2009). It yields simultaneously smoothness,
orthogonality, local support, vanishing moments. The disadvantage is that it gives distortions
around a pole. In addition, it is not suitable for the whole sphere S2, but only for data “away"
from that pole. However, the latter can be taken anywhere on the sphere, for instance, in a
region where no data is given. To give an example, European climatologists routinely put the
North Pole of their spherical grid in the middle of the Pacific Ocean. Therefore, this is in fact
a minor inconvenient in practice.
Our sphere is

S2 = {ζ = (ζ1, ζ2, ζ3) ∈ R3, ζ2
1 + ζ2

2 + (ζ3 − 1)2 = 1},

where we have used the parametrization ζ1 = cos ϕ sin θ, ζ2 = sin ϕ sin θ, ζ3 = 1 + cos θ, for
θ ∈ (0, π], ϕ ∈ [0, 2π). The pointed sphere is Ṡ2 = S2 \ {(0, 0, 2)}.
Let now p : Ṡ2 → R2 be the stereographic projection from the North Pole N(0, 0, 2) onto the
tangent plane ζ3 = 0 at the South Pole. The area elements dx of R2 and µ(ζ) of Ṡ2 are related
by dx = ν(ζ)2 dµ(ζ), where the weight factor ν : Ṡ2 → R is defined as

ν(ζ) =
2

2 − ζ3
=

2
1 − cos θ

, ζ = (ζ1, ζ2, ζ3) ≡ (θ, ϕ) ∈ Ṡ2.

Notice that L2(Ṡ2) := L2(Ṡ2, dµ(ζ)) = L2(S2), since the set {N} is of measure zero. As men-
tioned in Section 2, the stereographic projection p induces a unitary map π : L2(Ṡ2) → L2(R2),
with inverse π−1 : L2(R2) → L2(Ṡ2) given by π−1(F) = ν · (F ◦ p), ∀ F ∈ L2(R2). As a con-
sequence, we have

〈F|G〉L2(R2) = 〈ν · (F ◦ p)|ν · (G ◦ p)〉L2(Ṡ2), ∀ F, G ∈ L2(R2). (22)

This equality allows us to construct orthogonal bases on L2(Ṡ2) starting from orthogonal bases
in L2(R2). More precisely, we will use the fact that, if the functions F, G ∈ L2(R2) are orthogo-
nal, then the functions Fs = ν · (F ◦ p) and Gs = ν · (G ◦ p) will be orthogonal in L2(Ṡ2). Thus,
the construction of multiresolution analysis (MRA) and wavelet bases in L2(Ṡ2) is based on
the equality (22).
The starting point is a MRA in L2(R2) (for a thorough analysis of MRAs in 1-D and in 2-D, we
refer to the monograph (Daubechies, 1992)). For simplicity, we consider 2-D tensor wavelets,
that is, we take the tensor product of two 1-D MRAs, with scaling function φ, mother wavelet
ψ, and diagonal dilation matrix D = diag(2, 2). Thus we get a 2-D MRA of L2(R2), i.e., an
increasing sequence of closed subspaces Vj ⊂ L2(R2) with

⋂

j∈Z Vj = {0} and
⋃

j∈Z Vj =

L2(R2), satisfying the following conditions:

(1) f (·) ∈ Vj ⇐⇒ f (D ·) ∈ Vj+1,

(2) There exists a function Φ ∈ L2(R2) such that the set {Φ(· − k), k ∈ Z2} is an orthonor-
mal basis (o.n.b.) of V0.

In terms of the original 1-D MRA, the 2-D scaling function is Φ(x) = φ(x)φ(y) and for the 2-D
MRA it generates, one has

Vj+1 = Vj+1 ⊗ Vj+1 = (Vj ⊕ Wj)⊗ (Vj ⊕ Wj)

= (Vj ⊗ Vj)⊕ [(Wj ⊗ Vj)⊕ (Vj ⊗ Wj)⊕ (Wj ⊗ Wj)]

= Vj ⊕ Wj.

Thus Wj consists of three pieces, with the following orthonormal bases:

{ψj,k1
(x)φj,k2 (y), (k1, k2) ∈ Z2} o.n.b. in Wj ⊗ Vj,

{φj,k1
(x)ψj,k2 (y), (k1, k2) ∈ Z2} o.n.b. in Vj ⊗ Wj,

{ψj,k1
(x)ψj,k2 (y), (k1, k2) ∈ Z2} o.n.b. in Wj ⊗ Wj.

This leads us to define three wavelets

hΨ(x, y) = φ(x)ψ(y),
vΨ(x, y) = ψ(x)φ(y),
dΨ(x, y) = ψ(x)ψ(y).

Then, {λΨj,k, k = (k1, k2) ∈ Z2, λ = h, v, d} is an orthonormal basis for Wj and {λΨj,k, j ∈
Z, k ∈ Z2, λ = h, v, d} is an orthonormal basis for

⊕

j∈Z Wj = L2(R2). Here, for j ∈ Z, k =

(k1, k2) ∈ Z2 and for F ∈ L2(R2), the function Fj,k is defined as

Fj,k(x, y) = 2jF(2jx − k1, 2jy − k2).

Now we can proceed and lift the MRA to the sphere. To every function F ∈ L2(R2), one may
associate the function Fs ∈ L2(Ṡ2) as Fs = ν · (F ◦ p). In particular,

Fs
j,k = ν · (Fj,k ◦ p) for j ∈ Z, k ∈ Z2, (23)

and similarly for the spherical functions Φs
j,k and λΨs

j,k, where Φj,k,λ Ψj,k, λ = h, v, d, are the
planar 2-D scaling functions and wavelets, respectively. For j ∈ Z, we define Vj as Vj :=
{ν · (F ◦ p), F ∈ Vj}. Then we have:

(1) Vj ⊂ Vj+1 for j ∈ Z, and each Vj is a closed subspace of L2(Ṡ2);

(2)
⋂

j∈Z Vj = {0} and
⋃

j∈Z Vj is dense in L2(Ṡ2);

(3) {Φs
0,k, k ∈ Z2} is an orthonormal basis for V0.

A sequence (Vj)j∈Z of subspaces of L2(Ṡ2) satisfying (1), (2), (3) constitutes a MRA of L2(Ṡ2).
Define now the wavelet spaces Wj by Vj+1 = Vj ⊕Wj. Then {λΨs

j,k, k ∈ Z2, λ = h, v, d} is

an orthonormal basis for Wj and {λΨs
j,k, j ∈ Z, k ∈ Z2, λ = h, v, d} is an orthonormal basis

for
(

⊕

j∈Z Wj

)

= L2(Ṡ2). This the orthonormal wavelet basis on S2.
Thus, an orthonormal 2-D wavelet basis yields an orthonormal spherical wavelet basis.
In addition, if Φ has compact support in R2, then Φs

j,k has local support on S2 (and
diam supp Φs

j,k → 0 as j → ∞), and similarly for the respective wavelets. Smooth 2-D
wavelets yield smooth spherical wavelets. In particular, Daubechies wavelets yield locally
supported and orthonormal wavelets on Ṡ2. Thus the same tools as in the planar 2-D case can
be used for the decomposition and reconstruction matrices (so that existing toolboxes may be
used).
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3.3 Lifting the DWT from the plane to the sphere
The method we propose consists in lifting wavelets from the tangent plane to the sphere by in-
verse stereographic projection (Roşca & Antoine, 2009). It yields simultaneously smoothness,
orthogonality, local support, vanishing moments. The disadvantage is that it gives distortions
around a pole. In addition, it is not suitable for the whole sphere S2, but only for data “away"
from that pole. However, the latter can be taken anywhere on the sphere, for instance, in a
region where no data is given. To give an example, European climatologists routinely put the
North Pole of their spherical grid in the middle of the Pacific Ocean. Therefore, this is in fact
a minor inconvenient in practice.
Our sphere is

S2 = {ζ = (ζ1, ζ2, ζ3) ∈ R3, ζ2
1 + ζ2

2 + (ζ3 − 1)2 = 1},

where we have used the parametrization ζ1 = cos ϕ sin θ, ζ2 = sin ϕ sin θ, ζ3 = 1 + cos θ, for
θ ∈ (0, π], ϕ ∈ [0, 2π). The pointed sphere is Ṡ2 = S2 \ {(0, 0, 2)}.
Let now p : Ṡ2 → R2 be the stereographic projection from the North Pole N(0, 0, 2) onto the
tangent plane ζ3 = 0 at the South Pole. The area elements dx of R2 and µ(ζ) of Ṡ2 are related
by dx = ν(ζ)2 dµ(ζ), where the weight factor ν : Ṡ2 → R is defined as

ν(ζ) =
2

2 − ζ3
=

2
1 − cos θ

, ζ = (ζ1, ζ2, ζ3) ≡ (θ, ϕ) ∈ Ṡ2.

Notice that L2(Ṡ2) := L2(Ṡ2, dµ(ζ)) = L2(S2), since the set {N} is of measure zero. As men-
tioned in Section 2, the stereographic projection p induces a unitary map π : L2(Ṡ2) → L2(R2),
with inverse π−1 : L2(R2) → L2(Ṡ2) given by π−1(F) = ν · (F ◦ p), ∀ F ∈ L2(R2). As a con-
sequence, we have

〈F|G〉L2(R2) = 〈ν · (F ◦ p)|ν · (G ◦ p)〉L2(Ṡ2), ∀ F, G ∈ L2(R2). (22)

This equality allows us to construct orthogonal bases on L2(Ṡ2) starting from orthogonal bases
in L2(R2). More precisely, we will use the fact that, if the functions F, G ∈ L2(R2) are orthogo-
nal, then the functions Fs = ν · (F ◦ p) and Gs = ν · (G ◦ p) will be orthogonal in L2(Ṡ2). Thus,
the construction of multiresolution analysis (MRA) and wavelet bases in L2(Ṡ2) is based on
the equality (22).
The starting point is a MRA in L2(R2) (for a thorough analysis of MRAs in 1-D and in 2-D, we
refer to the monograph (Daubechies, 1992)). For simplicity, we consider 2-D tensor wavelets,
that is, we take the tensor product of two 1-D MRAs, with scaling function φ, mother wavelet
ψ, and diagonal dilation matrix D = diag(2, 2). Thus we get a 2-D MRA of L2(R2), i.e., an
increasing sequence of closed subspaces Vj ⊂ L2(R2) with

⋂

j∈Z Vj = {0} and
⋃

j∈Z Vj =

L2(R2), satisfying the following conditions:

(1) f (·) ∈ Vj ⇐⇒ f (D ·) ∈ Vj+1,

(2) There exists a function Φ ∈ L2(R2) such that the set {Φ(· − k), k ∈ Z2} is an orthonor-
mal basis (o.n.b.) of V0.

In terms of the original 1-D MRA, the 2-D scaling function is Φ(x) = φ(x)φ(y) and for the 2-D
MRA it generates, one has

Vj+1 = Vj+1 ⊗ Vj+1 = (Vj ⊕ Wj)⊗ (Vj ⊕ Wj)

= (Vj ⊗ Vj)⊕ [(Wj ⊗ Vj)⊕ (Vj ⊗ Wj)⊕ (Wj ⊗ Wj)]

= Vj ⊕ Wj.

Thus Wj consists of three pieces, with the following orthonormal bases:

{ψj,k1
(x)φj,k2 (y), (k1, k2) ∈ Z2} o.n.b. in Wj ⊗ Vj,

{φj,k1
(x)ψj,k2 (y), (k1, k2) ∈ Z2} o.n.b. in Vj ⊗ Wj,

{ψj,k1
(x)ψj,k2 (y), (k1, k2) ∈ Z2} o.n.b. in Wj ⊗ Wj.

This leads us to define three wavelets

hΨ(x, y) = φ(x)ψ(y),
vΨ(x, y) = ψ(x)φ(y),
dΨ(x, y) = ψ(x)ψ(y).

Then, {λΨj,k, k = (k1, k2) ∈ Z2, λ = h, v, d} is an orthonormal basis for Wj and {λΨj,k, j ∈
Z, k ∈ Z2, λ = h, v, d} is an orthonormal basis for

⊕

j∈Z Wj = L2(R2). Here, for j ∈ Z, k =

(k1, k2) ∈ Z2 and for F ∈ L2(R2), the function Fj,k is defined as

Fj,k(x, y) = 2jF(2jx − k1, 2jy − k2).

Now we can proceed and lift the MRA to the sphere. To every function F ∈ L2(R2), one may
associate the function Fs ∈ L2(Ṡ2) as Fs = ν · (F ◦ p). In particular,

Fs
j,k = ν · (Fj,k ◦ p) for j ∈ Z, k ∈ Z2, (23)

and similarly for the spherical functions Φs
j,k and λΨs

j,k, where Φj,k,λ Ψj,k, λ = h, v, d, are the
planar 2-D scaling functions and wavelets, respectively. For j ∈ Z, we define Vj as Vj :=
{ν · (F ◦ p), F ∈ Vj}. Then we have:

(1) Vj ⊂ Vj+1 for j ∈ Z, and each Vj is a closed subspace of L2(Ṡ2);

(2)
⋂

j∈Z Vj = {0} and
⋃

j∈Z Vj is dense in L2(Ṡ2);

(3) {Φs
0,k, k ∈ Z2} is an orthonormal basis for V0.

A sequence (Vj)j∈Z of subspaces of L2(Ṡ2) satisfying (1), (2), (3) constitutes a MRA of L2(Ṡ2).
Define now the wavelet spaces Wj by Vj+1 = Vj ⊕Wj. Then {λΨs

j,k, k ∈ Z2, λ = h, v, d} is

an orthonormal basis for Wj and {λΨs
j,k, j ∈ Z, k ∈ Z2, λ = h, v, d} is an orthonormal basis

for
(

⊕

j∈Z Wj

)

= L2(Ṡ2). This the orthonormal wavelet basis on S2.
Thus, an orthonormal 2-D wavelet basis yields an orthonormal spherical wavelet basis.
In addition, if Φ has compact support in R2, then Φs

j,k has local support on S2 (and
diam supp Φs

j,k → 0 as j → ∞), and similarly for the respective wavelets. Smooth 2-D
wavelets yield smooth spherical wavelets. In particular, Daubechies wavelets yield locally
supported and orthonormal wavelets on Ṡ2. Thus the same tools as in the planar 2-D case can
be used for the decomposition and reconstruction matrices (so that existing toolboxes may be
used).
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(a) (b)
Fig. 1. (a) The graph of the function f (θ, ϕ) defined in (24); (b) Its analysis with the spherical
wavelet associated to the Daubechies wavelet db3, the familiar 6-coefficient filter.

3.4 An example: Singularity detection
As an application of our construction, we analyse the following zonal function on S2:

f (θ, ϕ) =

{

1, θ � π
2 ,

(1 + 3 cos2 θ)−1/2, θ � π
2 .

(24)

The function f and its gradient are continuous, but the second partial derivative with respect
to θ has a discontinuity on the equator θ = π

2 . The function f is shown in Figure 1 (a).
Detecting properly such a discontinuity requires a wavelet with three vanishing moments
at least, so that, as far as we know, none of the existing constructions of discrete spherical
wavelets could detect this discontinuity.
Instead, we consider the discretized spherical CWT with the spherical wavelet Ψs

H2
associated

to the planar wavelet

ΨH2 (x, y) = ∆2[e−
1
2 (x2+y2)]

= (x4 + y4 + 2x2y2 − 8(x2 + y2) + 8)e−
1
2 (x2+y2). (25)

This wavelet has four vanishing moments (again a planar wavelet with less than three vanish-
ing moments could not detect this discontinuity). The analysis is presented in Figure 2. Panels
(a), (b), (c) and (d) present the spherical CWT at smaller and smaller scales, a = 0.08, 0.04, 0.02
and 0.0165, respectively. From Panels (a)-(c), it appears that the discontinuity along the equa-
tor is detected properly, and the precision increases as the scale decreases. However, there is
a limit: when the scale a is taken below a = 0.018, the singularity is no more detected prop-
erly, and the transform is nonzero on the upper hemisphere, whereas the signal is constant
there. This is visible on Panel (d), which shows the transform at scale a = 0.01655. In fact, the
wavelet becomes too narrow and “falls in between" the discretization points, ripples appear
in the Southern hemisphere. This effect is described in detail in (Antoine et al., 2002).
On the contrary, the well-known Daubechies wavelet db3 lifted on the sphere by (23) does the
job better than the wavelet Ψs

H2
mentioned above, as one can see in Figure 1, Panel (b). The

computational load is smaller and the precision is much better, in the sense that the width of
the detected singular curve is narrower.
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Fig. 2. Analysis of the function f (θ, ϕ) by the discretized CWT method with the wavelet ψs

H2
,

at scales: (a) a = 0.08 (b) a = 0.04 (c) a = 0.02 (d) a = 0.0165. The sampling grid is 256×256.

The same tests were performed for the function fπ/7, obtained from f by performing a rotation
around the axis Ox with an angle of π/7. The results are presented in Figure 3. Panel (a) shows
the analysis of the function fπ/7 with the discretized CWT method, using the wavelet ψs

H2
, at

scale a = 0.0165. Panel (b) gives the analysis with the Daubechies wavelet db3 lifted onto
the sphere. No appreciable distortion is seen, the detection is good all along the discontinuity
circle, and again the precision is better with the lifted Daubechies wavelet. Notice that the
computation leading to the figure of Panel (a) was made with a grid finer than that used in
Figure 2, so that the detection breaks down at a smaller scale (here below a = 0.01).
Of course, this example is still academic, but it is significant. More work is needed, in partic-
ular, for estimating the degree of distortion around the pole and applying the method to real
life signals.

4. Generalizations

As we have seen up to now in the case of the two-sphere, the main ingredients needed for
construction of a wavelet transform on a manifold are harmonic analysis and a proper notion
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Fig. 1. (a) The graph of the function f (θ, ϕ) defined in (24); (b) Its analysis with the spherical
wavelet associated to the Daubechies wavelet db3, the familiar 6-coefficient filter.

3.4 An example: Singularity detection
As an application of our construction, we analyse the following zonal function on S2:

f (θ, ϕ) =

{

1, θ � π
2 ,

(1 + 3 cos2 θ)−1/2, θ � π
2 .

(24)

The function f and its gradient are continuous, but the second partial derivative with respect
to θ has a discontinuity on the equator θ = π

2 . The function f is shown in Figure 1 (a).
Detecting properly such a discontinuity requires a wavelet with three vanishing moments
at least, so that, as far as we know, none of the existing constructions of discrete spherical
wavelets could detect this discontinuity.
Instead, we consider the discretized spherical CWT with the spherical wavelet Ψs
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associated

to the planar wavelet

ΨH2 (x, y) = ∆2[e−
1
2 (x2+y2)]

= (x4 + y4 + 2x2y2 − 8(x2 + y2) + 8)e−
1
2 (x2+y2). (25)

This wavelet has four vanishing moments (again a planar wavelet with less than three vanish-
ing moments could not detect this discontinuity). The analysis is presented in Figure 2. Panels
(a), (b), (c) and (d) present the spherical CWT at smaller and smaller scales, a = 0.08, 0.04, 0.02
and 0.0165, respectively. From Panels (a)-(c), it appears that the discontinuity along the equa-
tor is detected properly, and the precision increases as the scale decreases. However, there is
a limit: when the scale a is taken below a = 0.018, the singularity is no more detected prop-
erly, and the transform is nonzero on the upper hemisphere, whereas the signal is constant
there. This is visible on Panel (d), which shows the transform at scale a = 0.01655. In fact, the
wavelet becomes too narrow and “falls in between" the discretization points, ripples appear
in the Southern hemisphere. This effect is described in detail in (Antoine et al., 2002).
On the contrary, the well-known Daubechies wavelet db3 lifted on the sphere by (23) does the
job better than the wavelet Ψs

H2
mentioned above, as one can see in Figure 1, Panel (b). The

computational load is smaller and the precision is much better, in the sense that the width of
the detected singular curve is narrower.
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Fig. 2. Analysis of the function f (θ, ϕ) by the discretized CWT method with the wavelet ψs

H2
,

at scales: (a) a = 0.08 (b) a = 0.04 (c) a = 0.02 (d) a = 0.0165. The sampling grid is 256×256.

The same tests were performed for the function fπ/7, obtained from f by performing a rotation
around the axis Ox with an angle of π/7. The results are presented in Figure 3. Panel (a) shows
the analysis of the function fπ/7 with the discretized CWT method, using the wavelet ψs

H2
, at

scale a = 0.0165. Panel (b) gives the analysis with the Daubechies wavelet db3 lifted onto
the sphere. No appreciable distortion is seen, the detection is good all along the discontinuity
circle, and again the precision is better with the lifted Daubechies wavelet. Notice that the
computation leading to the figure of Panel (a) was made with a grid finer than that used in
Figure 2, so that the detection breaks down at a smaller scale (here below a = 0.01).
Of course, this example is still academic, but it is significant. More work is needed, in partic-
ular, for estimating the degree of distortion around the pole and applying the method to real
life signals.

4. Generalizations

As we have seen up to now in the case of the two-sphere, the main ingredients needed for
construction of a wavelet transform on a manifold are harmonic analysis and a proper notion
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Fig. 3. (a) Analysis of the function fπ/7(θ, ϕ) by the discretized CWT method with the wavelet
ψs

H2
, at scale a = 0.0165 (the sampling grid here is 512×512); (b) Analysis of the function

fπ/7(θ, ϕ), with the spherical wavelet associated to db3.

of dilation on the manifold. Suitable notions of dilation may be obtained by a group-theoretical
approach or by lifting from a fixed plane by some inverse projection.
These generalizations do not have a purely academic interest. Indeed, some data live on man-
ifolds more complicated than the sphere, such as a two-sheeted hyperboloid or a paraboloid. In
optics also, data on such manifolds are essential for the treatment of omnidirectional images,
which have numerous applications in navigation, surveillance, visualization, or robotic vi-
sion, for instance. In the catadioptric image processing, a sensor overlooks a mirror, whose
shape may be spherical, hyperbolic or parabolic. However, instead of projecting the data from
that mirror onto a plane, one can process them directly on the mirror, which then suggests to
use wavelets on such manifolds (Bogdanova, Bresson, Thiran & Vandergheynst, 2007).

4.1 The two-sheeted hyperboloid H2

The upper sheet H2
+ = {ζ = (ζ1, ζ2, ζ3) ∈ R3, ζ2

1 + ζ2
2 − ζ2

3 = −1, ζ3 > 0} of the two-
sheeted hyperboloid may be treated exactly as the sphere, replacing SO(3) by the isometry
group SOo(2, 1). For dilations, however, a choice has to be made, since there are many pos-
sibilities, each type being defined by some projection. Details may be found in (Bogdanova,
2005; Bogdanova, Vandergheynst & Gazeau, 2007). Given an (admissible) hyperbolic wavelet
ψ, the hyperbolic CWT of f ∈ L2(H2

+) with respect to ψ is

Wψ f (g, a) := 〈ψg,a| f 〉 =
∫

H2
+

ψa(g−1ζ) f (ζ) dµ(ζ), g ∈ SOo(2, 1), a > 0, (26)

a formula manifestly analogous to its spherical counterpart (12). As in the spherical case,
ψa(ζ) = λ(a, ζ)ψ(d1/aζ), with da an appropriate dilation, λ(a, ζ) is the corresponding Radon-
Nikodym derivative, and µ is the SOo(2, 1)-invariant measure on H2.
The key for developing the CWT is the possibility of performing harmonic analysis on H2

+,
including a convolution theorem, thanks to the so-called Fourier-Helgason transform. As a
consequence, the usual properties hold true, for instance, an exact reconstruction formula.
However, no result is known concerning frames that would be obtained by discretization.
On the other hand, it is possible to construct wavelet orthonormal bases on H2

+ by lifting them
from the equatorial plane ζ3 = 0 by inverse orthographic (i.e., vertical) projection. In this case,

no point has to be avoided, since only one pole is present, but distortions will occur again if
one goes sufficiently far away from the tip (pole).

4.2 The paraboloid and other manifolds
Among the three shapes for a catadioptric mirror, the parabolic one is the most common (think
of the headlights of a car). And this case brings us back to the topic of Sections 2.2 and 3.3.
Indeed it has been shown by Geyer & Daniilidis (2001) that the reconstruction of the ortho-
graphic projection from a parabolic mirror can be computed as the inverse stereographic pro-
jection from the image plane onto the unit sphere. Thus wavelet frames and wavelet orthogo-
nal bases may be obtained from the corresponding spherical constructions. Alternatively, one
may lift planar orthogonal wavelet bases onto the paraboloid directly by inverse orthographic
projection, as for the hyperboloid, with the same danger of distortions far away.
For a more general manifold, a local CWT may be designed, using a covering of the manifold
by local patches (charts, in the language of differential geometry) and the projection along the
normal at the center of each patch (Antoine et al., 2009) (this is also the idea behind needlets
(Narcowich et al., 2006b)). One would then get orthogonal wavelet bases in each patch, but
there remains the problem of connection of one patch with the next one, using transition func-
tions (the concatenation of all the local bases may also be considered as a dictionary). No-
tice the same problem of combining local orthogonal wavelet bases has been encountered,
and solved, in the wavelet construction based on radial projection from a convex polyhedron
(Roşca, 2005), described briefly in Section 3.2(3).
A final example of orthogonal wavelet basis is that of the wavelet transform on graphs (An-
toine et al., 2009). A graph is a good model for pairwise relations between objects of a certain
collection, such as the nodes of a sensor network or points sampled out of a surface or mani-
fold. Thus a wavelet transform on a graph could be a welcome addition.
A graph is defined as a collection V of vertices or nodes and a collection of edges that connect
pairs of vertices. In the present context, one considers finite graphs only, with d nodes. Thus
the signals of interest are functions f : V → R, which can be identified with d-dimensional
real vectors f ∈ Rd. In order to design a wavelet transform on such a graph, one considers the
so-called Laplacian matrix, a positive semi-definite d × d matrix. Its eigenvectors form an or-
thonormal system that can be used to decompose any signal. Next one defines a dilation by di-
lating the “Fourier" coefficients — once again the needlet idea. The resulting functions are the
wavelets on the graph and they form an orthogonal basis (everything is finite-dimensional).
We refer to (Antoine et al., 2009) for further details of the construction.

5. Outcome

We have surveyed a number of techniques for generating orthogonal wavelet bases or wavelet
frames on the two-sphere S2, plus some generalizations. Two approaches have been privi-
leged, both of them based on some notion of inverse projection, namely, (1) the construction
of a CWT on S2 by inverse stereographic projection from a tangent plane, which leads to
nontight frames upon discretization; and (2) the construction of orthogonal wavelet bases by
lifting in the same way a planar orthogonal basis. Of course, many other methods are avail-
able in the literature, especially in the discrete case, and we have mentioned some of them.
Clearly many open questions remain, but we want to emphasize that progress in this field is
likely to be motivated by physical applications, in particular, astrophysics and optics.
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Fig. 3. (a) Analysis of the function fπ/7(θ, ϕ) by the discretized CWT method with the wavelet
ψs

H2
, at scale a = 0.0165 (the sampling grid here is 512×512); (b) Analysis of the function

fπ/7(θ, ϕ), with the spherical wavelet associated to db3.

of dilation on the manifold. Suitable notions of dilation may be obtained by a group-theoretical
approach or by lifting from a fixed plane by some inverse projection.
These generalizations do not have a purely academic interest. Indeed, some data live on man-
ifolds more complicated than the sphere, such as a two-sheeted hyperboloid or a paraboloid. In
optics also, data on such manifolds are essential for the treatment of omnidirectional images,
which have numerous applications in navigation, surveillance, visualization, or robotic vi-
sion, for instance. In the catadioptric image processing, a sensor overlooks a mirror, whose
shape may be spherical, hyperbolic or parabolic. However, instead of projecting the data from
that mirror onto a plane, one can process them directly on the mirror, which then suggests to
use wavelets on such manifolds (Bogdanova, Bresson, Thiran & Vandergheynst, 2007).
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2005; Bogdanova, Vandergheynst & Gazeau, 2007). Given an (admissible) hyperbolic wavelet
ψ, the hyperbolic CWT of f ∈ L2(H2

+) with respect to ψ is
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a formula manifestly analogous to its spherical counterpart (12). As in the spherical case,
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thonormal system that can be used to decompose any signal. Next one defines a dilation by di-
lating the “Fourier" coefficients — once again the needlet idea. The resulting functions are the
wavelets on the graph and they form an orthogonal basis (everything is finite-dimensional).
We refer to (Antoine et al., 2009) for further details of the construction.

5. Outcome

We have surveyed a number of techniques for generating orthogonal wavelet bases or wavelet
frames on the two-sphere S2, plus some generalizations. Two approaches have been privi-
leged, both of them based on some notion of inverse projection, namely, (1) the construction
of a CWT on S2 by inverse stereographic projection from a tangent plane, which leads to
nontight frames upon discretization; and (2) the construction of orthogonal wavelet bases by
lifting in the same way a planar orthogonal basis. Of course, many other methods are avail-
able in the literature, especially in the discrete case, and we have mentioned some of them.
Clearly many open questions remain, but we want to emphasize that progress in this field is
likely to be motivated by physical applications, in particular, astrophysics and optics.
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Balazs, P., Antoine, J.-P. & Gryboś, A. (2009). "Weighted and controlled frames: Mutual re-
lationship and first numerical properties", Int. J. Wavelets, Multires. and Inform. Proc.
p. (to appear).

Baldi, P., Kerkyacharian, G., Marinucci, D. & Picard, D. (2008). "high frequency asymptotics for
wavelet-based tests for Gaussianity and isotropy on the torus", J. Multivariate Anal.
99(4): 606–636.

Baldi, P., Kerkyacharian, G., Marinucci, D. & Picard, D. (2009). Asymptotics for spherical
needlets, Ann. of Stat. 37(3): 1150–1171.

Bogdanova, I. (2005). Wavelets on non-Euclidean manifolds, PhD thesis, EPFL, Lausanne,
Switzerland.

Bogdanova, I., Bresson, X., Thiran, J.-P. & Vandergheynst, P. (2007). "Scale space analysis and
active contours for omnidirectional images", IEEE Trans. Image Process. 16(7): 1888–
1901.

Bogdanova, I., Vandergheynst, P., Antoine, J.-P., Jacques, L. & Morvidone, M. (2005). “Stereo-
graphic wavelet frames on the sphere", Appl. Comput. Harmon. Anal. 26: 223–252.

Bogdanova, I., Vandergheynst, P. & Gazeau, J.-P. (2007). "Continuous wavelet transform on
the hyperboloid", Applied Comput. Harmon. Anal. 23(7): 286–306.

Dahlke, S., Dahmen, W., Schmidt, E. & Weinreich, I. (1995). "Multiresolution analysis and
wavelets on S2 and S3", Numer. Funct. Anal. Optim. 16: 19–41.

Daubechies, I. (1992). Ten Lectures on Wavelets, SIAM, Philadelphia.
Driscoll, J. R. & Healy, D. M. (1994). "Computing Fourier transforms and convolutions on the

2-sphere", Adv. Appl. Math. 15: 202–250.
Freeden, W. & Schreiner, M. (1997). “Orthogonal and non-orthogonal multiresolution analy-

sis, scale discrete and exact fully discrete wavelet transform on the sphere", Constr.
Approx. 14: 493–515.

Freeden, W. & Windheuser, U. (1997). “Combined spherical harmonic and wavelet expansion
— A future concept in Earth’s gravitational determination", Appl. Comput. Harmon.
Anal. 4: 1–37.

Geyer, C. & Daniilidis, K. (2001). "Catadioptric projective geometry", Int. J. Computer Vision
45(3): 223–243.

Holschneider, M. (1996). “Continuous wavelet transforms on the sphere", J. Math. Phys.
37: 4156–4165.

Jacques, L. (2004). "Ondelettes, repères et couronne solaire", PhD thesis, Université catholique de
Louvain, Louvain-la-Neuve, Belgium.

Marinucci, D., Pietrobon, D., Baldi, A., Baldi, P., Cabella, P., Kerkyacharian, G., Natoli, P.,
Picard, D. & Vittorio, N. (2008). "spherical needlets for CMB data analysis", Mon.
Not. R. Astron. Soc. 383: 539–545.

Narcowich, F. J., Petrushev, P. & Ward, J. D. (2006a). “Decomposition of Besov and Triebel-
Lizorkin spaces on the sphere", J. Funct Anal. 238: 530–564.

Narcowich, F. J., Petrushev, P. & Ward, J. D. (2006b). “Localized tight frames on spheres",
SIAM J. Math. Anal. 38: 574–594.

Pietrobon, D., Baldi, P. & Marinucci, D. (2006). "Integrated Sachs-Wolfe effect from the cross
correlation of WMAP3 year and the NRAO VLA sky survey data: New results and
constraints on dark energy", Phys. Rev. D 74: 043524.

Potts, D., Steidl, G. & Tasche, M. (1996). “Kernels of spherical harmonics and spherical
frames", in F. Fontanella, K. Jetter & P. Laurent (eds), Advanced Topics in Multivari-
ate Approximation, World Scientific, Singapore, pp. 287–301.
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Roşca, D. (2005). “Locally supported rational spline wavelets on the sphere", Math. Comput.
74(252): 1803–1829.
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1. Introduction  

Multiple antenna communications technologies offer significant advantages over single 
antenna systems. These advantages include extended range, improved reliability in fading 
environments and higher data throughputs. If multiple antennas are provided only at the 
transmitting end of a link then the system is referred to as multiple input single output 
(MISO). If multiple antennas are provided only at the receiving end of a link then the system 
is referred to as single input multiple output (SIMO). If multiple antennas are provided at 
both ends of a link then the system is referred to as multiple input multiple output (MIMO). 
 
Multiple antenna systems can be divided into two classes depending on the signal 
processing employed. These are: (i) smart antennas and (ii) spatial multiplexors.  
 
Smart antennas provide increased signal-to-noise-and-interference ratio (SNIR) via diversity 
gain, array gain and/or interference suppression. Each transmit antenna radiates, to within 
a simple gain and delay difference, the same signal. Similarly, each receive antenna 
contributes its signal to a gain and delay weighted sum. By setting transmit and receive 
gains and delays appropriately, improved SNIR is achieved which may be used to realise 
greater spectral efficiency (and, therefore, greater channel capacity), greater range and/or 
decreased latency (due to a reduced requirement for channel coding). 
 
Spatial multiplexors can provide increased channel capacity directly. Each transmit antenna 
radiates an independent signal sub-stream. With N transmit and N receive antennas, for 
example, an N-fold increase in data-rate is possible (in principle) over that achievable with a 
single input single output (SISO) antenna system (without any increase in total transmitted 
power). 
 
In this chapter a theoretical framework for describing MIMO channels is presented followed 
by a brief outline of MIMO channel modelling principles [P. Almer et. al., 2007]. The rest of 
the chapter describes a selection of widely adopted MIMO channel models, their capabilities 
and limitations, in the context of specific standards. 
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2. MIMO channel framework 

Wireless channels are linear. They may, therefore, be represented by a linear filter and 
described by their impulse response. If the transmit and receive antennas, and the scattering 
objects in the environment, are static then the channel will be time-invariant and the 
impulse response, h(τ), will be a function of delay, τ, only. If the transmit antenna, receive 
antenna or scattering objects move then the channel will be time-variant and the impulse 
response, h(t, τ), will be a function of time, t.  
 
From a communication systems point of view h(t, τ) is an entirely adequate channel 
description, i.e. it represents sufficient information to predict the (noiseless) received signal 
from the transmitted signal. It has the limitation, however, of obscuring the underlying 
propagation physics. If h(t, τ) is to be predicted from full or partial knowledge of the 
physical environment, then models linking it to the most important aspect of the 
environment, i.e. the spatial distribution of scattering objects, is required. The double-
directional impulse response is a channel description that makes explicit this connection 
between the systems-level impulse response and propagation physics. 

 
2.1 Double-directional impulse response 
The impulse response of the wireless transmission channel describes the cascaded effect of 
transmit antenna, propagation channel and receive antenna. Changing an antenna, 
therefore, may change the impulse response, even though the propagation channel (i.e. the 
physical arrangement of scatterers) may remain the same. The effects on h(t, τ) of the 
antennas and propagation environment can be decoupled using a description of the channel 
called the double-directional impulse response [M. Steinbauer et. al., 2001], i.e.: 
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 (1) 

 
where the integrand is the component of impulse response represented by power leaving 
the transmit antenna with (vector) direction φT  (or, more strictly speaking, within the 
element of solid angle, dφT, centred on φT) and arriving at the receive antenna with (vector) 
direction φR. gR(φR) and gT(φT) are the complex (field-strength or voltage) gains of the 
receive and transmit antennas, respectively, in the directions φR and φT. (The magnitude of 
the voltage gain is the square root of the conventional antenna (power) gain and is 
proportional to an antenna’s effective length - the square root of its effective area - via the 
antenna reciprocity formula.) For isotropic antennas gR(φR) = gT(φT) = 1. p(t, τ, φR, φT) is the 
component of impulse response assuming isotropic antennas. It incorporates all propagation 
related losses including free-space path loss, absorption and scattering loss. The integral in 
Eq. (1) sums over all possible directions-of-departure (DODs) at the transmitter and all 
possible directions-of-arrival (DOAs) at the receiver. 
 
If propagation is via K discrete paths then Eq. (1) can be written as a summation over K 
multipath components (MPCs), i.e.: 
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Recognising that the channel characteristics are a function of transmit and receive antenna 
locations, denoted by the position vectors rT and rR, respectively then the double-directional 
impulse response may be more fully expressed using p(rT, rR, t, τ, φR, φT), i.e.:  
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The description above relates to singly-polarised antennas. A more complete channel 
description can be devised by introducing a matrix of impulse responses defining the 
coupling between, for example, the vertically- and horizontally-polarised ports of a dual-
polarised transmit antenna and the vertically- and horizontally-polarised ports of a dual-
polarised receive antenna, i.e.: 
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The leading diagonal (co-polar) elements of Eq. (4) describe coupling between the vertically 
polarised port of the transmit antenna and the vertically polarised port of the receive 
antenna (hvv), and the horizontally polarised port of the transmit antenna and the 
horizontally polarised port of the receive antenna (hhh). The off diagonal (cross-polar) 
elements describe coupling between the horizontally polarised port of the transmit antenna 
and the vertically polarised port of the receive antenna (hvh), and the vertically polarised 
port of the transmit antenna and the horizontally polarised port of the receive antenna (hhv). 
In principle, the ports could have any pair of orthogonal polarisations. In practice, however, 
they are almost always perpendicular linear polarisations (typically vertical and horizontal 
for terrestrial links) or counter-rotating (right-handed and left-handed) circular 
polarisations. 
 
Eq. (4) is a systems description. To express the cross-polarising effects of the antenna and 
propagation medium separately a cascade of three polarisation matrices (one each for 
transmit antenna, medium and receive antenna) is required for each propagation path. The 
system matrix for a discrete set of propagation paths is then given by: 
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The use of vertical and horizontal basis polarisations (or, more generally, any pair of 
perpendicular linear polarisations) in Eq. (5) is problematic. A simple cartesian definition of 
a pair of basis polarisations (definition 1, Fig. 1) is adequate only for the single propagation 
path described by φR = φT = 0. For propagation paths with non-zero DODs and DOAs some 
other pair of basis polarisations must be adopted [A. C. Ludwig., 1973]. The polarisations of 
a pair of dipoles (one electric, one magnetic) can be used - definition 2, Fig. 1 - as can the 
polarisations of a pair of perpendicular Huygens’ sources - definition 3, Fig. 1. (A Huygens’ 
source is the elementary radiating source of an electromagnetic wave referred to in Huygens 
’ Principle which states that each point on a propagating wave-front acts as a secondary 
source of radiation.) 
 

 
Fig. 1. Ludwig’s three definitions of orthogonal basis polarisations (After [A. C. Ludwig, 
1973]. (© 1973 IEEE)) 
 
Definitions 2 and 3 allow a pair of perpendicular polarisations to be defined for directions 
other than φR = φT = 0 whilst preserving the requirement for transverse electromagnetic 
fields. They still suffer from limitations, however, since definition 2 does not define 
polarisation in the ±Y direction and definition 3 does not define polarisation in the –Z 

 

direction. (This is reflected physically by the fact that a dipole does not radiate along its axis 
- it has a toroidal radiation pattern - and a Huygens source does not radiate in the backward 
propagating direction - its radiation pattern is a cardioid of revolution.) 
 
For radio links with columnated-beam antennas, and DODs and DOAs closely clustered 
about transmit and receive antenna boresights, the most appropriate choice of basis 
polarisations is probably definition 3. (As the spread DODs and DOAs about boresight 
tends to zero then all three definitions converge.) For links with omnidirectional antennas, 
and DODs and/or DOAs widely spread in azimuth (but not too widely spread in elevation), 
then definition 2 is probably more appropriate. 

 
2.2 The MIMO channel impulse response 
Fig. 2 shows a schematic diagram of a MIMO channel. 

 
Fig. 2. MIMO channel  
 
The MIMO channel must be described for all transmit and receive antenna pairs. For M 
transmit antennas and N receive antennas the MIMO transmission channel can be 
represented by an N × M channel matrix, i.e.: 
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where hnm(t, τ) represents the time-variant impulse response between the input of the mth 
transmit antenna and the output of the nth receive antenna. Each impulse response is the 
cascaded effect of transmit antenna, the propagation medium and a receive antenna. This is 
therefore a system-level representation. If polarisation diversity is employed then each 
element of the matrix must be replaced by the polarisation matrix of Eq. (4). This is 
equivalent to doubling the number of antennas at each end of the link; a dual-polarised 
antenna being treated, effectively, as two singly-polarised antennas. Any time variation, due 
to shadowing and/or multipath fading, arises from antenna motion or the motion of 
environmental scatterers. The spatial, polarisation and temporal correlations between the 
signals at the terminals of different receiving antennas are reflected in the correlation 
properties of the matrix elements.  
 
MIMO channel models may be physical or analytical. Physical models are based either on a 
physical theory (often geometrical optics) or on physical measurements. They are site-
specific or specific to an environment type (e.g. urban suburban, rural) and are particularly 
useful in network planning. Analytical models are based on mathematical assumptions 
about channel behaviour. They are generally site-independent and are mostly used for 
system design, comparison and testing. 
 
Physical models can be subdivided into deterministic and stochastic variants. Deterministic 
models are environment specific and are derived from the underlying physical radio 
propagation processes, e.g. reflection, diffraction, shadowing and wave-guiding. The most 
important example is ray tracing. Stochastic (physical) models are more generic than 
deterministic models. They are based on the fact that whilst, in the absence of a detailed 
environment database, the precise physical propagation parameters (e.g.  DOD, DOA, 
number of paths, path delay, path power) are unpredictable, they nevertheless have well-
defined statistical behaviours. Probability models can therefore be constructed for these 
propagation parameters. They are generally more computationally efficient than 
deterministic models. The Spatial Channel Model (SCM) and the Spatial Channel Model - 
Extended (SCME) described in sections 4.1.1 and 4.1.2 are stochastic physical models. 
  
Analytical channel models derive the MIMO channel matrix without any consideration of 
propagation parameters. Examples include Independent Identically Distributed (i.i.d.), 
Weichselberger and Kronecker models. The WiMAX and IEEE 802.11n channel models 
described in sections 4.2 and 4.3 are Kronecker models. Since MIMO channel matrices  are 
easily generated using analytical models, and since the statistics of these matrices are both 
unvarying (repeatable) and environment independent, they are popular for the 

 

development,  verification and optimisation of system hardware and software (especially 
signal processing algorithms).  

 
3. Link-level and system-level simulations 

Most standardised MIMO channel models provide link-level and system-level simulation. 
The former refers to a single point-to-point link (but including, of course, multiple transmit 
and receive antennas). The latter refers to multiple communication links, potentially 
including multiple base-stations (BSs). In the case of an SCM channel, for example, a 
calibration process is undertaken at the link-level prior to a system-level simulation.  
 
The SCM and SCME system-level model defines a ‘drop’ concept where a mobile is placed 
(dropped) in a sequence of different network locations. The locations may be random or pre-
defined by the user. Each drop represents a snapshot of the fading channel. The statistics of 
the channel parameters within a single drop are assumed to be stationary and, for the 
duration of the drop all large scale parameters (DOA, DOD, mobile station velocity etc.) are 
assumed to be constant. The drop concept is illustrated in Fig. 3.  
 

 Drop
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Drop

 
Fig. 3. Quasi-stationary drop periods in a channel simulation 
 
A variation of the drop-based simulation allows the large-scale channel parameters to 
evolve (change gradually and continuously) at each simulation step inside a drop. This 
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number of paths, path delay, path power) are unpredictable, they nevertheless have well-
defined statistical behaviours. Probability models can therefore be constructed for these 
propagation parameters. They are generally more computationally efficient than 
deterministic models. The Spatial Channel Model (SCM) and the Spatial Channel Model - 
Extended (SCME) described in sections 4.1.1 and 4.1.2 are stochastic physical models. 
  
Analytical channel models derive the MIMO channel matrix without any consideration of 
propagation parameters. Examples include Independent Identically Distributed (i.i.d.), 
Weichselberger and Kronecker models. The WiMAX and IEEE 802.11n channel models 
described in sections 4.2 and 4.3 are Kronecker models. Since MIMO channel matrices  are 
easily generated using analytical models, and since the statistics of these matrices are both 
unvarying (repeatable) and environment independent, they are popular for the 

 

development,  verification and optimisation of system hardware and software (especially 
signal processing algorithms).  
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The former refers to a single point-to-point link (but including, of course, multiple transmit 
and receive antennas). The latter refers to multiple communication links, potentially 
including multiple base-stations (BSs). In the case of an SCM channel, for example, a 
calibration process is undertaken at the link-level prior to a system-level simulation.  
 
The SCM and SCME system-level model defines a ‘drop’ concept where a mobile is placed 
(dropped) in a sequence of different network locations. The locations may be random or pre-
defined by the user. Each drop represents a snapshot of the fading channel. The statistics of 
the channel parameters within a single drop are assumed to be stationary and, for the 
duration of the drop all large scale parameters (DOA, DOD, mobile station velocity etc.) are 
assumed to be constant. The drop concept is illustrated in Fig. 3.  
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Fig. 3. Quasi-stationary drop periods in a channel simulation 
 
A variation of the drop-based simulation allows the large-scale channel parameters to 
evolve (change gradually and continuously) at each simulation step inside a drop. This 
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approach is more realistic than the stationary assumption but represents an increase in 
complexity and results in increased simulation time. 
  
If motion of the mobile station (MS) and scatterers is assumed to be negligible during the 
course of a packet transmission the channel is said to be quasi-static. Such a channel has a 
decorrelation time, Tc, which is greater than the packet duration. If Tc is defined as the time 
shift resulting in a correlation coefficient of 0.5 then it may be related (approximately) to the 
maximum Doppler shift, fm (speed/wavelength)  [T. S. Rappaport., 2002], by:  
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For a carrier frequency of 2 GHz and a terminal speed of 3 km/h the maximum Doppler 
shift would be 5.6 Hz and the channel decorrelation time would be 32 ms. The assumption 
that the channel is quasi-static could then be justified providing the transmitted packet 
duration is less than this. 

 
4. Channel model standards 

Specific standardised channel models have been developed for the testing and optimisation 
of particular wireless standards in a manner that is repeatable and widely agreed. These 
wireless channel models are important for the development of new wireless devices. 
Examples of standardised channel models include COST 207, SCM and SCME. These are 
wideband power delay profile (PDP) models used in the development of GSM, WCDMA 
and LTE systems, respectively. Standardised channel models provide a framework to test 
algorithms and investigate design trade-offs thereby informing key design decisions relating 
to modulation, coding and multiple-accessing etc.  
 
A selection of standardised channel models for mobile, broadband wireless access (BWA) 
and wireless local area network (WLAN) applications is given below: 
 

Channel Model Origin Application 
   
SCM 3GPP/3GPP2 3G Outdoor 
SCME WINNER 3G Outdoor 
WIN II WINNER II 3G Outdoor 
SUI Stanford University Fixed BWA 
WiMAX- ITU-TDL WiMAX form Fixed/Mobile BWA 
IEEE 802.11n IEEE 802.11n TGn (High throughput task group) Indoor Channel 

 
4.1 WINNER 
The European WINNER (wireless world initiative new radio) project began in 2004 with the 
aim to develop a new radio concept for beyond third generation (B3G) wireless systems. 
Work Package 5 (WP5) of the WINNER projects focused on multi-dimensional channel 

 

modelling for carrier frequencies between 2 and 6 GHz and bandwidths up to 100 MHz. In 
total six organisations were formally involved in WP5 (Elektrobit, Helsinki University of 
Technology, Nokia, Royal Institute of Technology (KTH), the Swiss Federal Institute of 
Technology (ETH) and the Technical University of IImenau.  
 
At the start of the project there was no widely accepted channel model suitable for WINNER 
system modelling. Two existing channel models,  3GPP/3GPP2 Spatial Channel Model 
(SCM), were selected as starting points for outdoor simulation and one existing channel 
model (IEEE 802.11 TGn Model [3GPP TR25.996 V6.1.0, 2003-09]) was selected as a starting 
point for indoor simulation. The SCM had insufficient bandwidth and too few scenarios. In 
2005 the first extension of SCM, SCM Extended (SCME), was therefore proposed. Despite 
the modifications to SCM, SCME was deemed inadequate for the simulation of B3G systems.  
 
At the end of 2005 the WINNER channel model – Phase 1 (WIM1) was described in the 
deliverable D5.4 [WINNER, 2005]. WIM1 has a unified structure for indoor and outdoor 
environments and is based on double-directional measurement campaigns carried out in the 
5 GHz ISM2 band with bandwidths of up to 120 MHz. It covers six different propagation 
scenarios, i.e.(i) indoor small office, (ii) indoor hall, (iii) urban microcell, (iv) urban 
macrocell, (v) suburban macrocell, and (vi) rural . Both line-of-sight (LOS) and non-line-of-
sight (NLOS) propagation conditions are catered for [H. El-Sallabi et. al., 2006]. 
 
In September 2007, the WINNER channel model - Phase II (WIM2) was described [WINNER 
II interim, 2006]. This model, which evolved from WIM1 and the WINNER II interim 
channel models, extended the propagation scenarios to: (i) indoor office, (ii) large indoor 
hall, (iii) indoor-to-outdoor, (iv) urban microcell, (v) bad urban microcell, (vi) outdoor-to-
indoor, (vii) stationary feeder, (viii) suburban macrocell, (ix) urban macrocell, (x) rural 
macrocell, and (xi) rural moving networks. In the course of the WINNER project channel 
models were implemented in MATLAB and made available through the official web site 
[WINNER II, 2007]. 

 
4.1.1 Spatial Channel Model (SCM) 
SCM was developed by 3GPP/3GPP2 (third generation partnership project) for outdoor 
environments at a carrier frequency of 2 GHz. It was designed to test 5 MHz CDMA 
channels [P.Almer et. al., 2007] and consists of two parts: (i) a link level simulation model 
and (ii) a system-level simulation model. The SCM system level model is currently used as a 
de-facto standard for LTE, WCDMA, UMTS and WiMAX system level evaluation and 
performance verification.  

 
4.1.1.1 Link-level model  
The link-level model which might also be referred to as a reference model is a single link 
channel model. It provides a well-defined, convenient, interface for different equipment 
manufacturers to compare their proprietary implementations of the same signal processing 
algorithms. Link-level simulations alone are not recommended for performance testing of 
different algorithm because they reflect only a single snapshot of the (dynamic) channel. 
Link-level simulations do not, therefore, allow conclusions to be made about the general 
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approach is more realistic than the stationary assumption but represents an increase in 
complexity and results in increased simulation time. 
  
If motion of the mobile station (MS) and scatterers is assumed to be negligible during the 
course of a packet transmission the channel is said to be quasi-static. Such a channel has a 
decorrelation time, Tc, which is greater than the packet duration. If Tc is defined as the time 
shift resulting in a correlation coefficient of 0.5 then it may be related (approximately) to the 
maximum Doppler shift, fm (speed/wavelength)  [T. S. Rappaport., 2002], by:  
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SCM was developed by 3GPP/3GPP2 (third generation partnership project) for outdoor 
environments at a carrier frequency of 2 GHz. It was designed to test 5 MHz CDMA 
channels [P.Almer et. al., 2007] and consists of two parts: (i) a link level simulation model 
and (ii) a system-level simulation model. The SCM system level model is currently used as a 
de-facto standard for LTE, WCDMA, UMTS and WiMAX system level evaluation and 
performance verification.  

 
4.1.1.1 Link-level model  
The link-level model which might also be referred to as a reference model is a single link 
channel model. It provides a well-defined, convenient, interface for different equipment 
manufacturers to compare their proprietary implementations of the same signal processing 
algorithms. Link-level simulations alone are not recommended for performance testing of 
different algorithm because they reflect only a single snapshot of the (dynamic) channel. 
Link-level simulations do not, therefore, allow conclusions to be made about the general 
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behaviour of a system and if such conclusions are required system-level simulations must be 
performed.  
 
The link-level SCM can be implemented as either a stochastic physical or analytical model. 
In the former the wideband characteristics of the channel are modelled as a tapped delay 
line (TDL). Each tap is independently faded and is characterised by an azimuth DOD/DOA 
angular spectrum described by a uniform distribution (for MSs) or a Laplacian distribution 
(for BSs). The mean direction and angular spread at BS and MS are fixed (and thus represent 
stationary channel conditions). The Doppler spectrum is calculated based on the MS velocity 
(speed and direction relative to the line connecting MS and BS). The model also defines the 
number and configuration of antennas at MS and BS. Given all these parameters the 
physical model can be transformed to an analytical model [P.Almer et. al., 2007]. 

 
4.1.1.2 System-level model  
The system-level model is a multi-link physical model intended for performance evaluation 
in which each link represents a cell or a sector within a cell. Fig. 4 illustrates a system-level 
simulation in which an MS receives interference from adjacent sectors of adjacent cells. 
 
 

 
Fig. 4. SCM system level simulation.  
 

 

Each link comprises an MS and BS MIMO antenna array. Propagation is via multipaths and 
sub-paths. The excess delays of sub-paths are closely clustered around the delay of their 
(parent) multipath. This is assumed to originate from an environment with closely spaced 
clusters of scatterers. Fig. 5 illustrates the clustered scatterers and resulting multipaths and 
sub-paths. 
 
The SCM distinguishes between three different environments, i.e. (i) urban macrocell, (ii) 
suburban macrocell and (iii) urban microcell. The modelling and simulation methodology 
are identical for all three environments but the parameters (e.g. azimuth spread, delay-
spread, shadow fading and path loss) are different [P. Almer et. al., 2007]. 
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Fig. 5.  Clustered scatterers, multipaths and sub-paths in an SCM simulation.  

 
4.1.1.3 Software implementation of SCM  
The modelling approach can be divided in to three parts: (i) antenna correlation (ii) spatial 
correlation and (iii) polarisation correlation. This is illustrated schematically in Fig. 6 which 
represents the impulse response of the nth multipath component.  
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Fig. 5.  Clustered scatterers, multipaths and sub-paths in an SCM simulation.  

 
4.1.1.3 Software implementation of SCM  
The modelling approach can be divided in to three parts: (i) antenna correlation (ii) spatial 
correlation and (iii) polarisation correlation. This is illustrated schematically in Fig. 6 which 
represents the impulse response of the nth multipath component.  
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Fig. 6.  Tap n complex gain for SCM   
 
Where Hu,s,n(t) is the complex gain of the nth tap (corresponding to the nth MPC) between the 
sth element of a linear BS array and the uth element a linear MS array. xvBS(θn,m,DOD) and 
xhBS(θn,m,DOD) are, respectively, the BS antenna complex field patters for vertically and 
horizontally polarised fields. Matrix n,m represents cross-polarised coupling between 
vertically and horizontally polarised components. xvMS(θn,m,DOA) and xhMS(θn,m,DOA) are, 
respectively, the MS antenna complex field patterns for vertically and horizontally polarised 
fields. (Note that the DOD and DOA are each defined by a single angle. This reflects the 
assumption that there is spreading in azimuth only. Whilst energy is unlikely to be 
completely constrained to a single azimuthal (horizontal) plane in reality the spread of 
energy in elevation (out of the horizontal plane) is likely to be relatively modest. The spatial 
correlation is a function of separation between BS and MS antenna array elements and their 
respective DODs and DOAs. A random phase offset φn,m (uniformly distributed between 0 
and 360o) is added to ensure a random starting point for fast fading. Temporal correlation is 
a function of the magnitude and direction of MS motion. Fig. 7 shows a pseudo-code flow 
diagram for the model. The simulation steps implied by Fig. 7 are:  

 

 
Fig. 7. Pseudo-code for SCM channel model  
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1. For a given drop the multiple MSs are placed at random locations within a 
sector/cell. The MS (linear array) antenna orientation and the MS direction of 
motion are selected at random. 

2. Path-loss is calculated based on the separation between MS and BS. The path-loss 
model used is the COST 231 (Hata) model for macrocells and the COST 231 
(Walfish-Ikegami) model for microcells. The number of multipath components is 
fixed in all three cases at six and their delay and average power are chosen 
randomly using appropriate probability distributions. 

3. Angular dispersion at the MS and BS is incorporated by assuming each multipath 
component comprises a cluster of 20 sub-paths having the same delay but 
(randomly modelled) different DOD and DOA [3GPP TR.996 V6.1.0 (2003 09)]. 
The overall mean DOD and DOA is determined by the relative locations of BS 
and MS and the orientation of their antenna arrays. The mean DOD or DOA for 
each tap is chosen at random from a Gaussian distribution that is centred on the 
overall mean. (DOA and DOD variances are model parameters.) . The sub-paths 
have deterministic amplitude and random phase. Their sum is therefore subject 
to Rayleigh or Ricean fading.  

4. Temporal fading may be generated either by using a sum of sinusoids or by 
applying white Gaussian noise to a Doppler filter. 

5. Temporal variation of the impulse response is determined by the speed and 
direction of the MS. The different Doppler shift for each sub-path leads to a 
different phase for each sub-path. The phase for each sub-path at the end of each 
call within a single simulation drop is stored in order to ensure continuity, Fig. 8. 
 

 
Fig. 8. Fast fading samples for one tap corresponding to successive calls of the same  
channel drop. 
 
5. For system level simulations (which consider multiple MSs and BSs in different 

cells/sectors) a sequence of drops is executed. All parameters are independent of 
those in prior or succeeding drops. The drop period is assumed to be sufficiently 
short for large-scale channel parameters (e.g. angle spread, mean DOD/DOA, 
delay-spread and shadowing) to be constant during the drop. The MS position is 
determined at random during the start of each drop.  

 

4.1.1.4 Model features  
1. Each drop reflects a snapshot of the fading channel.  
2. The COST 231 Urban Hata (macrocell) and COST 231 Walfish-Ikegami (microcell) 

path-loss models are adjusted for a frequency of 1.9 GHz. The applicability to a 
frequency other than 1.9 GHz is not analysed [M. Narandzic., 2007]. 

3. The model provides a bandwidth of 5 MHz which is not adequate for the most 
recent wireless standards (e.g. LTE which requires bandwidth of 20 MHz). 

4. During a drop the channel undergoes fast fading due to MS movement. Delays, 
DOD and DOA, however, are kept constant. Any two consecutive drops are 
independent and are based on randomly located clusters. This makes the channel 
model discontinuous across drops.  

5. Six clusters of scatterers are considered. Each cluster corresponds to a resolvable 
MPC (referred to as a multipath). Within a resolvable path (cluster), there are 20 
irresolvable sub-paths. Each of the multipaths is modelled as a Dirac (delta) 
function of delay. Each multipath is subject to angular dispersion across its 20 
sub-paths. The summing of the sub-path carriers results in Rayleigh fading of 
each multipath [D.S. Baum., 2005]. 

6. The correlation of the standard deviation (in dB) of lognormal fading due to 
shadowing (between the links from a single MS to multiple BSs) is 0.5. The 
correlation is independent of the range of BSs or their relative angular locations 
as seen from the MS. Shadowing and its correlation between multiple MS-BS 
paths are therefore assumed independent of network topology and topography 
[3GPP TR25.996 V6.1.0, 2003-09]. 

7. Elevation spread is not considered. 
8. Antenna radiation pattern, array geometry and array orientation are arbitrary. 

When all propagation and antenna parameters are defined an analytic 
formulation can be extracted from the physical model. Each drop results in a 
different instance of the correlation matrix. 

9. Most model parameters are described by their PDFs. While this provides a rich 
source of variability, it has the disadvantage that simulation time grows 
exponentially with the number of random parameters. 

10. As a consequence of the assumption that each multipath is flat-faded, the model's 
utility for bandwidths above 5 MHz is questionable. (This motivates the 
extended, SCME, version of SCM.) 

11. Uplink and downlink reciprocity is assumed, i.e. DOD and DOA values are 
identical for both uplink and downlink simulation of the channel. 

12. The uplink and downlink sub-path (random) phases are uncorrelated for 
frequency division duplex (FDD) systems but correlated for TDD systems. . 

 
4.1.2 Extended Spatial Channel Model (SCME) 
SCME is an extension of SCM. The extension is not associated with the 3GPP working group 
but was developed in WP5 of the WINNER project. SCME extends the channel bandwidth 
of SCM from 5 MHz to 20 MHz. It was adopted as the channel standard for the 
development and testing of the 3GPP Long Term Evolution (LTE) standard. The channel 
bandwidth was subsequently further extended to 100 MHz. (The required bandwidth of 
B3G systems is up to 100 MHz in both 2 GHz and 5 GHz bands.) A limitation of SCM is the 
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fixed in all three cases at six and their delay and average power are chosen 
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3. Angular dispersion at the MS and BS is incorporated by assuming each multipath 
component comprises a cluster of 20 sub-paths having the same delay but 
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The overall mean DOD and DOA is determined by the relative locations of BS 
and MS and the orientation of their antenna arrays. The mean DOD or DOA for 
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to Rayleigh or Ricean fading.  
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direction of the MS. The different Doppler shift for each sub-path leads to a 
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call within a single simulation drop is stored in order to ensure continuity, Fig. 8. 
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path-loss models are adjusted for a frequency of 1.9 GHz. The applicability to a 
frequency other than 1.9 GHz is not analysed [M. Narandzic., 2007]. 

3. The model provides a bandwidth of 5 MHz which is not adequate for the most 
recent wireless standards (e.g. LTE which requires bandwidth of 20 MHz). 

4. During a drop the channel undergoes fast fading due to MS movement. Delays, 
DOD and DOA, however, are kept constant. Any two consecutive drops are 
independent and are based on randomly located clusters. This makes the channel 
model discontinuous across drops.  

5. Six clusters of scatterers are considered. Each cluster corresponds to a resolvable 
MPC (referred to as a multipath). Within a resolvable path (cluster), there are 20 
irresolvable sub-paths. Each of the multipaths is modelled as a Dirac (delta) 
function of delay. Each multipath is subject to angular dispersion across its 20 
sub-paths. The summing of the sub-path carriers results in Rayleigh fading of 
each multipath [D.S. Baum., 2005]. 

6. The correlation of the standard deviation (in dB) of lognormal fading due to 
shadowing (between the links from a single MS to multiple BSs) is 0.5. The 
correlation is independent of the range of BSs or their relative angular locations 
as seen from the MS. Shadowing and its correlation between multiple MS-BS 
paths are therefore assumed independent of network topology and topography 
[3GPP TR25.996 V6.1.0, 2003-09]. 

7. Elevation spread is not considered. 
8. Antenna radiation pattern, array geometry and array orientation are arbitrary. 

When all propagation and antenna parameters are defined an analytic 
formulation can be extracted from the physical model. Each drop results in a 
different instance of the correlation matrix. 

9. Most model parameters are described by their PDFs. While this provides a rich 
source of variability, it has the disadvantage that simulation time grows 
exponentially with the number of random parameters. 

10. As a consequence of the assumption that each multipath is flat-faded, the model's 
utility for bandwidths above 5 MHz is questionable. (This motivates the 
extended, SCME, version of SCM.) 

11. Uplink and downlink reciprocity is assumed, i.e. DOD and DOA values are 
identical for both uplink and downlink simulation of the channel. 

12. The uplink and downlink sub-path (random) phases are uncorrelated for 
frequency division duplex (FDD) systems but correlated for TDD systems. . 

 
4.1.2 Extended Spatial Channel Model (SCME) 
SCME is an extension of SCM. The extension is not associated with the 3GPP working group 
but was developed in WP5 of the WINNER project. SCME extends the channel bandwidth 
of SCM from 5 MHz to 20 MHz. It was adopted as the channel standard for the 
development and testing of the 3GPP Long Term Evolution (LTE) standard. The channel 
bandwidth was subsequently further extended to 100 MHz. (The required bandwidth of 
B3G systems is up to 100 MHz in both 2 GHz and 5 GHz bands.) A limitation of SCM is the 
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drop-based approach with the consequence that there is no short-term variability in the 
channel transfer function. This corresponds to fixed DOAs as seen by a moving MS. SCM 
also has a limited range of scenarios (it does not include, for example, outdoor-to-indoor 
paths) and, in some scenarios, does not incorporate K-factor to support LOS paths. 
 
SCME uses the intra-cluster delay-spread to effect bandwidth extension. Since backward 
compatibility with SCM was required the number of clusters (i.e. multipaths) is not 
increased from six. Each cluster of 20 sub-paths (which in SCM have identical delay) is 
subdivided into 3 or 4 sub-clusters (for macrocell and microcell scenarios respectively) 
called mid-paths with different delays, Fig. 9. 
 

 
Fig. 9. SCME multipaths, mid-paths and clusters 
 
(The total number of sub-paths for SCME, however, remains the same as for SCM, i.e. 20.) 
Bandwidth extension is realised by introducing delay (and power) difference between the 
mid-paths The number of delay taps is therefore increased from 6 in SCM to 18 or 24 in 
SCME (depending on the scenario [Spirent Communications, 2008]). The 20 sub-paths are 
split into groups of 10, 6, and 4 (for scenarios with three mid-paths) or groups of 6, 6, 4 and 4 
(for scenarios with four mid-paths). The relative power of each mid-path is scaled by this 
ratio as shown in Fig. 10. 
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Fig. 10. Multipaths, mid-paths and sub-path in SCME.  
 
Sub-paths within a mid-path have identical delay. Each mid-path has the same azimuth 
spread as in SCM. SCME is a continuous evolution model since it allows drifting of DODs, 
DOAs and delays for every multipath at each simulation step within a drop. 

 
4.1.2.1 Additional features of SCME 
SCME contains the following additional features when compared to SCM [D.S Baum et. al., 
2005; M. Narandzic., 2007; SCME Project., 2005]: 
 
1. Addition of intra-cluster delay-spread within a multipath 
The introduction of intra-cluster delay-spread to increase bandwidth. The 20 subpaths of 
SCM are grouped into three (in case of macrocells) or four (in case of microcells) mid-paths 
with different delays. This results in about 10 ns of intra-cluster RMS delay spread. The 
delays, which are fixed, are given in [D.S Baum et al., 2005]. A mid-path, which represents a 
single resolvable delay (or tap), comprises a collection of sub-paths and therefore has a 
fading distribution close to Rayleigh. 
 
2. Frequency 
Carrier frequency is extended to 5 GHz. 
 
3. Path-loss models 
Two path-loss models are used. The long-range model (identical to that defined in the SCM 
2 GHz model) and an alternative, short-range, model. The extension of frequency to 5 GHz 
is applied to both. SCME selects the path-loss model (long-range/short-range/2 GHz/5 
GHz) depending on the user input. The 5 GHz path-loss model offsets loss by +8 dB with 
respect to the existing 2 GHz model. 
 
4. LOS model for all scenarios 
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Sub-paths within a mid-path have identical delay. Each mid-path has the same azimuth 
spread as in SCM. SCME is a continuous evolution model since it allows drifting of DODs, 
DOAs and delays for every multipath at each simulation step within a drop. 
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Two path-loss models are used. The long-range model (identical to that defined in the SCM 
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respect to the existing 2 GHz model. 
 
4. LOS model for all scenarios 



Signal	Processing94

 

The LOS option affects path-loss and shadow-fading variance. The choice between LOS and 
NLOS within a drop is based on the probability of LOS versus BS-MS distance. The LOS 
model in SCM defines a path-loss and Ricean K-factor which is applicable to urban microcell 
scenario only. With the alternative path-loss model in SCME, the LOS option (with 
appropriate K-factor model) is defined for all scenarios and is thus available whenever the 
current drop is LOS.  
 
5. Time-variant shadowing 
Each drop consists of time samples within a channel snapshot. In SCM the fading due to 
shadowing is constant for the duration of a drop. In SCME shadow induced fading (in dB) 
changes within a drop thus modelling time-varying shadowing. The decorrelation distance 
of shadowing is predefined (i.e. 5 m, 50 m and 250 m in urban microcells, urban macrocells, 
and suburban macrocells, respectively). The standard deviation of shadow induced fading 
for all scenarios is 4 dB for LOS and 10 dB for NLOS. 
 
6. Time-variant DODs, DOAs and delays 
For all sub-paths, DODs and distances are calculated once for every channel snapshot. It is 
assumed, therefore, that the locations of scatterers relative to the BS are fixed for the 
duration of a drop. This results in fixed DODs as seen by the BS (with the exception of any 
LOS DOD which does change). The DOAs as seen from the MS and the sub-path delays 
change during a drop due to the MS movement.  

 
4.1.2.2 Model features 
1.  SCME is a stochastically controlled spatial channel model. The model is based on 

the same design philosophy as SCM i.e. the summation of specular components 
to define the changing impulse response. The model is backward compatible 
with the existing SCM model.  

2.  SCME provides a channel bandwidth of up to 100 MHz which is sufficient to 
characterise B3G wireless technologies and networks.  

3.  In addition to fast fading (due to multipath propagation), SCME can model the 
evolution of slow fading (due to shadowing), sub-path delay and DOA during 
each drop. This results in, time-varying, spatial correlations between transmit and 
receive antenna elements as shown in Fig. 11. 
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Fig. 11. Tap n complex gain for SCME   
 
4. SCME considers six clusters of scatterers. Each cluster corresponds to a resolvable 

path. Within a resolvable path (cluster), there are 20 sub-paths. The 20 sub-paths 
are divided into mid-paths which are then assigned different delays relative to 
the original path. The mid-paths are delay resolvable but sub-paths within a mid-
path are irresolvable. The mid-path (which is a collection of subpaths) 
corresponds to a single tap. 

5.  SCME includes a LOS K–factor option which is switch selectable for all urban and 
suburban macrocell scenarios. (SCM includes a LOS model for the urban 
microcell scenario only.) 

6.  A simplified tap delay line model referred to as the cluster delay line (CDL) 
model is used for calibration and comparison purposes. In this model, the DODs 
and DOAs are fixed for each path. Also, fixed delays are defined resulting in a 
fixed power delay profile (PDP) [Spirent Communications, 2008]. 

 
4.1.2.3 Software implementation of SCME 
1.  The drop concept in SCM corresponds to a relatively short channel-observation 

period that is significantly separated from adjacent drops in both time and space. The 
channel parameters are therefore constant within the drop and independent between 
drops. Short-term variability of channel parameters within a drop is incorporated by 
introducing drifting of (i) path delays (ii) DOAs and (iii) shadow induced fading.  

2.  The position of scatters is fixed within a drop. As a consequence the scattering 
angles as seen from the BS (DOD) do not change (with the exception of the LOS 
DOD in LOS scenarios). This assumption is common to SCM. The initial values of 
random parameters such as DODs, DOAs, K-factor, path phases etc. are 
generated in the same way as in SCM. 

3.  The scatter angles as seen from the MS (DOAs) and sub-path delays change (in 
contrast to SCM) during a drop reflecting MS movement. Similarly the LOS 
direction from the BS to MS varies in time. This results in time-varying spatial 
correlation between MS and BS antenna array elements. 
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3.  In addition to fast fading (due to multipath propagation), SCME can model the 
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each drop. This results in, time-varying, spatial correlations between transmit and 
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4. SCME considers six clusters of scatterers. Each cluster corresponds to a resolvable 

path. Within a resolvable path (cluster), there are 20 sub-paths. The 20 sub-paths 
are divided into mid-paths which are then assigned different delays relative to 
the original path. The mid-paths are delay resolvable but sub-paths within a mid-
path are irresolvable. The mid-path (which is a collection of subpaths) 
corresponds to a single tap. 

5.  SCME includes a LOS K–factor option which is switch selectable for all urban and 
suburban macrocell scenarios. (SCM includes a LOS model for the urban 
microcell scenario only.) 

6.  A simplified tap delay line model referred to as the cluster delay line (CDL) 
model is used for calibration and comparison purposes. In this model, the DODs 
and DOAs are fixed for each path. Also, fixed delays are defined resulting in a 
fixed power delay profile (PDP) [Spirent Communications, 2008]. 

 
4.1.2.3 Software implementation of SCME 
1.  The drop concept in SCM corresponds to a relatively short channel-observation 

period that is significantly separated from adjacent drops in both time and space. The 
channel parameters are therefore constant within the drop and independent between 
drops. Short-term variability of channel parameters within a drop is incorporated by 
introducing drifting of (i) path delays (ii) DOAs and (iii) shadow induced fading.  

2.  The position of scatters is fixed within a drop. As a consequence the scattering 
angles as seen from the BS (DOD) do not change (with the exception of the LOS 
DOD in LOS scenarios). This assumption is common to SCM. The initial values of 
random parameters such as DODs, DOAs, K-factor, path phases etc. are 
generated in the same way as in SCM. 

3.  The scatter angles as seen from the MS (DOAs) and sub-path delays change (in 
contrast to SCM) during a drop reflecting MS movement. Similarly the LOS 
direction from the BS to MS varies in time. This results in time-varying spatial 
correlation between MS and BS antenna array elements. 
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4.  An initial value of distance (dj,i) between the MS and the last bounce scatter (LBS) 
of the ith sub-path of the jth multipath is required in order to calculate DOA drifts 
as the MS moves. This distance is unknown but can be inferred from a stochastic 
model as proposed in [D. S. Baum et. al., 2005].  

5.   Time evolution, or drifting, of slow fading (shadowing) is determined by the 
spatial auto-correlation function. 

Fig. 12 shows the pseudo-code flow diagram for an implementation of SCME.  

 
Fig. 12. Pseudo-code flow diagram of SCME channel model. 

 

4.1.3 WIM2  
The WIM2 channel model (also referred to as WINNER II [WINNER II Channel Models, 
2006]) is defined for both link-level and system-level simulations. It encompasses a wide 
range of scenarios relevant to local, metropolitan and wide-area systems. WIM2 evolved 
from the WINNER I and WINNER II (interim) channel models. 
 
WIM2 is a double-directional geometry-based stochastic channel model. It incorporates 
generic multilink models for system-level simulations and clustered delay line (CDL) 
models, with fixed large-scale channel parameters, for calibration and comparison purposes.  
 
Initially, the WINNER group selected SCM for immediate simulation but later extended this 
to SCME. In spite of the greater bandwidth and higher frequency capability of SCME it was 
still deemed inadequate for advanced WINNER II simulations. The novel features of WIM2 
are its parameterisation, the addition of further outdoor and indoor scenarios and the 
consideration of both azimuth and elevation spreading for indoor environments. (This is in 
contrast to SCM and SCME which restrict spreading to the azimuthal plane only.) WIM2 
also includes correlation modelling of large-scale parameters and scenario-dependent 
polarisation modelling [WINNER II Channel Models, 2007].  

 
4.1.3.1 Model features 
1.  It is a geometry-based stochastic channel model, which allows the creation of an 

arbitrary double-directional model. The channel impulse response is the sum of 
specular components. This is the same principle as used in the SCM and SCME 
channel model. The channel parameters are determined randomly, based on 
probability distributions extracted from channel measurement. 

2.  It covers 12 scenarios which is a larger number than SCM or SCME. These 
include indoor environments. (SCM and SCME include only outdoor 
environment.) Each scenario allows LOS or NLOS conditions. The model 
supports mobile, nomadic and fixed systems. 

3.  It allows transitions between different propagation conditions, the most 
important of which are transitions between LOS and NLOS within the same 
scenario. In the A1 (indoor) or B1 (urban microcell) scenarios, for example, 
transitions from LOS to NLOS can occur as a result of the MS turning a corner to 
leave a corridor or street in which the BS is located.  

4.  It can be used to characterise systems operating in the 2 - 6 GHz frequency range 
with a bandwidth up to 100 MHz. Like SCME, intra-cluster delay spread is used 
to support this bandwidth.  

5.  It specifies DOA and DOD as two-dimensional variables (whereas only a single 
(azimuthal) angle is considered in SCM and SCME). 

6.  It employs a sophisticated correlation model to the multiple links in system level 
simulations [M. Narandzic et. al., 2007]. (This contrasts with SCM which adopts a 
fixed correlation (0.5) for slow fading to model multiple links between a MS and 
different BSs.)  

7. A drop, or channel segment, represents a quasi-stationary period during which 
the probability distributions of most channel parameters do not change. The 
advantage of this approach is simplicity. The disadvantage is that it is not 
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possible to adequately simulate cases where variable channel conditions are 
needed. Drop-based simulation is the principal approach used by both WINNER 
I (SCM and SCME) and WIM2 models. WIM2, however, also allows simulation 
with time evolution in which the drops are correlated and a smooth transition 
between consecutive drops is engineered. (The drops in WIM2 are usually 
referred to as channel segments since they are no longer 'dropped in' at random.) 
This smooth transition between channel segments is realised by spacing the 
segments in time by the quasi-stationary duration and dividing the transition 
region into a number of sub-intervals. The number of sub-intervals is chosen to 
be the same as the higher of the number of clusters in either channel segment. In 
each sub-interval the strength (amplitude) of a cluster from the earlier segment is 
ramped linearly down and the strength of the cluster from the later segment is 
ramped up. The pair of clusters is chosen to be, as far as possible, 'matched' in 
strength. Where the number of clusters in earlier and later segments are not equal 
then the weakest paths in the segment with more clusters are left unpaired and 
are ramped up or down alone. This process is illustrated schematically in Fig. 13.    

 

 
Fig. 13. Transition between channel segments by power ramping up and down of clusters 
(After [WINNER II Channel Models, 2007]).  
 
8.  For time division duplex (TDD) systems WIM2 (like SCM and SCME) uses the 

same parameters for both uplink and downlink. For frequency division duplex 
(FDD) systems a different path-loss is used on uplink and downlink and the 
random phases of sub-paths on uplink and downlink are modelled 
independently [M. Narandzic et. al., 2007].  

 
4.1.3.1 Channel modelling approach 
The modelling process can be divided into three phases. These are illustrated in Fig. 14. 
 

 

 
Fig. 14. WIM2 channel modelling process. 
 
1.  The environment, network layout and antenna array parameters are defined. 
2.  The large-scale parameters such as slow fading (shadowing), power, DODs, 

DOAs and delay-spread are drawn randomly from tabulated distribution 
functions. At this stage the geometry (i.e. network layout) is fixed and the only 
free variables are the random initial phases of the sub-paths. By picking different 
initial phases (randomly), an unlimited number of different realisations of the 
model can be generated. When the initial phases are fixed, the model is 
deterministic. 

3.  Fast fading samples are generated using the sum of sinusoids technique. (This is 
the same as in SCM and SCME.) The model implements time evolution 
(depending on user input) in order to generate correlated channel samples if the 
required channel simulation period is longer than the quasi-stationery period of 
the channel. 

 
4.2 WiMAX 
IEEE working group 802.16 has been central to the development of technical standards for 
fixed wireless access networks. Broadband wireless access (BWA) technology provides last 
mile access for high-speed residential and commercial Internet services. It is a promising 
alternative to digital subscriber line (DSL), cable and fibre technologies which are struggling 
to meet world-wide demand, especially outside metropolitan centres, for Internet services at 
reasonable cost. The IEEE 802.16 standard for BWA and its associated industry consortium, 
the WiMAX forum, has the potential to offer broadband access to virtually all users 
irrespective of location. WiMAX (the Worldwide Interoperability for Microwave Access) is a 
consortium of telecommunication equipment manufacturers, vendors and service providers, 
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formed to promote the compatibility and interoperability of BWA devices incorporating the 
IEEE 802.16 and ETSI HiperMAN wireless standards. 
 
IEEE 802.16 was designed for LOS links operating at carrier frequencies between 10 and 66 
GHz. The first release of the standard (IEEE 802.16-2001) specifies a set of medium access 
control (MAC) and physical-layer standards intended to provide fixed broadband access 
using a point-to-point (PP) or point-to-multipoint (PMP) topology. The standard was 
revised in January 2003 to included NLOS links operating at frequencies in both licensed 
and unlicensed bands between 2 and 11 GHz. A consolidated standard, IEEE 802.16-2004, 
was issued in 2004.  
 
IEEE 802.16e-2005, was issued in December 2005 which includes enhancements for physical 
and MAC layers that support nomadic and mobile operation in 2 to 11 GHz range.  
 
The WiMAX forum has adopted the IEEE 802.16-2004 and ETSI HyperMAN standards for 
fixed and nomadic access and the IEEE 802.16e standard for portable access. 
 
Two channel models are used for fixed and portable systems complying with the IEEE 
802.16 standard. The Stanford University Interim (SUI) channel model is used for fixed 
broadband access and the ITU Tapped-Delay-Line channel model is used for portable 
broadband access.  

 
4.2.1 SUI 
The Stanford University Interim (SUI) suite of channel models was designed for fixed 
macrocell networks operating at 2.5 GHz. It contains the definition of six specific channel 
implementations which were initially developed for Multipoint Microwave Distribution 
Systems (MMDSs) in the USA operating in the 2.5 - 2.7 GHz frequency band. Their 
applicability to the 3.5 GHz frequency band that is in use in the UK has so far not been 
conclusively established. 
 
The model generates both SISO and MIMO channel parameters. The six specific channel 
implementations represent different terrain types. The targeted scenarios are based on the 
following assumptions: 
 
1.  Cell radius less than 10 km. 
2.  Cell coverage (80 - 90%). 
3.  Fixed directional receiving antenna installed at a height of 2 - 10 m (below 

rooftop height since LOS is not required). 
5.  Base-station antenna installed at a height of 15 - 40 m (above rooftop height). 
6.  Flexible channel bandwidth between 2 and 20 MHz. 
 
Three terrain types are defined: A  for hilly terrain with moderate to heavy tree density  
(representing the highest path-loss terrain type), B for either flat terrain with moderate to 
heavy tree density or hilly terrain with light tree density and  C for flat terrain with 
moderate to light tree density (representing the lowest path-loss terrain).  
 

 

The SUI models corresponding to these terrain types are: 
 
1.  A: SUI-5 and SUI-6 
2.  B: SUI-3 and SUI-4 
3.  C: SUI-1 and SUI-2 
 

 
Fig. 15. Tapped delay line channel model. (After[T. S. Rapport, 2002]) 

 
4.2.1.1 Model features  
1.  Claimed to be valid between 2 and 4 GHz (although no tests of its performance in 

the European 3.5 GHz band are known) and for up to 7 km separation between 
transmitter and receiver. 

2. Fading modelled as tapped delay line, Fig. 15, with three taps having non-
uniform delays. The delays are specified in the standard document [IEEE 802.16 
(BWA), 2003]. 

3. Omni-directional antennas are assumed at both transmitter and the receiver in 
the original SUI models. A modified version of the model assumes directional 
antennas with 30° beamwidths. 

4. A lognormal model [L.J. Greenstein et. Al., 1999] for the distribution of K-factor is 
adopted. The K-factor for each tap is specified by exceedance values 
corresponding to cell coverage areas of 90% and 75% (SUI-1 to SUI-4) and 90%, 
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75% and 50% (SUI-5 to SUI-6). Taps 2 and 3 are always, effectively, Rayleigh 
faded. Tap 1 may be Ricean or Rayleigh faded. 

5.  Correlation between multipath components (tap weights) for the same taps of 
different receiving antennas at the MS is fixed irrespective of MS array 
configuration.  The correlation between multipath components for the same taps 
of different receiving antennas at the BS is zero (corresponding to an assumption 
of large antenna spacing. 

6.  Channel coefficients with the probability distribution and power spectral density 
specified in the standard document [IEEE 802.16 (BWA), 2003] are generated by 
filtering noise. In a fixed wireless system the Doppler power spectral density is 
concentrated around f = 0 Hz. The shape of the spectrum, which different from 
the classical Jakes spectrum (that is more relevant to urban mobile scenarios), is 
given by: 
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 where fm is the maximum Doppler frequency. This is usually referred to as the 
 'rounded' Doppler spectrum [IEEE 802.16 (BWA), 2003]. 
7.  Validity restricted to distances less than 7 km (which is less than the targeted 

maximum range of 10 km). A modified version of SUI channel model has been 
proposed in order to scale transmit-receive distances to ranges greater than 7 km. 

8.  Propagation environments characterised in terms of power delay profiles. 
9. Actual antenna array configurations not considered.  
10. Simple and suited for rapid proto-typing or equipment/algorithm development. 

Unsuited to comprehensive, location-specific, network/system planning. 

 
5.2.1.2 Generic structure  
The generic structure of the SUI channel model is shown in Fig. 16 [IEEE 802.16 (BWA), 
2003]. 

 
Fig. 16. Generic structure of SUI channel model. (After [IEEE 802.16 (BWA), 2003].) 
 
The input mixing matrix models the spatial correlation between inputs if multiple antennas 
are used at the transmitter. The tapped delay line matrix models multipath fading. Each 
filter tap is characterised by a Ricean or Raleigh fading process. The output mixing matrix 
models the spatial correlation between output signals if multiple antennas are used at the 
receiver. 

 

5.2.1.3 Channel modelling approach 
1.  RMS delay-spread is calculated based on user specified parameters. 
2.  A set of complex zero-mean Gaussian random numbers are generated for each 

tap leading to a Rayleigh distributed tap magnitude. If a Ricean distribution (K > 
0) is required a constant path component is added to the Rayleigh set of 
coefficients. 

3.  The random numbers generated are independent (and therefore uncorrelated) 
and thus have a white spectrum. The SUI channel model specifies a 'rounded' 
power spectrum. The uncorrelated samples are filtered to generate channel 
coefficients with the required correlation properties. 

4.  An antenna envelope correlation value (i.e. the correlation between the amplitude 
of signals received at corresponding taps of two antenna elements) is defined for 
multiple transmit or receive elements. 

The simulation steps are summarised in Fig. 17. 
 

 
Fig. 17.  SUI channel modelling process 

 
4.2.2 WiMAX- ITU-TDL 
The WiMAX forum approved the mobile WiMAX system profile in 2006. Mobile WiMAX, 
based on 802.16e-2005, enables WiMAX systems to address portable and mobile devices in 
addition to fixed and nomadic applications. The WiMAX forum Mobile release 1.0 channel 
model [WiMAX forum, 2008] defines the SISO and MIMO channel model requirements for 
mobile applications governed by the IEEE 802.11e standard. The purpose of the model is to 
provide a realistic and repeatable channel context for the testing and comparison of portable 
and mobile WiMAX-enabled devices. 
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4.2.2 WiMAX- ITU-TDL 
The WiMAX forum approved the mobile WiMAX system profile in 2006. Mobile WiMAX, 
based on 802.16e-2005, enables WiMAX systems to address portable and mobile devices in 
addition to fixed and nomadic applications. The WiMAX forum Mobile release 1.0 channel 
model [WiMAX forum, 2008] defines the SISO and MIMO channel model requirements for 
mobile applications governed by the IEEE 802.11e standard. The purpose of the model is to 
provide a realistic and repeatable channel context for the testing and comparison of portable 
and mobile WiMAX-enabled devices. 
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4.2.2.1 Model features 
Mobile WiMAX specifies SISO/MIMO channel models for radio conformance testing (RCT) 
of WiMAX products. The WiMAX forum has selected the ITU Pedestrian-B and Vehicular-A 
6-tap TDL models for test and verification of SISO devices. The WiMAX-ITU-TDL channel 
model extends the ITU-TDL model to the MIMO systems encompassing spatial correlation 
for each multipath component. One of the novel features of the model is the definition of 
three levels of channel correlation (low, medium and high) between antenna elements. The 
following are the main features of the model: 
 
1.  It is a physical model, using a stochastic modelling approach similar to SCM.  
2.  ITU propagation scenarios are extended by defining the azimuth angle spread 

and shape (Laplacian) of the azimuth spectrum for each tap. Tap-wise MIMO 
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where α and β are the spatial correlations between antenna elements at BS and MS 
respectively. The MIMO correlation matrix is given by the Kronecker product of 
independent spatial correlation matrices, i.e.:  
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3.  The use of the Kronecker product corresponds to an assumption that the 

correlation between elements in the received antenna array is not affected by 
changes in the spatial configuration of elements in the transmit antenna array. 
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3.  The use of the Kronecker product corresponds to an assumption that the 

correlation between elements in the received antenna array is not affected by 
changes in the spatial configuration of elements in the transmit antenna array. 
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4.  The polarisation model (which originated in the ITU) assumes a cross-polar ratio 
(XPR = cross-polar power/co-polar power) of -8 dB for each tap [WiMAX forum, 
2008]. The polarisation matrix is denoted by:  
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where v and h denote vertical and horizontal polarisation respectively. (The first 
subscript refers to the BS and the second subscript refers to the MS.)  The 
downlink polarisation correlation matrix for a 2×2 MIMO system [WiMAX 
forum, 2008] is given by:  
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where γ depends on XPR (expressed as a power ratio). The structure of RP,MIMO 
depends on the MS and BS antenna polarisations and orientations. Further detail 
can be found in [WiMAX forum, 2008]. 

5.  Temporal correlation refers to the auto-correlation of the signal received at a 
single antenna element. There are two ways of generating temporal (fast fading) 
tap coefficients. Since the Doppler spectrum is classical and the amplitude is 
Rayleigh distributed the temporal fading samples can be generated using either 
the sum of sinusoids technique (Jakes' method) or by filtering white Gaussian 
noise. Fig. 19 summarises the process of generation of channel weights. 

 

 
Fig. 19. Block diagram of correlated channel tap generation. (After [WiMAX forum, 2008].) 

 
4.2.2.3 Software implementation of WiMAX-ITU-TDL 
Fig. 20 shows pseudo-code for a WiMAX-ITU-TDL channel model. The modelling process is 
divided into the following principal components:  
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Fig. 20. Pseudo-code flow diagram for WiMAX-ITU-TDL channel model. 
 

 

The generation of secondary channel statistics (e.g azimuth spread, offset DOA and offset 
DOD) is based on the user specified scenario. The channel segment (drop) represents a 
quasi-stationary period in which the probability distributions of parameters are unchanged. 
Unlike SCME the underlying large-scale parameters such as DOD and DOA remain 
constant within a single a channel segment.  
 
The spatial correlation matrices for the BS and MS antenna elements are generated for all 
multipaths of each link. The BS and MS antenna spatial correlation matrices are Kronecker 
multiplied. The spatial correlation matrix remains unchanged between multiple drops of the 
same simulation.  
 
Like spatial correlation the polarisation matrix remains unchanged between multiple drops 
of the same simulation.  
 
Temporal correlation refers to the autocorrelation of the signal received at a single antenna 
element.  During each drop of the simulation fast fading samples of the tap weights are 
generated either by the summing sinusoids or filtering a white Gaussian random process.  

 
4.3 IEEE 802.11n 
IEEE 802.11n is an amendment to the IEEE 802.11-2007 wireless local area network (WLAN) 
standard [IEEE 802.11, 2009]. It gives higher network throughput compared with earlier 
variants of the standard, e.g. 802.11b and 802.11g. The maximum raw (physical-layer) data 
rate is 600 Mbit/s. The IEEE 802.11n channel model [V. Erceg et. al., 2004] was developed for 
systems using the 2 GHz and 5 GHz bands operating in indoor environments and 
employing MIMO technology. Measurement results from these two frequencies bands were 
combined to develop the model. Only the path-loss element of the model depends on 
frequency. The channel model is based on the clustering approach developed by Saleh and 
Valenzula [A. A. M. Saleh et. al., 1987] and illustrated in Fig. 21. 

 
4.3.1 Model features 
The principal features of the model [P. Almer et. al., 2007] are: 
 
1. It is a physical model based on stochastic modelling approach. 
2.  It can be applied to both 2 GHz and 5 GHz frequency bands. 
3. A dual-slope, frequency dependent, model for path-loss is adopted.  
4.  The channel impulse response is a sum of clusters where each cluster consists of up 

to 18 multipaths. (The precise number depends on the scenario.) These multipaths 
are modelled as filter taps which are separated in delay by at least 10 ns.  

5. Five scenarios are defined [P. Almer et. al., 2007]: A, B, C, D, E and F. Scenarios 
A-C represent small environments (RMS delay-spread <30 ns), such as 
residential homes and small offices. (Scenario A is optional and not 
recommended for system performance comparison.) Scenarios D-F represent 
large open spaces with maximum RMS delay-spread <150 ns.  
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Fig. 20. Pseudo-code flow diagram for WiMAX-ITU-TDL channel model. 
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Fig. 21. Example channel impulse response derived from a Saleh and Valenzuela channel 
model. (After [A. A. M. Saleh et. al.].) 

 
6.  The MIMO channel matrix H for each filter tap at each instant of time is 

separated into a fixed (constant) LOS matrix, HF, and a time-varying (Rayleigh 
distributed) NLOS matrix, HV [V. Erceg et. al., 2004], i.e.:  
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 where K is the Ricean K-factor.  
 
7.  Each tap consists of a number of sub-paths having truncated Laplacian azimuth 

spectrum with an angular spread that varies between from 20° to 40° [V. Erceg et. 
al., 2004]. 

8.  Elevation spread is not incorporated (since most building dimensions in azimuth 
are much larger than their dimensions in elevation) [V Erceg et. al., 2004]). 

9.  The mean DOA and DOD for each cluster is random with a uniform distribution 
over all azimuth angles. (For indoor WLANs the scattering environment is 
similar for both the access point and the user equipment. This is in contrast to 
outdoor scenarios where the BS is typically mounted sufficiently high to be 
relatively free of local scatter while the MS is often immersed in a rich scattering 
environment.) 

10.  Several channel taps in scenarios D and E are amplitude modulated to account 
for the effects of fluorescent lights [V. Erceg et. al., 2004] which represent time-

 

periodic scatterers; alternately present and absent at twice the frequency of the 
mains supply (2×50 Hz in Europe).  

11.  The model differentiates between uplink and downlink (unlike SCM and SCME). 
12. Isotropic antenna elements are assumed. 
 

 
Fig. 22. IEEE 802.11n channel model 

 
4.3.2 Model features 
The various steps in the IEEE 802.11n channel model are illustrated in Fig. 22 and described 
below: 
 
1.  At each drop, during the initialisation phase, the model determines the delay 

profile and identifies clusters in the user-specified scenario.  
2.  The model assigns azimuth spread, mean DOD and DOA to each cluster and the 

corresponding taps. Spatial correlation is calculated independently at transmit 
and receive antennas and is based on antenna geometry. 

3.  The spatial correlation matrix is the Kronecker product of the individual spatial 
correlation matrices of transmit and receives antenna arrays, Fig. 22. The spatial 
correlation is a square matrix and is different for uplink and downlink. 
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4. Fast fading samples are generated by filtering uncorrelated (white) Gaussian 
noise.  The filter final states are retained after a dummy run in order to avoid 
transient states. (Fading samples generated during the transient phase are not 
used because their variance is artificially low.) 

5.  In order to maintain continuity between successive channel calls (for the same 
drop) the filter states are stored.  

6. The product of spatial and temporal correlation matrices results in the H matrix 
which is then scaled to account for path-loss and shadowing. 

 
5. Summary and comparison of channel models 

Table 1 summarises the principal features of those channel models that have been described 
and Table 2 compares some of their most important parameters.  
 

 
Table 1. Principal features of standard channel models. (Extended from [M. Narandzic et. 
al., 2007].) 
 
 

 

 
Table 2. Comparison of standard channel model parameters. (Extended from [M. Narandzic 
et. al., 2007].) 

 
6. Summary 

Next generation wireless systems will offer wide bandwidth, high data-rates and greater 
mobility. MIMO technology will certainly play an important role in future wireless 
application. This chapter has presented a brief review of the theoretical framework used to 
describe MIMO channels and has described a selection of standard MIMO channel models. 
The characteristics of standard channel models have been summarised and compared.  
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1. Introduction

Usually, the purpose of studying data compression algorithms is twofold. The need for effi-
cient storage and transmission is often the main motivation, but underlying every compres-
sion technique there is a model that tries to reproduce as closely as possible the information
source to be compressed. This model may be interesting on its own, as it can shed light on the
statistical properties of the source. DNA data are no exception. We urge to find out efficient
methods able to reduce the storage space taken by the impressive amount of genomic data
that are continuously being generated. Nevertheless, we also desire to know how the code of
life works and what is its structure. Creating good (compression) models for DNA is one of
the ways to achieve these goals.
Recently, and with the completion of the human genome sequencing, the development of effi-
cient lossless compression methods for DNA sequences gained considerable interest (Behzadi
and Le Fessant, 2005; Cao et al., 2007; Chen et al., 2001; Grumbach and Tahi, 1993; Korodi and
Tabus, 2005; 2007; Manzini and Rastero, 2004; Matsumoto et al., 2000; Pinho et al., 2006; 2009;
2008; Rivals et al., 1996). For example, the human genome is determined by approximately
3 000 million base pairs (Rowen et al., 1997), whereas the genome of wheat has about 16 000
million (Dennis and Surridge, 2000). Since DNA is based on an alphabet of four different sym-
bols (usually known as nucleotides or bases), namely, Adenine (A), Cytosine (C), Guanine (G),
and Thymine (T), without compression it takes approximately 750 MBytes to store the human
genome (using log2 4 = 2 bits per symbol) and 4 GBytes to store the genome of wheat.
In this chapter, we address the problem of DNA data modeling and coding. We review the
main approaches proposed in the literature over the last fifteen years and we present some
recent advances attained with finite-context models (Pinho et al., 2006; 2009; 2008). Low-order
finite-context models have been used for DNA compression as a secondary, fall back method.
However, we have shown that models of orders higher than four are indeed able to attain
significant compression performance.
Initially, we proposed a three-state finite-context model for DNA protein-coding regions, i.e.,
for the parts of the DNA that carry information regarding how proteins are synthesized (Fer-
reira et al., 2006; Pinho et al., 2006). This three-state model proved to be better than a single-
state model, giving additional evidence of a phenomenon that is common in these protein-
coding regions, the periodicity of period three.

*This work was supported in part by the FCT (Fundação para a Ciência e Tecnologia) grant
PTDC/EIA/72569/2006.
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More recently (Pinho et al., 2008), we investigated the performance of finite-context models
for unrestricted DNA, i.e., DNA including coding and non-coding parts. In that work, we
have shown that a characteristic usually found in DNA sequences, the occurrence of inverted
repeats, which is used by most of the DNA coding methods (see, for example, Korodi and
Tabus (2005); Manzini and Rastero (2004); Matsumoto et al. (2000)), could also be successfully
integrated in finite-context models. Inverted repeats are copies of DNA sub-sequences that
appear reversed and complemented (A ↔ T, C ↔ G) in some parts of the DNA.
Further studies have shown that multiple competing finite-context models, working on a
block basis, could be more effective in capturing the statistical information along the sequence
(Pinho et al., 2009). For each block, the best of the models is chosen, i.e., the one that requires
less bits for representing the block. In fact, DNA is non-stationary, with regions of low infor-
mation content (low entropy) alternating with regions with average entropy close to two bits
per base. This alternation is modeled by most DNA compression algorithms by using a low-
order finite-context model for the high entropy regions and a Lempel-Ziv dictionary based
approach for the repetitive, low entropy regions. In this work, we rely only on finite-context
models for representing both regions.
Modeling DNA data using only finite-context models has advantages over the typical DNA
compression approaches that mix purely statistical (for example, finite-context models) with
substitutional models (such as Lempel-Ziv based algorithms): (1) finite-context models lead
to much faster performance, a characteristic of paramount importance for long sequences (for
example, some human chromosomes have more than 200 million bases); (2) the overall model
might be easier to interpret, because it is made of sub-models of the same type.
This chapter is organized as follows. In Section 2 we provide an overview of the DNA com-
pression methods that have been proposed. Section 3 describes the finite-context models used
in this work. These models collect the statistical information needed by the arithmetic cod-
ing. In Section 4 we provide some experimental results. Finally, in Section 5 we draw some
conclusions.

2. DNA compression methods

The interest in DNA coding has been growing with the increasing availability of extensive
genomic databases. Although only two bits are sufficient to encode the four DNA bases,
efficient lossless compression methods are still needed due to the large size of DNA sequences
and because standard compression algorithms do not perform well on DNA sequences. As a
result, several specific coding methods have been proposed. Most of these methods are based
on searching procedures for finding exact or approximate repeats.
The first method designed specifically for compressing DNA sequences was proposed by
Grumbach and Tahi (1993) and was named Biocompress. This technique is based on the sliding
window algorithm proposed by Ziv and Lempel, also known as LZ77 (Ziv and Lempel, 1977).
According to this universal data compression technique, a sub-sequence is encoded using a
reference to an identical sub-sequence that occurred in the past. Biocompress uses a charac-
teristic usually found in DNA sequences which is the occurrence of inverted repeats. These
are sub-sequences that are both reversed and complemented (A ↔ T, C ↔ G). The second
version of Biocompress, Biocompress-2, introduced an additional mode of operation, based on
an order-2 finite-context arithmetic encoder (Grumbach and Tahi, 1994).
Rivals et al. (1995; 1996) proposed another compression technique based on exact repetitions,
Cfact, which relies on a two-pass strategy. In the first pass, the complete sequence is parsed
using a suffix tree, producing a list of the longest repeating sub-sequences that have a potential

coding gain. In the second pass, those sub-sequences are encoded using references to the past,
whereas the rest of the symbols are left uncompressed.
The idea of using repeating sub-sequences was also exploited by Chen et al. (1999; 2001).
The authors proposed a generalization of this strategy such that approximate repeats of sub-
sequences and of inverted repeats could also be handled. In order to reproduce the original
sequence, the algorithm, named GenCompress, uses operations such as replacements, inser-
tions and deletions. As in Biocompress, GenCompress includes a mechanism for deciding if it is
worthwhile to encode the sub-sequence under evaluation using the substitution-based model.
If not, it falls back to a mode of operation based on an order-2 finite-context arithmetic encoder.
A further modification of GenCompress led to a two-pass algorithm, DNACompress, relying on
a separated tool for approximate repeat searching, PatternHunter, (Chen et al., 2002). Besides
providing additional compression gains, DNACompress is considerably faster than GenCom-
press.
Before the publication of DNACompress, a technique based on context tree weighting (CTW)
and LZ-based compression, CTW+LZ, was proposed by Matsumoto et al. (2000). Basically,
long repeating sub-sequences or inverted repeats, exact or approximate, are encoded by a
LZ-type algorithm, whereas short sub-sequences are compressed using CTW.
One of the main problems of techniques based on sub-sequence matching is the time taken by
the search operation. Manzini and Rastero (2004) addressed this problem and proposed a fast,
although competitive, DNA encoder, based on fingerprints. Basically, in this approach small
sub-sequences are not considered for matching. Instead, the algorithm focus on finding long
matching sub-sequences (or inverted repeats). Like most of the other methods, this technique
also uses fall back mechanisms for the regions where matching fails, in this case, finite-context
arithmetic coding of order-2 (DNA2) or order-3 (DNA3).
Tabus et al. (2003) proposed a sophisticated DNA sequence compression method based on
normalized maximum likelihood discrete regression for approximate block matching. This
work, later improved for compression performance and speed (Korodi and Tabus (2005),
GeNML), encodes fixed-size blocks by referencing a previously encoded sub-sequence with
minimum Hamming distance. Only replacement operations are allowed for editing the ref-
erence sub-sequence which, therefore, always have the same size as the block, although may
be located in an arbitrary position inside the already encoded sequence. Fall back modes of
operation are also considered, namely, a finite-context arithmetic encoder of order-1 and a
transparent mode in which the block passes uncompressed.
Behzadi and Le Fessant (2005) proposed the DNAPack algorithm, which uses the Hamming
distance (i.e., it relies only on substitutions) for the repeats and inverted repeats, and either
CTW or order-2 arithmetic coding for non-repeating regions. Moreover, DNAPack uses dy-
namic programming techniques for choosing the repeats, instead of greedy approaches as
others do.
More recently, two other methods have been proposed (Cao et al., 2007; Korodi and Tabus,
2007). One of them (Korodi and Tabus, 2007), is an evolution of the normalized maximum
likelihood model introduced by Tabus et al. (2003) and improved by Korodi and Tabus (2005).
This new version, NML-1, is built on the GeNML framework and aims at finding the best
regressor block using first-order dependencies (these dependencies were not considered in
the previous approach).
The other method, proposed by Cao et al. (2007) and called XM, relies on a mixture of ex-
perts for providing symbol by symbol probability estimates which are then used for driv-
ing an arithmetic encoder. The algorithm comprises three types of experts: (1) order-2
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Tabus (2005); Manzini and Rastero (2004); Matsumoto et al. (2000)), could also be successfully
integrated in finite-context models. Inverted repeats are copies of DNA sub-sequences that
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order finite-context model for the high entropy regions and a Lempel-Ziv dictionary based
approach for the repetitive, low entropy regions. In this work, we rely only on finite-context
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compression approaches that mix purely statistical (for example, finite-context models) with
substitutional models (such as Lempel-Ziv based algorithms): (1) finite-context models lead
to much faster performance, a characteristic of paramount importance for long sequences (for
example, some human chromosomes have more than 200 million bases); (2) the overall model
might be easier to interpret, because it is made of sub-models of the same type.
This chapter is organized as follows. In Section 2 we provide an overview of the DNA com-
pression methods that have been proposed. Section 3 describes the finite-context models used
in this work. These models collect the statistical information needed by the arithmetic cod-
ing. In Section 4 we provide some experimental results. Finally, in Section 5 we draw some
conclusions.

2. DNA compression methods

The interest in DNA coding has been growing with the increasing availability of extensive
genomic databases. Although only two bits are sufficient to encode the four DNA bases,
efficient lossless compression methods are still needed due to the large size of DNA sequences
and because standard compression algorithms do not perform well on DNA sequences. As a
result, several specific coding methods have been proposed. Most of these methods are based
on searching procedures for finding exact or approximate repeats.
The first method designed specifically for compressing DNA sequences was proposed by
Grumbach and Tahi (1993) and was named Biocompress. This technique is based on the sliding
window algorithm proposed by Ziv and Lempel, also known as LZ77 (Ziv and Lempel, 1977).
According to this universal data compression technique, a sub-sequence is encoded using a
reference to an identical sub-sequence that occurred in the past. Biocompress uses a charac-
teristic usually found in DNA sequences which is the occurrence of inverted repeats. These
are sub-sequences that are both reversed and complemented (A ↔ T, C ↔ G). The second
version of Biocompress, Biocompress-2, introduced an additional mode of operation, based on
an order-2 finite-context arithmetic encoder (Grumbach and Tahi, 1994).
Rivals et al. (1995; 1996) proposed another compression technique based on exact repetitions,
Cfact, which relies on a two-pass strategy. In the first pass, the complete sequence is parsed
using a suffix tree, producing a list of the longest repeating sub-sequences that have a potential

coding gain. In the second pass, those sub-sequences are encoded using references to the past,
whereas the rest of the symbols are left uncompressed.
The idea of using repeating sub-sequences was also exploited by Chen et al. (1999; 2001).
The authors proposed a generalization of this strategy such that approximate repeats of sub-
sequences and of inverted repeats could also be handled. In order to reproduce the original
sequence, the algorithm, named GenCompress, uses operations such as replacements, inser-
tions and deletions. As in Biocompress, GenCompress includes a mechanism for deciding if it is
worthwhile to encode the sub-sequence under evaluation using the substitution-based model.
If not, it falls back to a mode of operation based on an order-2 finite-context arithmetic encoder.
A further modification of GenCompress led to a two-pass algorithm, DNACompress, relying on
a separated tool for approximate repeat searching, PatternHunter, (Chen et al., 2002). Besides
providing additional compression gains, DNACompress is considerably faster than GenCom-
press.
Before the publication of DNACompress, a technique based on context tree weighting (CTW)
and LZ-based compression, CTW+LZ, was proposed by Matsumoto et al. (2000). Basically,
long repeating sub-sequences or inverted repeats, exact or approximate, are encoded by a
LZ-type algorithm, whereas short sub-sequences are compressed using CTW.
One of the main problems of techniques based on sub-sequence matching is the time taken by
the search operation. Manzini and Rastero (2004) addressed this problem and proposed a fast,
although competitive, DNA encoder, based on fingerprints. Basically, in this approach small
sub-sequences are not considered for matching. Instead, the algorithm focus on finding long
matching sub-sequences (or inverted repeats). Like most of the other methods, this technique
also uses fall back mechanisms for the regions where matching fails, in this case, finite-context
arithmetic coding of order-2 (DNA2) or order-3 (DNA3).
Tabus et al. (2003) proposed a sophisticated DNA sequence compression method based on
normalized maximum likelihood discrete regression for approximate block matching. This
work, later improved for compression performance and speed (Korodi and Tabus (2005),
GeNML), encodes fixed-size blocks by referencing a previously encoded sub-sequence with
minimum Hamming distance. Only replacement operations are allowed for editing the ref-
erence sub-sequence which, therefore, always have the same size as the block, although may
be located in an arbitrary position inside the already encoded sequence. Fall back modes of
operation are also considered, namely, a finite-context arithmetic encoder of order-1 and a
transparent mode in which the block passes uncompressed.
Behzadi and Le Fessant (2005) proposed the DNAPack algorithm, which uses the Hamming
distance (i.e., it relies only on substitutions) for the repeats and inverted repeats, and either
CTW or order-2 arithmetic coding for non-repeating regions. Moreover, DNAPack uses dy-
namic programming techniques for choosing the repeats, instead of greedy approaches as
others do.
More recently, two other methods have been proposed (Cao et al., 2007; Korodi and Tabus,
2007). One of them (Korodi and Tabus, 2007), is an evolution of the normalized maximum
likelihood model introduced by Tabus et al. (2003) and improved by Korodi and Tabus (2005).
This new version, NML-1, is built on the GeNML framework and aims at finding the best
regressor block using first-order dependencies (these dependencies were not considered in
the previous approach).
The other method, proposed by Cao et al. (2007) and called XM, relies on a mixture of ex-
perts for providing symbol by symbol probability estimates which are then used for driv-
ing an arithmetic encoder. The algorithm comprises three types of experts: (1) order-2
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Markov models; (2) order-1 context Markov models, i.e., Markov models that use statis-
tical information only of a recent past (typically, the 512 previous symbols); (3) the copy
expert, that considers the next symbol as part of a copied region from a particular off-
set. The probability estimates provided by the set of experts are them combined using
Bayesian averaging and sent to the arithmetic encoder. Currently, this seems to be the method
that provides the highest compression on the April 14, 2003 release of the human genome
(see results in ftp://ftp.infotech.monash.edu.au/software/DNAcompress-XM/
XMCompress/humanGenome.html). However, both NML-1 and XM are computationally
intensive techniques.

3. Finite-context models

Consider an information source that generates symbols, s, from an alphabet A. At time t, the
sequence of outcomes generated by the source is xt = x1x2 . . . xt. A finite-context model of
an information source (see Fig. 1) assigns probability estimates to the symbols of the alphabet,
according to a conditioning context computed over a finite and fixed number, M, of past
outcomes (order-M finite-context model) (Bell et al., 1990; Salomon, 2007; Sayood, 2006). At
time t, we represent these conditioning outcomes by ct = xt−M+1, . . . , xt−1, xt. The number of
conditioning states of the model is |A|M, dictating the model complexity or cost. In the case
of DNA, since |A| = 4, an order-M model implies 4M conditioning states.

G G

symbol
Input

Encoder
Output

 bit−stream 

CAGAT... AA C T ...

FCM

xt−4 xt+1

P (xt+1 = s|ct)

ct

Fig. 1. Finite-context model: the probability of the next outcome, xt+1, is conditioned by the
M last outcomes. In this example, M = 5.

In practice, the probability that the next outcome, xt+1, is s, where s ∈ A = {A, C, G, T}, is
obtained using the Lidstone estimator (Lidstone, 1920)

P(xt+1 = s|ct) =
nt

s + δ

∑
a∈A

nt
a + 4δ

, (1)

where nt
s represents the number of times that, in the past, the information source generated

symbol s having ct as the conditioning context. The parameter δ controls how much probabil-
ity is assigned to unseen (but possible) events, and plays a key role in the case of high-order

Context, ct nt
A nt

C nt
G nt

T ∑
a∈A

nt
a

AAAAA 23 41 3 12 79
...

...
...

...
...

...
ATAGA 16 6 21 15 58

...
...

...
...

...
...

GTCTA 19 30 10 4 63
...

...
...

...
...

...
TTTTT 8 2 18 11 39

Table 1. Simple example illustrating how finite-context models are implemented. The rows
of the table represent probability models at a given instant t. In this example, the particular
model that is chosen for encoding a symbol depends on the last five encoded symbols (order-5
context).

models.1 Note that Lidstone’s estimator reduces to Laplace’s estimator for δ = 1 (Laplace,
1814) and to the frequently used Jeffreys (1946) / Krichevsky and Trofimov (1981) estimator
when δ = 1/2. In our work, we found out experimentally that the probability estimates cal-
culated for the higher-order models lead to better compression results when smaller values of
δ are used.
Note that, initially, when all counters are zero, the symbols have probability 1/4, i.e., they are
assumed equally probable. The counters are updated each time a symbol is encoded. Since
the context template is causal, the decoder is able to reproduce the same probability estimates
without needing additional information.
Table 1 shows an example of how a finite-context model is typically implemented. In this
example, an order-5 finite-context model is presented (as that of Fig. 1). Each row represents a
probability model that is used to encode a given symbol according to the last encoded symbols
(five in this example). Therefore, if the last symbols were “ATAGA”, i.e., ct = ATAGA, then
the model communicates the following probability estimates to the arithmetic encoder:

P(A|ATAGA) = (16 + δ)/(58 + 4δ),

P(C|ATAGA) = (6 + δ)/(58 + 4δ),
P(G|ATAGA) = (21 + δ)/(58 + 4δ)

and
P(T|ATAGA) = (15 + δ)/(58 + 4δ).

The block denoted “Encoder” in Fig. 1 is an arithmetic encoder. It is well known that practical
arithmetic coding generates output bit-streams with average bitrates almost identical to the
entropy of the model (Bell et al., 1990; Salomon, 2007; Sayood, 2006). The theoretical bitrate
average (entropy) of the finite-context model after encoding N symbols is given by

HN = − 1
N

N−1

∑
t=0

log2 P(xt+1 = s|ct) bps, (2)

1 When M is large, the number of conditioning states, 4M , is high, which implies that statistics have to be
estimated using only a few observations.
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Markov models; (2) order-1 context Markov models, i.e., Markov models that use statis-
tical information only of a recent past (typically, the 512 previous symbols); (3) the copy
expert, that considers the next symbol as part of a copied region from a particular off-
set. The probability estimates provided by the set of experts are them combined using
Bayesian averaging and sent to the arithmetic encoder. Currently, this seems to be the method
that provides the highest compression on the April 14, 2003 release of the human genome
(see results in ftp://ftp.infotech.monash.edu.au/software/DNAcompress-XM/
XMCompress/humanGenome.html). However, both NML-1 and XM are computationally
intensive techniques.

3. Finite-context models

Consider an information source that generates symbols, s, from an alphabet A. At time t, the
sequence of outcomes generated by the source is xt = x1x2 . . . xt. A finite-context model of
an information source (see Fig. 1) assigns probability estimates to the symbols of the alphabet,
according to a conditioning context computed over a finite and fixed number, M, of past
outcomes (order-M finite-context model) (Bell et al., 1990; Salomon, 2007; Sayood, 2006). At
time t, we represent these conditioning outcomes by ct = xt−M+1, . . . , xt−1, xt. The number of
conditioning states of the model is |A|M, dictating the model complexity or cost. In the case
of DNA, since |A| = 4, an order-M model implies 4M conditioning states.
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Fig. 1. Finite-context model: the probability of the next outcome, xt+1, is conditioned by the
M last outcomes. In this example, M = 5.
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assumed equally probable. The counters are updated each time a symbol is encoded. Since
the context template is causal, the decoder is able to reproduce the same probability estimates
without needing additional information.
Table 1 shows an example of how a finite-context model is typically implemented. In this
example, an order-5 finite-context model is presented (as that of Fig. 1). Each row represents a
probability model that is used to encode a given symbol according to the last encoded symbols
(five in this example). Therefore, if the last symbols were “ATAGA”, i.e., ct = ATAGA, then
the model communicates the following probability estimates to the arithmetic encoder:
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and
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arithmetic coding generates output bit-streams with average bitrates almost identical to the
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Table 2. Table 1 updated after encoding symbol “C”, according to context “ATAGA”.

where “bps” stands for “bits per symbol”. When dealing with DNA bases, the generic
acronym “bps” is sometimes replaced with “bpb”, which stands for “bits per base”. Recall
that the entropy of any sequence of four symbols is, at most, two bps, a value that is achieved
when the symbols are independent and equally likely.
Referring to the example of Table 1, and supposing that the next symbol to encode is “C”,
it would require, theoretically, − log2((6 + δ)/(58 + 4δ)) bits to encode it. For δ = 1, this is
approximately 3.15 bits. Note that this is more than two bits because, in this example, “C”
is the least probable symbol and, therefore, needs more bits to be encoded than the more
probable ones. After encoding this symbol, the counters will be updated according to Table 2.

3.1 Inverted repeats
As previously mentioned, DNA sequences frequently contain sub-sequences that are reversed
and complemented copies of some other sub-sequences. These sub-sequences are named “in-
verted repeats”. As described in Section 2, this characteristic of DNA is used by most of the
DNA compression methods that rely on the sliding window searching paradigm.
For exploring the inverted repeats of a DNA sequence, besides updating the corresponding
counter after encoding a symbol, we also update another counter that we determine in the
following way. Consider the example given in Fig. 1, where the context is the string “ATAGA”
and the symbol to encode is “C”. Reversing the string obtained by concatenating the context
string and the symbol, i.e., “ATAGAC”, we obtain the string “CAGATA”. Complementing
this string (A ↔ T, C ↔ G), we get “GTCTAT”. Now we consider the prefix “GTCTA” as the
context and the suffix “T” as the symbol that determines which counter should be updated.
Therefore, according to this procedure, for taking into consideration the inverted repeats, after
encoding symbol “C” of the example in Fig. 1, the counters should be updated according to
Table 3.

3.2 Competing finite-context models
Because DNA data are non-stationary, alternating between regions of low and high entropy,
using two models with different orders allows a better handling both of DNA regions that are
best represented by low-order models and regions where higher-order models are advanta-
geous. Although both models are continuously been updated, only the best one is used for
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Table 3. Table 1 updated after encoding symbol “C” according to context “ATAGA” (see
example of Fig. 1) and taking the inverted repeats property into account.

encoding a given region. To cope with this characteristic, we proposed a DNA lossless com-
pression method that is based on two finite-context models of different orders that compete
for encoding the data (see Fig. 2).
For convenience, the DNA sequence is partitioned into non-overlapping blocks of fixed size
(we have used one hundred DNA bases), which are then encoded by one (the best one)
of the two competing finite-context models. This requires only the addition of a single bit
per data block to the bit-stream in order to inform the decoder of which of the two finite-
context models was used. Each model collects statistical information from a context of
depth Mi, i = 1, 2, M1 �= M2. At time t, we represent the two conditioning outcomes by
ct

1 = xt−M1+1, . . . , xt−1, xt and by ct
2 = xt−M2+1, . . . , xt−1, xt.

G
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Fig. 2. Proposed model for estimating the probabilities: the probability of the next outcome,
xt+1, is conditioned by the M1 or M2 last outcomes, depending on the finite-context model
chosen for encoding that particular DNA block. In this example, M1 = 5 and M2 = 11.
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is the least probable symbol and, therefore, needs more bits to be encoded than the more
probable ones. After encoding this symbol, the counters will be updated according to Table 2.
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and complemented copies of some other sub-sequences. These sub-sequences are named “in-
verted repeats”. As described in Section 2, this characteristic of DNA is used by most of the
DNA compression methods that rely on the sliding window searching paradigm.
For exploring the inverted repeats of a DNA sequence, besides updating the corresponding
counter after encoding a symbol, we also update another counter that we determine in the
following way. Consider the example given in Fig. 1, where the context is the string “ATAGA”
and the symbol to encode is “C”. Reversing the string obtained by concatenating the context
string and the symbol, i.e., “ATAGAC”, we obtain the string “CAGATA”. Complementing
this string (A ↔ T, C ↔ G), we get “GTCTAT”. Now we consider the prefix “GTCTA” as the
context and the suffix “T” as the symbol that determines which counter should be updated.
Therefore, according to this procedure, for taking into consideration the inverted repeats, after
encoding symbol “C” of the example in Fig. 1, the counters should be updated according to
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3.2 Competing finite-context models
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best represented by low-order models and regions where higher-order models are advanta-
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encoding a given region. To cope with this characteristic, we proposed a DNA lossless com-
pression method that is based on two finite-context models of different orders that compete
for encoding the data (see Fig. 2).
For convenience, the DNA sequence is partitioned into non-overlapping blocks of fixed size
(we have used one hundred DNA bases), which are then encoded by one (the best one)
of the two competing finite-context models. This requires only the addition of a single bit
per data block to the bit-stream in order to inform the decoder of which of the two finite-
context models was used. Each model collects statistical information from a context of
depth Mi, i = 1, 2, M1 �= M2. At time t, we represent the two conditioning outcomes by
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chosen for encoding that particular DNA block. In this example, M1 = 5 and M2 = 11.
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Using higher-order context models leads to a practical problem: the memory needed to repre-
sent all of the possible combinations of the symbols related to the context might be too large. In
fact, as we mentioned, each DNA model of order-M implies 4M different states of the Markov
chain. Because each of these states needs to collect statistical data that is necessary to the en-
coding process, a large amount of memory might be required as the model order grows. For
example, an order-16 model might imply a total of 4 294 967 296 different states.

GCAGATA C T ...... G T G A G CT A
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symbol
Input

Hash
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Hash table

xt−10 xt+1

P (xt+1 = s|ct2)

ct2

Fig. 3. The context model using hash tables. The hash table representation is shown in Fig. 4.

In order to overcome this problem, we implemented the higher-order context models using
hash tables. With this solution, we only need to create counters if the context formed by the
M last symbols appears at least once. In practice, for very high-order contexts, we are limited
by the length of the sequence. In the current implementation we are able to use models of
orders up to 32. However, as we will present later, the best value of M for the higher-order
models is 16. This can be explained by the well known problem of context dilution. Moreover,
for higher-order models, a large number of contexts occur only once and, therefore, the model
cannot take advantage of them.
For each symbol, a key is generated according to the context formed by the previous symbols
(see Fig. 3). For that key, the related linked-list if traversed and, if the node containing the
context exists, its statistical information is used to encode the current symbol. If the context
never appeared before, a new node is created and the symbol is encoded using an uniform
probability distribution. A graphical representation of the hash table is presented in Fig. 4.
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Fig. 4. Graphical representation of the hash table used to represent higher-order models. Each
node stores the information of the context found (Context) and the counters associated to
that context (Counters), four in the case of DNA sequences.

4. Experimental results

For the evaluation of the methods described in the previous section, we used the same DNA
sequences used by Manzini and Rastero (2004), which are available from www.mfn.unipmn.
it/~manzini/dnacorpus. This corpus contains sequences from four organisms: yeast (Sac-
charomyces cerevisiae, chromosomes 1, 4, 14 and the mitochondrial DNA), mouse (Mus muscu-
lus, chromosomes 7, 11, 19, x and y), arabidopsis (Arabidopsis thaliana, chromosomes 1, 3 and
4) and human (Homo sapiens, chromosomes 2, 13, 22, x and y).
First, we present results that show the effectiveness of the proposed inverted repeats updating
mechanism for finite-context modeling. Next, we show the advantages of using multiple (in
this case, two) competing finite-context models for compression.

4.1 Inverted repeats
Regarding the inverted repeats updating mechanism, each of the sequences was encoded us-
ing finite-context models with orders ranging from four to thirteen, with and without the
inverted repeats updating mechanism. As in most of the other DNA encoding techniques,
we also provided a fall back method that is used if the main method produces worse results.
This is checked on a block by block basis, where each block is composed of one hundred DNA
bases. As in the DNA3 version of Manzini’s encoder, we used an order-3 finite-context model
as fall back method (Manzini and Rastero, 2004). Note that, in our case, both the main and fall
back methods rely on finite-context models.
Table 4 presents the results of compressing the DNA sequences with the “normal” finite-
context model (FCM) and with the model that takes into account the inverted repeats (FCM-
IR). The bitrate and the order of the model that provided the best results are indicated. For
comparison, we also included the results of the DNA3 compressor of Manzini and Rastero
(2004).
As can be seen from the results presented in Table 4, the bitrates obtained with the finite-
context models using the updating mechanism for inverted repeats (FCM-IR) are always bet-
ter than those obtained with the “normal” finite-context models (FCM). This confirms that the
finite-context models can be modified according to the proposed scheme to exploit inverted
repeats. Figure 5 shows how the finite-context models perform for various model orders, from
order-4 to order-13, for the case of the “y-1” and “h-y” sequences.

4.2 Competing finite-context models
Each of the DNA sequences used by Manzini was encoded using two competing finite-context
models with orders M1, M2, 3 ≤ M1 ≤ 8 and 9 ≤ M2 ≤ 18. For each DNA sequence, the pair
M1, M2 leading to the lowest bitrate was chosen. The inverted repeats updating mechanism
was used, as well as δ = 1 for the lower-order model and δ = 1/30 for the higher-order model.
All information needed for correct decoding is included in the bit-stream and, therefore, the
compression results presented in Table 5 take into account that information. The columns
of Table 5 labeled “M1” and “M2” represent the orders of the used models and the columns
labeled with the percent sign show the percentage of use of each finite-context model.
As can be seen from the results presented in Table 5, the method using two competing finite-
context models always provides better results than the DNA3 compressor. This confirms that
the finite-context models may be successfully used as the only coding method for DNA se-
quences. Although we do not include here a comprehensive study of the impact of the δ
parameter in the performance of the method, nevertheless we show an example to illustrate
its influence on the compression results of the finite-context models. For example, using δ = 1
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Using higher-order context models leads to a practical problem: the memory needed to repre-
sent all of the possible combinations of the symbols related to the context might be too large. In
fact, as we mentioned, each DNA model of order-M implies 4M different states of the Markov
chain. Because each of these states needs to collect statistical data that is necessary to the en-
coding process, a large amount of memory might be required as the model order grows. For
example, an order-16 model might imply a total of 4 294 967 296 different states.
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For the evaluation of the methods described in the previous section, we used the same DNA
sequences used by Manzini and Rastero (2004), which are available from www.mfn.unipmn.
it/~manzini/dnacorpus. This corpus contains sequences from four organisms: yeast (Sac-
charomyces cerevisiae, chromosomes 1, 4, 14 and the mitochondrial DNA), mouse (Mus muscu-
lus, chromosomes 7, 11, 19, x and y), arabidopsis (Arabidopsis thaliana, chromosomes 1, 3 and
4) and human (Homo sapiens, chromosomes 2, 13, 22, x and y).
First, we present results that show the effectiveness of the proposed inverted repeats updating
mechanism for finite-context modeling. Next, we show the advantages of using multiple (in
this case, two) competing finite-context models for compression.

4.1 Inverted repeats
Regarding the inverted repeats updating mechanism, each of the sequences was encoded us-
ing finite-context models with orders ranging from four to thirteen, with and without the
inverted repeats updating mechanism. As in most of the other DNA encoding techniques,
we also provided a fall back method that is used if the main method produces worse results.
This is checked on a block by block basis, where each block is composed of one hundred DNA
bases. As in the DNA3 version of Manzini’s encoder, we used an order-3 finite-context model
as fall back method (Manzini and Rastero, 2004). Note that, in our case, both the main and fall
back methods rely on finite-context models.
Table 4 presents the results of compressing the DNA sequences with the “normal” finite-
context model (FCM) and with the model that takes into account the inverted repeats (FCM-
IR). The bitrate and the order of the model that provided the best results are indicated. For
comparison, we also included the results of the DNA3 compressor of Manzini and Rastero
(2004).
As can be seen from the results presented in Table 4, the bitrates obtained with the finite-
context models using the updating mechanism for inverted repeats (FCM-IR) are always bet-
ter than those obtained with the “normal” finite-context models (FCM). This confirms that the
finite-context models can be modified according to the proposed scheme to exploit inverted
repeats. Figure 5 shows how the finite-context models perform for various model orders, from
order-4 to order-13, for the case of the “y-1” and “h-y” sequences.

4.2 Competing finite-context models
Each of the DNA sequences used by Manzini was encoded using two competing finite-context
models with orders M1, M2, 3 ≤ M1 ≤ 8 and 9 ≤ M2 ≤ 18. For each DNA sequence, the pair
M1, M2 leading to the lowest bitrate was chosen. The inverted repeats updating mechanism
was used, as well as δ = 1 for the lower-order model and δ = 1/30 for the higher-order model.
All information needed for correct decoding is included in the bit-stream and, therefore, the
compression results presented in Table 5 take into account that information. The columns
of Table 5 labeled “M1” and “M2” represent the orders of the used models and the columns
labeled with the percent sign show the percentage of use of each finite-context model.
As can be seen from the results presented in Table 5, the method using two competing finite-
context models always provides better results than the DNA3 compressor. This confirms that
the finite-context models may be successfully used as the only coding method for DNA se-
quences. Although we do not include here a comprehensive study of the impact of the δ
parameter in the performance of the method, nevertheless we show an example to illustrate
its influence on the compression results of the finite-context models. For example, using δ = 1



Signal	Processing126

Name Size DNA3 FCM FCM-IR
bpb Order bpb Order bpb

y-1 230 203 1.871 10 1.935 11 1.909
y-4 1 531 929 1.881 12 1.920 12 1.910
y-14 784 328 1.926 9 1.945 12 1.938
y-mit 85 779 1.523 6 1.494 7 1.479
Average – 1.882 – 1.915 – 1.904

m-7 5 114 647 1.835 11 1.849 12 1.835
m-11 49 909 125 1.790 13 1.794 13 1.778
m-19 703 729 1.888 10 1.883 10 1.873
m-x 17 430 763 1.703 12 1.715 13 1.692
m-y 711 108 1.707 10 1.794 11 1.741
Average – 1.772 – 1.780 – 1.762

at-1 29 830 437 1.844 13 1.887 13 1.878
at-3 23 465 336 1.843 13 1.884 13 1.873
at-4 17 550 033 1.851 13 1.887 13 1.878
Average – 1.845 – 1.886 – 1.876

h-2 236 268 154 1.790 13 1.748 13 1.734
h-13 95 206 001 1.818 13 1.773 13 1.759
h-22 33 821 688 1.767 12 1.728 12 1.710
h-x 144 793 946 1.732 13 1.689 13 1.666
h-y 22 668 225 1.411 13 1.676 13 1.579
Average – 1.762 – 1.732 – 1.712

Table 4. Compression values, in bits per base (bpb), for several DNA sequences. The “DNA3”
column shows the results obtained by Manzini and Rastero (2004). Columns “FCM” and
“FCM-IR” contain the results, respectively, of the “normal” finite-context models and of the
finite-context models equipped with the inverted repeats updating mechanism. The order of
the model that provided the best result is indicated under the columns labeled “Order”.

for both models would lead to bitrates of 1.869, 1.865 and 1.872, respectively for the “at-1”,
“at-3” and “at-4” sequences, i.e., approximately 2% worse than when using δ = 1/30 for the
higher-order model.
Finally, it is interesting to note that the lower-order model is generally the one that is most
frequently used along the sequence and also the one associated with the highest bitrates. In
fact, the bitrates provided by the higher-order finite-context models suggest that these are
chosen in regions where the entropy is low, whereas the lower-order models operate in the
higher entropy regions.

5. Conclusion

Finite-context models have been used by most DNA compression algorithms as a secondary,
fall back method. In this work, we have studied the potential of this statistical modeling
paradigm as the main and only approach for DNA compression. Several aspects have been
addressed, such as the inclusion of mechanisms for handling inverted repeats and the use
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Fig. 5. Performance of the finite-context model as a function of the order of the model, with
and without the updating mechanism for inverted repeats (IR), for sequences “y-1” and “h-y”.

of multiple finite-context models that compete for encoding the data. This study allowed us
to conclude that DNA models relying only on Markovian principles can provide significant
results, although not as expressive as those provided by methods such as MNL-1 or XM. Nev-
ertheless, the experimental results show that the proposed approach can outperform methods
of similar computational complexity, such as the DNA3 coding method (Manzini and Rastero,
2004).
One of the key advantages of DNA compression based on finite-context models is that the
encoders are fast and have O(n) time complexity. In fact, most of the computing time needed
by previous DNA compressors is spent on the task of finding exact or approximate repeats
of sub-sequences or of their inverted complements. No doubt, this approach has proved to
give good returns in terms of compression gains, but normally at the cost of long compression
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Name Size DNA3 FCM FCM-IR
bpb Order bpb Order bpb

y-1 230 203 1.871 10 1.935 11 1.909
y-4 1 531 929 1.881 12 1.920 12 1.910
y-14 784 328 1.926 9 1.945 12 1.938
y-mit 85 779 1.523 6 1.494 7 1.479
Average – 1.882 – 1.915 – 1.904

m-7 5 114 647 1.835 11 1.849 12 1.835
m-11 49 909 125 1.790 13 1.794 13 1.778
m-19 703 729 1.888 10 1.883 10 1.873
m-x 17 430 763 1.703 12 1.715 13 1.692
m-y 711 108 1.707 10 1.794 11 1.741
Average – 1.772 – 1.780 – 1.762

at-1 29 830 437 1.844 13 1.887 13 1.878
at-3 23 465 336 1.843 13 1.884 13 1.873
at-4 17 550 033 1.851 13 1.887 13 1.878
Average – 1.845 – 1.886 – 1.876

h-2 236 268 154 1.790 13 1.748 13 1.734
h-13 95 206 001 1.818 13 1.773 13 1.759
h-22 33 821 688 1.767 12 1.728 12 1.710
h-x 144 793 946 1.732 13 1.689 13 1.666
h-y 22 668 225 1.411 13 1.676 13 1.579
Average – 1.762 – 1.732 – 1.712

Table 4. Compression values, in bits per base (bpb), for several DNA sequences. The “DNA3”
column shows the results obtained by Manzini and Rastero (2004). Columns “FCM” and
“FCM-IR” contain the results, respectively, of the “normal” finite-context models and of the
finite-context models equipped with the inverted repeats updating mechanism. The order of
the model that provided the best result is indicated under the columns labeled “Order”.

for both models would lead to bitrates of 1.869, 1.865 and 1.872, respectively for the “at-1”,
“at-3” and “at-4” sequences, i.e., approximately 2% worse than when using δ = 1/30 for the
higher-order model.
Finally, it is interesting to note that the lower-order model is generally the one that is most
frequently used along the sequence and also the one associated with the highest bitrates. In
fact, the bitrates provided by the higher-order finite-context models suggest that these are
chosen in regions where the entropy is low, whereas the lower-order models operate in the
higher entropy regions.

5. Conclusion

Finite-context models have been used by most DNA compression algorithms as a secondary,
fall back method. In this work, we have studied the potential of this statistical modeling
paradigm as the main and only approach for DNA compression. Several aspects have been
addressed, such as the inclusion of mechanisms for handling inverted repeats and the use
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of multiple finite-context models that compete for encoding the data. This study allowed us
to conclude that DNA models relying only on Markovian principles can provide significant
results, although not as expressive as those provided by methods such as MNL-1 or XM. Nev-
ertheless, the experimental results show that the proposed approach can outperform methods
of similar computational complexity, such as the DNA3 coding method (Manzini and Rastero,
2004).
One of the key advantages of DNA compression based on finite-context models is that the
encoders are fast and have O(n) time complexity. In fact, most of the computing time needed
by previous DNA compressors is spent on the task of finding exact or approximate repeats
of sub-sequences or of their inverted complements. No doubt, this approach has proved to
give good returns in terms of compression gains, but normally at the cost of long compression
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Name Size DNA3 FCM1 FCM2 FCM
bps M1 % bps M2 % bps bps

y-1 230 203 1.871 3 82 1.939 12 18 1.462 1.860
y-4 1 531 929 1.881 4 88 1.930 14 12 1.470 1.879
y-14 784 328 1.926 3 90 1.938 13 10 1.716 1.923
y-mit 85 779 1.523 5 83 1.533 9 17 1.178 1.484
Average – 1.882 – – 1.920 – – 1.533 1.877

m-7 5 114 647 1.835 6 81 1.907 14 19 1.353 1.811
m-11 49 909 125 1.790 4 76 1.917 16 24 1.230 1.758
m-19 703 729 1.888 4 83 1.920 13 17 1.582 1.870
m-x 17 430 763 1.703 6 70 1.896 15 30 1.081 1.656
m-y 711 108 1.707 3 66 1.896 13 34 1.199 1.670
Average – 1.772 – – 1.911 – – 1.206 1.738

at-1 29 830 437 1.844 6 82 1.898 16 18 1.475 1.831
at-3 23 465 336 1.843 6 80 1.901 16 20 1.495 1.826
at-4 17 550 033 1.851 6 80 1.897 15 20 1.560 1.838
Average – 1.845 – – 1.899 – – 1.503 1.831

h-2 236 268 154 1.790 4 76 1.905 16 24 1.212 1.755
h-13 95 206 001 1.818 5 80 1.895 15 20 1.279 1.723
h-22 33 821 688 1.767 3 68 1.925 15 32 1.180 1.696
h-x 144 793 946 1.732 5 66 1.901 16 34 1.217 1.686
h-y 22 668 225 1.411 4 47 1.901 16 53 0.941 1.397
Average – 1.762 – – 1.903 – – 1.212 1.711

Table 5. Compression values, in bits per symbol (bps), for several of DNA sequences. The
“DNA3” column shows the results obtained by Manzini and Rastero (2004). Column “FCM”
contains the results of the two combined finite-context models. The orders of the two models
that provided the best result for each sequence are indicated under the columns labeled “M1”
and ”M2”.

times. Although slow encoders could be tolerated for storage purposes (compression could
be ran in batch mode), for interactive applications such as those involving the computation
of complexity profiles (Dix et al., 2007) they are certainly not the most appropriate; faster
methods, such as those examined in this chapter, could be particularly useful in those cases.
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1. Introduction

Intensive streams of video sequences arise more and more frequently in monitoring the qual-
ity of production processes. Such streams not only have to be processed on-line, but also
stored in order to document production quality and to investigate possible causes of insuf-
ficient quality. Direct storage of a video stream, coming with the intensity 10-30 frames per
second with a resolution of 1-8 megapixels, from one production month would require 100-500
terra bytes of a disk (or tape) space. A common remedy is to apply compression algorithms
(like MPEG or H264), but compression algorithms usually introduce changes in gray-levels or
colors, which is undesirable from the point of view of identifying defects and their causes.
For these reasons we return to the traditional idea of sampling images, followed by loss-less
compression. However, classical sampling on a rectangular grid is insufficient for our pur-
poses, since it is still too demanding from the point of view of storage capacity. Our ex-
perience of using equidistributed (or quasirandom) sequences as experimental sites in non-
parametric regression function estimation Rafajłowicz and Schwabe (2003); Rafajłowicz and
Schwabe (2006); Rafajłowicz and Skubalska-Rafajłowicz (2003) suggests that such sequences
can be good candidates for sampling sites. Roughly speaking, the reason is in that the projec-
tion of a 100 × 100 rectangular grid on the axes has 100 points, while a typical equidistributed
sequence of the length 104 provides again 104 points when projected onto the same axes. The
idea of using equidistributed (EQD) sequences in sampling images was firstly described in
Thevenaz (2008), where it was used for image registration. Our goals are different and we
need more specialized sampling schemes than a "general purpose" Halton’s sequence, which
was used in Thevenaz (2008).
Our aim is to propose a new method of generating equidistributed sequences, which is based
on space-filling curves. Due to the remarkable properties of space-filling curves (SFC), which
preserve volumes and (to some extent) neighborhoods, the proposed sequences are well-
suited for sampling of images in such a way that samples can be processed similarly as an
original image. We concentrate mainly on 2D images here, but 3D images are also covered by
the theoretical properties. Simple reconstruction schemes, which are well-suited for industrial
images, are also briefly discussed. We also indicate ways of generating sampling sequences
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and reconstructing underlying images by neural networks, which are based on weighted av-
eraging of gray-levels of nearest neighbors.
Let us note that space-filling curves have been used in image processing for image compres-
sion Kamata et all (1996); Lempel and Ziv (1986); Schuster and Katsaggelos (1997); Skubal-
ska-Rafajłowicz (2001b), dithering Zhang (1998); Zhang (1997) halftoning Zhang and Webber
(1993) and median filtering Regazzoni and Teschioni (1997); Krzyżak (2001). However, the
measure and neighborhoods-preserving properties of these curves were not fully exploited.
The chapter is organized as follows.

1. In Section 2 we collect some known and certain not so well-known properties of space-
filling curves, including the Hilbert, the Peano and the Sierpiński curves. In addition to
measure-preserving properties, we provide an efficient algorithms for calculating ap-
proximations to selected space-filling curves. The definition and elementary properties
of equidistributed sequences are recalled at the end of Section 2 with the emphasis on
the Weyl sequences, which are used as the building block in the rest of the chapter.

2. The proposed way of generating equidistributed sequences is presented in Section 3. It
is based on transforming the Weyl one-dimensional sequence ti = f ractionalpart(i θ),
i = 1, 2, . . ., θ – irrational, by a space-filling curve. We shall prove that sequences gen-
erated in this way are also equidistributed. The choice of θ is crucial for the practical
behavior of the sampling scheme. Roughly speaking, θ should be an irrational number,
which approximates badly by rational numbers.

3. In Section 4 we discuss some properties of our equidistributed sequences as a sampling
scheme for 2D images.

• We shall prove that the spectrum of a wide class of images can be reconstructed
from samples when their number grows to infinity. By "wide class" we mean
measurable functions, which allow for discontinuities.

• We exploit the measure-preserving properties of space-filling curves in order to
show that moments of images can easily be approximated from samples.

• It will also be shown how simple image processing tasks can be performed, utiliz-
ing natural ordering of samples, which preserves neighbors in an image.

4. In section 5 we discuss two algorithms for the approximate reconstruction of the under-
lying image from samples. The first is based on the inversion of the spectrum estimate
and it can be used for one image. The second one is based on the nearest neighbor (NN)
technique, but it can be speeded up by preprocessing and storing (NN) addresses. This
technique is useless for one image, but it is valuable when one needs to store a very
long video sequence without degradation of pixel values, since NN addresses use only
a very small portion of storage memory, while we gain on the reconstruction speed.
The next reconstruction scheme, which is proposed here is based on neural networks of
the radial-basis functions (RBF) type. We shall also provide the examples of sampling,
processing and reconstructing industrial images.

2. Preliminaries

Our aim in this section is to collect known facts concerning space-filling curves and quasi-
random sequences, which are useful for explaining the proposed way of sampling.

2.1 Space-filling curves – basic facts
In the 19th and at the beginning of the 20th century, space-filling curves were developed and
investigated as mathematical "monsters", since they are continuous, but nowhere differen-
tiable.

2.1.1 Definition
From those pioneering times researches more frequently treat space-filling curves as useful
tools. The first applications were in approximate, multidimensional integration, see, e.g.,
Kuipers and Niederreiter (1974). The next area where they happened to be useful is scan-
ning images Lamarque and Robert (1996); Cohen et all (2007) and the bibliography cited
therein. Note that scanning images by a space-filling curve is the task, which is different
from our goals, since the curve is expected to visit all the pixels in an image. Thus, scan-
ning along a space-filling curve provides only linear ordering of pixels. Furthermore, in the
above-mentioned papers additional features of space-filling curves, such as their ability to
preserve closeness or area, were not used. Scanning images with utilization of some proper-
ties of space-filling curves for estimating the median was proposed in Krzyżak (2001). One
more area of applications was proposed in Skubalska-Rafajłowicz (2001a), where space-filling
curves were used as a tool in the Bayesian pattern recognition problems.

Definition 1. A space-filling curve is a continuous mapping Φ : I1
onto→ Id, where Id

de f
= [0, 1]d is

d-dimensional unit cube (or interval I1 = [0, 1]), d ≥ 1.

We cannot draw a space-filling curve, since it maps [0, 1] onto I2. Thus, the image of I1 by Φ

would be completely black in the unit square. However, we can draw an approximation to
such a curve, as is illustrated in Fig. 1.
It is important to mention that these curves can be approximated to the desired accuracy by
implementable algorithms (see below).
The well-known curves constructed by Hilbert, Peano and Sierpiński possess properties
Sagan (1994); Milne (1980); Moore (1900); Sierpiński (1912); Platzman and Bartholdi (1989);
Skubalska-Rafajłowicz (2001a), which are stated in the two next subsections. These properties
are stated for d = 2, but they holds for d > 2 with obvious changes.

2.1.2 Most important properties
The formula for changing variables in integrals, which is stated below, was used for con-
structing multidimensional quadratures. Here, we shall need it for approximating the Fourier
spectrum of images from samples.

Property 1 (F1 – Change of variables). Let Φ : I1
onto→ Id be a space-filling curve. Then, for every

measurable function g : I2 → R
∫

I2

g(x) dx =
∫ 1

0
g(Φ(t))dt, (1)

where x = [x(1), x(2)]T and T denotes the transposition and the integrals in (1) are understood in the
Lebesgue sense.

The Lipschitz continuity of the curves constructed by Hilbert, Sierpiński and Peano is some-
what more demanding property, than the continuity required in the above definition, but is
less than necessary for the first order differentiability.
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and reconstructing underlying images by neural networks, which are based on weighted av-
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measure-preserving properties, we provide an efficient algorithms for calculating ap-
proximations to selected space-filling curves. The definition and elementary properties
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d-dimensional unit cube (or interval I1 = [0, 1]), d ≥ 1.

We cannot draw a space-filling curve, since it maps [0, 1] onto I2. Thus, the image of I1 by Φ

would be completely black in the unit square. However, we can draw an approximation to
such a curve, as is illustrated in Fig. 1.
It is important to mention that these curves can be approximated to the desired accuracy by
implementable algorithms (see below).
The well-known curves constructed by Hilbert, Peano and Sierpiński possess properties
Sagan (1994); Milne (1980); Moore (1900); Sierpiński (1912); Platzman and Bartholdi (1989);
Skubalska-Rafajłowicz (2001a), which are stated in the two next subsections. These properties
are stated for d = 2, but they holds for d > 2 with obvious changes.

2.1.2 Most important properties
The formula for changing variables in integrals, which is stated below, was used for con-
structing multidimensional quadratures. Here, we shall need it for approximating the Fourier
spectrum of images from samples.

Property 1 (F1 – Change of variables). Let Φ : I1
onto→ Id be a space-filling curve. Then, for every

measurable function g : I2 → R
∫

I2

g(x) dx =
∫ 1

0
g(Φ(t))dt, (1)

where x = [x(1), x(2)]T and T denotes the transposition and the integrals in (1) are understood in the
Lebesgue sense.

The Lipschitz continuity of the curves constructed by Hilbert, Sierpiński and Peano is some-
what more demanding property, than the continuity required in the above definition, but is
less than necessary for the first order differentiability.
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Fig. 1. An approximation to the Sierpiński SFC.

Property 2 (F2 – Lipschitz continuity). There exists CΦ > 0 such that

||Φ(t)− Φ(t′)|| ≤ CΦ|t − t′ |1/2, (2)

where ||.|| is the Euclidean norm in R2.

The Lipschitz continuity (2) is stated above for a 2D case and it reads intuitively as a distance
preserving property in the sense that points close to each other in the interval are transformed
by Φ onto points close together in I2, but the converse is not necessarily true, since curve Φ(t),
t ∈ I1 intersects itself many times.
The next property will be useful for evaluating areas from samples along a space-filling curve.

Property 3 (F3 – measure preservation). Space-filling curve Φ is the Lebesgue measure preserving
in the sense that for every Borel A ⊂ I2 we have µ2(A) = µ1(Φ

−1(A)), where µ1 and µ2 denote the
Lebesgue measure in R1 and R2, respectively.

At first glance, this property is strange. Note that it means that only values of lengths and
areas before and after the transformation by Φ are equal. For example, an interval of the
length 0.1 cm is transformed into a set having the area 0.1 cm2.

2.1.3 Quasi-inverses of space-filling curves
As mentioned above, points which are close in I2 may have far, but not very far (see F2)) pre-
images in I1. The reason is that Φ does not have the inverse Sagan (1994) in the usual sense

(intuitively, because a curve intersects itself). For our purposes it is of interest to find at least
one t ∈ I1 such that Φ(t) = x for given x. Consider a transformation Ψ : I2 → I1, such that
Ψ(x) ∈ Φ−1(x), where Φ−1(x) denotes the inverse image of x, i.e., the set {t ∈ I1 : Φ(t) = x}.
Φ−1 allows to order linearly pixels in an image. We shall call Ψ a quasi-inverse of Φ.

Property 4 (F4 – Quasi-invers). Let Φ : I1
onto→ Id be a space-filling curve of the Hilbert, the Peano

or the Sierpiński type. One can construct its quasi-inverse Ψ : Id → I1 in such a way that it is also
Lebesgue measure preserving.

See Skubalska-Rafajłowicz (2004) for the constructive proof of this property.

2.1.4 Remarks on generating space-filling curves
It is important that there exist algorithms for calculating approximate value of the Peano,

Hilbert and Sierpiński curves at a given point t ∈ I1 with O
(

d
ε

)

of arithmetic operations,
where ε > 0 denotes the accuracy of approximation Butz (1971); Skubalska-Rafajłowicz (2003);
Skubalska-Rafajłowicz (2001a)). Furthermore, quasi-inverses of these curves can also be cal-
culated with the same computational complexity Skubalska-Rafajłowicz (2004); Skubalska-
Rafajłowicz (2001b); Skubalska-Rafajłowicz (2001a)).
The specific self-similarities and the symmetries that space-filling curves usually possess, al-
low us to define a given space-filling curve. For example, consider Sierpiński‘s 2D curve.
Φ(t) = (x(t), y(t)) is uniquely defined by the following set of functional equations (see Sier-
piński (1912) for the equivalent definition)







x(t) = 1/2 − x(4t + 1/2)/2,
y(t) = 1/2 − y(4t + 1/2)/2
0 ≤ t ≤ 1/8,







x(t) = 1/2 + x(4(t − 7/8))/2,
y(t) = 1/2 − y(4(t − 7/8))/2
7/8 ≤ t ≤ 1,







x(t) = 1/2 + x(1 − 4(t − 1/8))/2,
y(t) = 1/2 − y(1 − 4(t − 1/8))/2
1/8 ≤ t ≤ 3/8,







x(t) = x(3/4 − t)
y(t) = 1 − y(3/4 − t)
3/8 ≤ t ≤ 7/8.

(3)

It follows from (3) that x(0) = y(0) = 0 and x(1/2) = y(1/2) = 1. After above observation,
one can convert (3) into recurrent algorithm of computing Φ(t), t ∈ I1. If t has a finite bi-
nary expansion, Φ(t) is obtained in a finite number of iterations. The code for generating the
Sierpiński space-filling curve is provided in the Appendix.

2.2 Equidistributed sequences in general
Equidistributed sequences are deterministic sequences, which behave like random variables,
which are drawn from a uniform distribution, but they are much more regular. They arise as
a tool for numerical integration, which is applied like the well known Monte-Carlo method,
but provides much more accurate results, at least for carefully selected sequences.
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Fig. 1. An approximation to the Sierpiński SFC.

Property 2 (F2 – Lipschitz continuity). There exists CΦ > 0 such that

||Φ(t)− Φ(t′)|| ≤ CΦ|t − t′ |1/2, (2)

where ||.|| is the Euclidean norm in R2.

The Lipschitz continuity (2) is stated above for a 2D case and it reads intuitively as a distance
preserving property in the sense that points close to each other in the interval are transformed
by Φ onto points close together in I2, but the converse is not necessarily true, since curve Φ(t),
t ∈ I1 intersects itself many times.
The next property will be useful for evaluating areas from samples along a space-filling curve.

Property 3 (F3 – measure preservation). Space-filling curve Φ is the Lebesgue measure preserving
in the sense that for every Borel A ⊂ I2 we have µ2(A) = µ1(Φ

−1(A)), where µ1 and µ2 denote the
Lebesgue measure in R1 and R2, respectively.

At first glance, this property is strange. Note that it means that only values of lengths and
areas before and after the transformation by Φ are equal. For example, an interval of the
length 0.1 cm is transformed into a set having the area 0.1 cm2.

2.1.3 Quasi-inverses of space-filling curves
As mentioned above, points which are close in I2 may have far, but not very far (see F2)) pre-
images in I1. The reason is that Φ does not have the inverse Sagan (1994) in the usual sense

(intuitively, because a curve intersects itself). For our purposes it is of interest to find at least
one t ∈ I1 such that Φ(t) = x for given x. Consider a transformation Ψ : I2 → I1, such that
Ψ(x) ∈ Φ−1(x), where Φ−1(x) denotes the inverse image of x, i.e., the set {t ∈ I1 : Φ(t) = x}.
Φ−1 allows to order linearly pixels in an image. We shall call Ψ a quasi-inverse of Φ.

Property 4 (F4 – Quasi-invers). Let Φ : I1
onto→ Id be a space-filling curve of the Hilbert, the Peano

or the Sierpiński type. One can construct its quasi-inverse Ψ : Id → I1 in such a way that it is also
Lebesgue measure preserving.

See Skubalska-Rafajłowicz (2004) for the constructive proof of this property.

2.1.4 Remarks on generating space-filling curves
It is important that there exist algorithms for calculating approximate value of the Peano,

Hilbert and Sierpiński curves at a given point t ∈ I1 with O
(

d
ε

)

of arithmetic operations,
where ε > 0 denotes the accuracy of approximation Butz (1971); Skubalska-Rafajłowicz (2003);
Skubalska-Rafajłowicz (2001a)). Furthermore, quasi-inverses of these curves can also be cal-
culated with the same computational complexity Skubalska-Rafajłowicz (2004); Skubalska-
Rafajłowicz (2001b); Skubalska-Rafajłowicz (2001a)).
The specific self-similarities and the symmetries that space-filling curves usually possess, al-
low us to define a given space-filling curve. For example, consider Sierpiński‘s 2D curve.
Φ(t) = (x(t), y(t)) is uniquely defined by the following set of functional equations (see Sier-
piński (1912) for the equivalent definition)







x(t) = 1/2 − x(4t + 1/2)/2,
y(t) = 1/2 − y(4t + 1/2)/2
0 ≤ t ≤ 1/8,







x(t) = 1/2 + x(4(t − 7/8))/2,
y(t) = 1/2 − y(4(t − 7/8))/2
7/8 ≤ t ≤ 1,







x(t) = 1/2 + x(1 − 4(t − 1/8))/2,
y(t) = 1/2 − y(1 − 4(t − 1/8))/2
1/8 ≤ t ≤ 3/8,







x(t) = x(3/4 − t)
y(t) = 1 − y(3/4 − t)
3/8 ≤ t ≤ 7/8.

(3)

It follows from (3) that x(0) = y(0) = 0 and x(1/2) = y(1/2) = 1. After above observation,
one can convert (3) into recurrent algorithm of computing Φ(t), t ∈ I1. If t has a finite bi-
nary expansion, Φ(t) is obtained in a finite number of iterations. The code for generating the
Sierpiński space-filling curve is provided in the Appendix.

2.2 Equidistributed sequences in general
Equidistributed sequences are deterministic sequences, which behave like random variables,
which are drawn from a uniform distribution, but they are much more regular. They arise as
a tool for numerical integration, which is applied like the well known Monte-Carlo method,
but provides much more accurate results, at least for carefully selected sequences.
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Definition 2. A deterministic sequence (xi)
n
i=1 is called equidistributed (EQD) (or uniformly dis-

tributed or quasi-random) sequence in Id if

lim
n→∞

n−1
n

∑
i=1

g(xi) =
∫

Id

g(x)dx (4)

holds for every continuous function g on Id.

We refer the reader to Kuipers and Niederreiter (1974) for account on properties of EQD se-
quences and on their discrepancies, which are measures of their "uniformity". We shall use
this definition mainly for d = 1 and d = 2, but the properties, which are proved below hold
also for d > 2.
The well-known way of generating EQD sequences in [0, 1] is as follows

ti = frac(i θ), i = 1, 2, . . . , (5)

where the fractional part is denoted as frac(.), θ is an irrational number.
A large number of methods for generating multivariate EQD sequences have been proposed
in the literature, including generalizations of (5), Van der Corput sequences, Halton sequences
and many others Davis and Rabinowitz (1984); Kuipers and Niederreiter (1974). As far as we
know, none of them have properties which are needed for our purposes.

3. Generating sequences equidistributed along a space-filling curve

We propose a new class of equidistributed multidimensional sequences, which is obtained
from one-dimensional equidistributed sequences by transforming it by a space-filling curve.
In fact, one can combine any reasonable way of generating a one-dimensional EQD sequence
with one of the space-filling curves of the Hilbert, Peano or Sierpiński type.

3.1 A new scheme of generating EQD sequences
The proposed scheme of generating an equidistributed sequence along a space-filling curve is
as follows.

Step 1) Calculate ti’s as in (5) (or as a one-dimensional Van der Corput sequence),

Step 2) Select one of the above space-filling curves as Φ : I1 → Id and calculate xi’s as fol-
lows:

xi = Φ(ti), i = 1, 2, . . . , n. (6)

For given n and θ it suffices to perform Steps 1) and 2) only once and store the resulting
sequence xi, i = 1, 2, . . . , n. An example is shown in Fig. 2.

Proposition 1. Sequence {xi}n
i=1, xi ∈ Rd, which is generated according to the above method is the

equidistributed sequence in Id.

Proof. For continuous g : Id → R,

n−1
n

∑
i=1

g(xi) = n−1
n

∑
i=1

g(Φ(ti)) →
∫ 1

0
g(Φ(t))dt =

∫

I2

g(x) dx, (7)

since {ti}n
i=1 are EQD, Φ is continuous, while the last equality follows from F1).•

Fig. 2. The Sierpiński SFC and n = 256 EQD points.

3.2 Sampling of images
Application of the above sequence for sampling images is straightforward, but requires some
preparation.

Preparation Perform Step 1 and Step 2, described in Section 3.1, for d = 2 in order to obtain

EQD sequence [x(1)i , x(1)i ], i = 1, 2, . . . , n.

Step 3 Scale and round sequence (6) as follows:

nh(i) = round(Nh x(1)i ), nv(i) = round(Nv x(1)i ), i = 1, 2, . . . , n, (8)

where [nh(i), nv(i)] denote coordinates of pixels in a real image, which has Nh pixels
width and Nv pixels height.

Step 4 Read out samples fi = f ([nh(i), nv(i)])), i = 1, 2, . . . , n.

Remark 1. In practice, samples are collected as in Step 4 above, but for theoretical discussions we shall
consider "theoretical" sample values fi = f (xi), i = 1, 2, . . . , n.

Remark 2. Note that gray levels fi’s are usually stored as integers from 0 to 255, instead of [0, 1], as
it is assumed about f and fi later on in this chapter.

4. Properties of the sampling scheme

This section is the central point of the chapter, since we collect here basic properties of the
proposed sampling scheme. Some of them can be obtained by using known equdistributed
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In fact, one can combine any reasonable way of generating a one-dimensional EQD sequence
with one of the space-filling curves of the Hilbert, Peano or Sierpiński type.

3.1 A new scheme of generating EQD sequences
The proposed scheme of generating an equidistributed sequence along a space-filling curve is
as follows.

Step 1) Calculate ti’s as in (5) (or as a one-dimensional Van der Corput sequence),

Step 2) Select one of the above space-filling curves as Φ : I1 → Id and calculate xi’s as fol-
lows:

xi = Φ(ti), i = 1, 2, . . . , n. (6)

For given n and θ it suffices to perform Steps 1) and 2) only once and store the resulting
sequence xi, i = 1, 2, . . . , n. An example is shown in Fig. 2.

Proposition 1. Sequence {xi}n
i=1, xi ∈ Rd, which is generated according to the above method is the
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Proof. For continuous g : Id → R,
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since {ti}n
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3.2 Sampling of images
Application of the above sequence for sampling images is straightforward, but requires some
preparation.

Preparation Perform Step 1 and Step 2, described in Section 3.1, for d = 2 in order to obtain

EQD sequence [x(1)i , x(1)i ], i = 1, 2, . . . , n.

Step 3 Scale and round sequence (6) as follows:

nh(i) = round(Nh x(1)i ), nv(i) = round(Nv x(1)i ), i = 1, 2, . . . , n, (8)

where [nh(i), nv(i)] denote coordinates of pixels in a real image, which has Nh pixels
width and Nv pixels height.

Step 4 Read out samples fi = f ([nh(i), nv(i)])), i = 1, 2, . . . , n.

Remark 1. In practice, samples are collected as in Step 4 above, but for theoretical discussions we shall
consider "theoretical" sample values fi = f (xi), i = 1, 2, . . . , n.

Remark 2. Note that gray levels fi’s are usually stored as integers from 0 to 255, instead of [0, 1], as
it is assumed about f and fi later on in this chapter.

4. Properties of the sampling scheme

This section is the central point of the chapter, since we collect here basic properties of the
proposed sampling scheme. Some of them can be obtained by using known equdistributed
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sequences, but properties presented in Section 4.3 and the reconstruction methods discussed
in Section 5 essentially use unique features of sequences, which are equidistributed along a
space-filling curve.

4.1 Images as measurable functions
Function f : Rd → R is called measurable if for every c ∈ R the following level sets {x :
f (x) < c} are measurable (see, e.g., Wheeden and Zygmund (1977) for the definition). In this
chapter we treat images f as measurable functions. This is convenient from a mathematical
point of view. On the other hand, the class of measurable functions is sufficiently wide to
include real life gray level images. This class, in particular, contains discontinuous functions,
which can be expressed as limits of sequences of continuous functions. Furthermore, limits
of such limits are also measurable functions and this process can be iterated, leading again to
measurable functions.
Color images in RGB format can be modelled as triples of measurable functions.

4.2 Spectrum approximation
Denote by F (ω), ω = [ω(1), ω(2)]T the Fourier transform of image f , i.e.,

F (ω) =
∫

I2

exp(−j ωT x) f (x) dx, (9)

where j2 = −1. We approximate spectrum F by

F̂n(ω) = n−1
n

∑
i=1

exp(−j ωT xi) fi, (10)

where xi’s are EQD along a space-filling curve.

Proposition 2. If f is measurable in I2 and sampled at EDQ points along a space-filling curve, then
for every ω we have

lim
n→∞

∣

∣F (ω)− F̂n(ω)
∣

∣ = 0. (11)

The proof of this property is deferred to the Appendix. Note that this result was obtained
without assuming that f is band-limited. For earlier results in this direction see Unser (1998).
A detailed discussion of the convergence rate of F̂n(ω) to F (ω) is outside the scope of this
chapter, since it requires some smoothness assumptions imposed on f . We only mention that
if for f the Lipschitz condition with the exponent 0 < α ≤ 1 holds, i.e.,

| f (x′)− f (x′′)| ≤ Cf ||x′ − x′′ ||α,

where Cf > 0 is a constant, then

∣

∣F (ω)− F̂n(ω)
∣

∣ ≤ C (log(n)/n)α/2 ,

where C > 0 is a constant, which may depend on f , the kind of a space-filling curve and ω,
but not on n.

4.3 Fast approximate segmentation and blob analysis based on samples
The segmentation of images is a basic technique for marking objects, which are characterized
by (approximately) the same gray level. In other words, our aim is to mark (approximately)
regions such that

{x ∈ I2 : G1 < f (x) < G2}, (12)

where 0 ≤ G1 < G2 ≤ 1 are specified thresholds. The next step is to find blobs, which are
cluster of points, which are close to each other and far from points, which belong to another
cluster. The segmentation and blob analysis task is time consuming, since it requires to not
only visit each pixel and to mark it (as black, say), if G1 < f (x) < G2, but also to group
marked into clusters, which usually requires to visit marked pixels several times (see, e.g.,
Davies (2005)).
We can reduce the computational burden by performing the segmentation and the blob anal-
ysis directly on samples. The blob analysis is also called silhouettes analysis, which are ex-
tracted by the segmentation.
Assume that sample points (ti, fi), i = 1, 2, . . . , n are reordered according to their first co-
ordinates. Denote by t(i) i-th point of the equidistributed sequence in I1. Thus, after sorting
t(i) < t(i+1), i = 1, 2, . . . , n. Simultaneously – we keep the corresponding gray levels, which
are denoted by f(i)’s, i.e.,

f(i) = f (Φ(t(i))), i = 1, 2, . . . , n (13)

Thus, our samples have the form (t(i), f(i)). Now the procedure for approximate segmentation
and blob analysis runs as follows.

Segmentation For each sample point mark t(i) as "black", if

G1 < f(i) < G2 i = 1, 2, . . . , n.

Blob analysis Starting from t(1), search for the first group of consecutive points

t(p) < t(p+1) < . . . < t(q), 1 ≤ p < q,

which are marked as "black". Then, repeat this search starting from t(q+2) (t(q+1) cannot
be a member of the first group) and find the second group etc. Attach a label, e.g.,
number or color, to each group and treat it as the approximation of a blob.

Measuring blobs For each blob calculate the difference between the last point and the first
point, i.e., t(q) − t(p) and treat it as the approximation of the area of the corresponding
blob.

The segmentation step does not require explanation (see Fig. 3). In the second step we use
F2) property of space-filling curves that is if points t(j) and t(j+1) are close, the also points
x(j) = Φ(t(j)) and x(j+1) = Φ(t(j+1)) are close in the image. To justify the last step, let us note

that, according to F3) and F4), the length
∣

∣

∣t(q) − t(p)

∣

∣

∣ can be used as the approximation of the
area of the smallest polygon containing x(j), j = p, p + 1, . . . , q.
The idea of the approximate blob analysis is illustrated in Fig. 3. The white, gray and black
squares (left panel) were sampled in 512 points, which are equidistributed along the Sierpiński
space-filling curve. The resulting gray levels are shown in the right panel. Note that samples
from the white square are almost perfectly grouped as samples, which are numbered as 320 to
440. Similarly, samples from the black and light gray squares are grouped in the right panel as
samples from 60 to (almost) 200 and from 200 to 320, respectively. Samples from the dark gray
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sequences, but properties presented in Section 4.3 and the reconstruction methods discussed
in Section 5 essentially use unique features of sequences, which are equidistributed along a
space-filling curve.

4.1 Images as measurable functions
Function f : Rd → R is called measurable if for every c ∈ R the following level sets {x :
f (x) < c} are measurable (see, e.g., Wheeden and Zygmund (1977) for the definition). In this
chapter we treat images f as measurable functions. This is convenient from a mathematical
point of view. On the other hand, the class of measurable functions is sufficiently wide to
include real life gray level images. This class, in particular, contains discontinuous functions,
which can be expressed as limits of sequences of continuous functions. Furthermore, limits
of such limits are also measurable functions and this process can be iterated, leading again to
measurable functions.
Color images in RGB format can be modelled as triples of measurable functions.

4.2 Spectrum approximation
Denote by F (ω), ω = [ω(1), ω(2)]T the Fourier transform of image f , i.e.,

F (ω) =
∫

I2

exp(−j ωT x) f (x) dx, (9)

where j2 = −1. We approximate spectrum F by

F̂n(ω) = n−1
n

∑
i=1

exp(−j ωT xi) fi, (10)

where xi’s are EQD along a space-filling curve.

Proposition 2. If f is measurable in I2 and sampled at EDQ points along a space-filling curve, then
for every ω we have

lim
n→∞

∣

∣F (ω)− F̂n(ω)
∣

∣ = 0. (11)

The proof of this property is deferred to the Appendix. Note that this result was obtained
without assuming that f is band-limited. For earlier results in this direction see Unser (1998).
A detailed discussion of the convergence rate of F̂n(ω) to F (ω) is outside the scope of this
chapter, since it requires some smoothness assumptions imposed on f . We only mention that
if for f the Lipschitz condition with the exponent 0 < α ≤ 1 holds, i.e.,

| f (x′)− f (x′′)| ≤ Cf ||x′ − x′′ ||α,

where Cf > 0 is a constant, then

∣

∣F (ω)− F̂n(ω)
∣

∣ ≤ C (log(n)/n)α/2 ,

where C > 0 is a constant, which may depend on f , the kind of a space-filling curve and ω,
but not on n.

4.3 Fast approximate segmentation and blob analysis based on samples
The segmentation of images is a basic technique for marking objects, which are characterized
by (approximately) the same gray level. In other words, our aim is to mark (approximately)
regions such that

{x ∈ I2 : G1 < f (x) < G2}, (12)

where 0 ≤ G1 < G2 ≤ 1 are specified thresholds. The next step is to find blobs, which are
cluster of points, which are close to each other and far from points, which belong to another
cluster. The segmentation and blob analysis task is time consuming, since it requires to not
only visit each pixel and to mark it (as black, say), if G1 < f (x) < G2, but also to group
marked into clusters, which usually requires to visit marked pixels several times (see, e.g.,
Davies (2005)).
We can reduce the computational burden by performing the segmentation and the blob anal-
ysis directly on samples. The blob analysis is also called silhouettes analysis, which are ex-
tracted by the segmentation.
Assume that sample points (ti, fi), i = 1, 2, . . . , n are reordered according to their first co-
ordinates. Denote by t(i) i-th point of the equidistributed sequence in I1. Thus, after sorting
t(i) < t(i+1), i = 1, 2, . . . , n. Simultaneously – we keep the corresponding gray levels, which
are denoted by f(i)’s, i.e.,

f(i) = f (Φ(t(i))), i = 1, 2, . . . , n (13)

Thus, our samples have the form (t(i), f(i)). Now the procedure for approximate segmentation
and blob analysis runs as follows.

Segmentation For each sample point mark t(i) as "black", if

G1 < f(i) < G2 i = 1, 2, . . . , n.

Blob analysis Starting from t(1), search for the first group of consecutive points

t(p) < t(p+1) < . . . < t(q), 1 ≤ p < q,

which are marked as "black". Then, repeat this search starting from t(q+2) (t(q+1) cannot
be a member of the first group) and find the second group etc. Attach a label, e.g.,
number or color, to each group and treat it as the approximation of a blob.

Measuring blobs For each blob calculate the difference between the last point and the first
point, i.e., t(q) − t(p) and treat it as the approximation of the area of the corresponding
blob.

The segmentation step does not require explanation (see Fig. 3). In the second step we use
F2) property of space-filling curves that is if points t(j) and t(j+1) are close, the also points
x(j) = Φ(t(j)) and x(j+1) = Φ(t(j+1)) are close in the image. To justify the last step, let us note

that, according to F3) and F4), the length
∣

∣

∣t(q) − t(p)

∣

∣

∣ can be used as the approximation of the
area of the smallest polygon containing x(j), j = p, p + 1, . . . , q.
The idea of the approximate blob analysis is illustrated in Fig. 3. The white, gray and black
squares (left panel) were sampled in 512 points, which are equidistributed along the Sierpiński
space-filling curve. The resulting gray levels are shown in the right panel. Note that samples
from the white square are almost perfectly grouped as samples, which are numbered as 320 to
440. Similarly, samples from the black and light gray squares are grouped in the right panel as
samples from 60 to (almost) 200 and from 200 to 320, respectively. Samples from the dark gray
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square are split into two groups. The first one is numbered from 1 to 60. the second one, from
420 to 512. The consequence of this (unavoidable) split is not too severe, since we obtain two
blobs of dark gray color (if G1 ≈ 185, G2 ≈ 195) instead of one, but when transformed to the
image space, these two blobs will be close to each other. The only points, which would lead to
false grouping are shown as separate points in the right panel of Fig. 3. This is the price paid
for speeding up grouping. We can avoid even these false classifications by checking a proper
classification of small clusters, but at the expense of an additional computational burden. The
above approach can be applied to images in RGB format, just by applying it to each channel
separately, but keeping the same sequence t(i)’s.
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Fig. 3. Explanation why (approximate) segmentation and blob analysis work.

4.4 Approximating moments
Moments ak of image f with respect to linearly independent functions vk(x) are defined as

ak =
∫

I2

f (x) vk(x) dx, k = 1, 2, . . . . (14)

ak’s are usually approximated by the sums of gray levels located at all the pixels. We can gain

much on efficiency using α̂
(n)
k = n−1 ∑

n
i=1 fi to evaluate theoretical moments from samples.

Proposition 3. Let f and vk, k = 1, 2, . . . be measurable functions in I2. Then, for fi sampled at
points xi, which are equidistributed along a space-filling curve, we have

lim
n→∞

|αk − α̂
(n)
k | = 0, (15)

i.e., approximate moments converge to the theoretical moments as the number of samples grows to
infinity.

We omit the proof, since it is similar to the one for the spectrum approximation.
The role of moments in image analysis is well established (see, e.g., Davies (2005); Pawlak
(2006). In particular, selecting vk(x)’s as ordered monomials one can evaluate centroids of
blobs, their area etc. Central moments, in turn, provides translation invariant information
about shape parameters describing blobs.

4.5 Moving mean and median filtering
The moving mean and the moving median are the most popular filters applied in image pro-
cessing. A rectangular window of size (2 P + 1)× (2 Q + 1), say, is scanning the image and
the mean value (or the empirical median) of gray levels of the corresponding pixels replaces
the central pixel value.
Assuming that samples are ordered as in Section 4.3, one can perform (approximately) the
same kind of filtering directly on samples. The filtering process runs as follows.

Step 1 Sort samples according to their first coordinates in order to obtain (t(i), f(i)).

Step 2 Select half of the size of a neighborhood, which is used for filtering. Denote it by S.

Step 3 Starting from i = S + 1 to i = n − (S + 1), perform the following operations:

1. calculate

f̂i = (2 S + 1)−1
S

∑
m=−S

f(i−m) (16)

or the empirical median of the following gray levels

{ f(i−m) : m = −S, . . . , 0, 1, . . . , S},

2. f̂i (or by the empirical median) is attached to the point t(i) in the filtered sample.

As usual, we are faced with the boundary problem, since we cannot filter samples numbered
by i ≤ S and i ≥ n − S. The simplest remedy is to leave these samples unchanged.
Somewhat more sophisticated way of median filtering along a space-filling curve was pro-
posed in Krzyżak (2001), but – in opposite to the present chapter – neighbors were not equidis-
tributed.
As is known, sampling of images and sapce-filling curves have many other applications (see,
e.g., Davies (2001); Lamarque and Robert (1996)), in which the sampling scheme proposed
here can also be useful.

5. Approximate reconstruction by k-nearest neighbors RBF nets

Our aim is to demonstrate that images can be efficiently reconstructed from the samples,
which are equidistributed along a space-filling curve. We shall concentrate on reconstruc-
tion schemes, which are based on nearest neighbors and artificial neural networks from the
radial basis functions (RBF) class.
An alternative way would be to estimate the spectrum of an image according to (10) on a
regular grid and to calculate the inverse discrete Fourier transform by the FFT algorithm.

5.1 Reconstruction using RBF nets and exact neighbors
Consider Nh × Nv image. The coordinates of its pixels are denoted as (h, v), while positions
of sample points are denoted as (nh(i), nv(i)), i = 1, 2, . . . , n. Abusing the notation, we shall
write f(k, m), forgetting for a while that earlier f was defined in [0, 1]2.
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square are split into two groups. The first one is numbered from 1 to 60. the second one, from
420 to 512. The consequence of this (unavoidable) split is not too severe, since we obtain two
blobs of dark gray color (if G1 ≈ 185, G2 ≈ 195) instead of one, but when transformed to the
image space, these two blobs will be close to each other. The only points, which would lead to
false grouping are shown as separate points in the right panel of Fig. 3. This is the price paid
for speeding up grouping. We can avoid even these false classifications by checking a proper
classification of small clusters, but at the expense of an additional computational burden. The
above approach can be applied to images in RGB format, just by applying it to each channel
separately, but keeping the same sequence t(i)’s.
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Fig. 3. Explanation why (approximate) segmentation and blob analysis work.

4.4 Approximating moments
Moments ak of image f with respect to linearly independent functions vk(x) are defined as

ak =
∫

I2

f (x) vk(x) dx, k = 1, 2, . . . . (14)

ak’s are usually approximated by the sums of gray levels located at all the pixels. We can gain

much on efficiency using α̂
(n)
k = n−1 ∑

n
i=1 fi to evaluate theoretical moments from samples.

Proposition 3. Let f and vk, k = 1, 2, . . . be measurable functions in I2. Then, for fi sampled at
points xi, which are equidistributed along a space-filling curve, we have

lim
n→∞

|αk − α̂
(n)
k | = 0, (15)

i.e., approximate moments converge to the theoretical moments as the number of samples grows to
infinity.

We omit the proof, since it is similar to the one for the spectrum approximation.
The role of moments in image analysis is well established (see, e.g., Davies (2005); Pawlak
(2006). In particular, selecting vk(x)’s as ordered monomials one can evaluate centroids of
blobs, their area etc. Central moments, in turn, provides translation invariant information
about shape parameters describing blobs.

4.5 Moving mean and median filtering
The moving mean and the moving median are the most popular filters applied in image pro-
cessing. A rectangular window of size (2 P + 1)× (2 Q + 1), say, is scanning the image and
the mean value (or the empirical median) of gray levels of the corresponding pixels replaces
the central pixel value.
Assuming that samples are ordered as in Section 4.3, one can perform (approximately) the
same kind of filtering directly on samples. The filtering process runs as follows.

Step 1 Sort samples according to their first coordinates in order to obtain (t(i), f(i)).

Step 2 Select half of the size of a neighborhood, which is used for filtering. Denote it by S.

Step 3 Starting from i = S + 1 to i = n − (S + 1), perform the following operations:

1. calculate

f̂i = (2 S + 1)−1
S

∑
m=−S

f(i−m) (16)

or the empirical median of the following gray levels

{ f(i−m) : m = −S, . . . , 0, 1, . . . , S},

2. f̂i (or by the empirical median) is attached to the point t(i) in the filtered sample.

As usual, we are faced with the boundary problem, since we cannot filter samples numbered
by i ≤ S and i ≥ n − S. The simplest remedy is to leave these samples unchanged.
Somewhat more sophisticated way of median filtering along a space-filling curve was pro-
posed in Krzyżak (2001), but – in opposite to the present chapter – neighbors were not equidis-
tributed.
As is known, sampling of images and sapce-filling curves have many other applications (see,
e.g., Davies (2001); Lamarque and Robert (1996)), in which the sampling scheme proposed
here can also be useful.

5. Approximate reconstruction by k-nearest neighbors RBF nets

Our aim is to demonstrate that images can be efficiently reconstructed from the samples,
which are equidistributed along a space-filling curve. We shall concentrate on reconstruc-
tion schemes, which are based on nearest neighbors and artificial neural networks from the
radial basis functions (RBF) class.
An alternative way would be to estimate the spectrum of an image according to (10) on a
regular grid and to calculate the inverse discrete Fourier transform by the FFT algorithm.

5.1 Reconstruction using RBF nets and exact neighbors
Consider Nh × Nv image. The coordinates of its pixels are denoted as (h, v), while positions
of sample points are denoted as (nh(i), nv(i)), i = 1, 2, . . . , n. Abusing the notation, we shall
write f(k, m), forgetting for a while that earlier f was defined in [0, 1]2.
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5.1.1 1-NN reconstruction scheme
A seemingly naive algorithm of reconstructing the underlying image is the following.

Preparations For all Nh Nv positions (h, v) pixels find the nearest neighbor (1-NN) among
positions of samples (nh(i), nv(i)), i = 1, 2, . . . , n and store these positions in Nh × Nv
table C, say. Its elements c(h, v), h = 1, 2 . . . , Nh, v = 1, 2 . . . , Nv contain addresses to
the closest sample point.

Step 1 Repeat Step 2 for h = 1, 2 . . . , Nh, v = 1, 2 . . . , Nv.

Step 3 Attach gray level of the nearest sample point f(c(h, v)) to pixel (h, v).

The most time consuming Step 1 is performed only once. As a result we obtain table C, which
is of the same size as an original image and – at a first glance – all the compression effect is
distracted. Note however, that when frames from a long video sequence are sampled and later
some of them have to be reconstructed, then it pays to store matrix C in order to have an al-
most immediate reconstruction of selected frames. This is exactly the case when a production
quality is monitored by a camera and we have to store (and keep for a long time) very long
sequences of images, which document the quality of products.

5.1.2 k-NN reconstruction using RBF net
We can generalize the above reconstruction scheme by taking into account gray levels of near-
est neighbors starting from the first one, second nearest up to k-th nearest. It is convenient to
express such a generalized reconstruction scheme as a neural network from the well known
radial basis functions (RBF) class.
To this end, we select a nonnegative kernel K : R1 → R1, which is a function such that

∫ ∞

−∞
t K(t) dt = 0,

∫ ∞

−∞
t2 K(t) dt < ∞, (17)

which is normalized K(0) = 1. This kind of normalization is not typical, but convenient
for our purposes. Typical examples include the uniform kernel (K(t) = 1, |t| < 1 and zero
otherwise), the Epanechnikov kernel etc.
Denote by f̃(h, v) the reconstructed gray level at (h, v), which is calculated as follows

f̃(h, v) =
k

∑
j=1

wj(h, v) fc(j, h, v) , (18)

where c(j, h, v) is the address of j-th closest point among positions of samples (nh(i), nv(i)),
i = 1, 2, . . . , n, while weights wj(h, v) are defined as follows:

wj(h, v) =
K
(

||(h, v)− c(j, h, v)||2/H(k)
)

∑
k
j=1 K (||(h, v)− c(j, h, v)||2/H(k))

, (19)

where
H(k)

de f
= ||(h, v)− c(k, h, v)||2. (20)

Note that when k = 1 and kernel K is the uniform one, then (18) reduces to 1-NN reconstruc-
tion scheme.
We remark that (18) is the approximation scheme rather than interpolatory one, as it was used
in Anton et all (2001).

5.2 Reconstruction using RBF nets and neighbors along SFC
We can reduce the computational burden on finding nearest neighbors by replacing the exact
search by the approximate one, which is performed along a space-filling curve. The proposed
method is as follows.

1-NN along SFC

Step 1 For all pixels (h, v) perform the following steps:

1. normalize current pixel (h, v) to I2 as xh, v
de f
= (h/Nh, v/Nv).

2. calculate its quasi-inverse th v
de f
= Ψ(xh, v)

3. find its nearest neighbor among all t(i)’s and denote its number by ĉ(h, v).

and store the resulting Nh × Nv matrix as Ĉ.

Step 2 As the approximate value of f at pixel (h, v) (or at xh, v) take f at ĉ(h, v).

Step 3 Repeat Step 2 for all (h, v).

The main advantage of this scheme is in that finding NN among ordered t(i)’s has computa-
tional complexity O(log2(n)). The price for that is a possibility of missing the true NN in I2,
since in Step 1 we use the quasi-inverse of SFC. Nevertheless, a point found in this is close to
NN in I2 due to F2). Matrix Ĉ can be treated as approximation of matrix C in the sense that
many of its entries are the same as the corresponding entries of matrix C. The differences arise
due to self-crossing of SFC.
We do not provide details of reconstruction by RBF net, which is based on approximate nearest
neighbors, since changes in (19) and (20) are obvious.

5.3 Reconstruction by local random spreading of grey levels
In opposite to the above-described reconstruction schemes, which are based on searching (ap-
proximate) neighbors to each pixel, the method considered here spreads gray levels of sam-
ples in their neighborhoods. Below, we describe the simplest way of such spreading, which is
based on a random choice of neighbors.

Reconstruction by random spreading

Step 1 Prepare Nh × Nv matrix S, say, as follows. Fill its entries, denoted as s(h, v) by sam-
pled gray levels at appropriate positions. The remaining entries fill by "empty" symbol
(coded as a number greater than 1 (or 255)).

Step 2 Check whether "empty" entries are present in S. If not, the stop and S contains the
reconstructed image. Otherwise, go to Step 3.

3 Find the position of the next "empty" element of matrix S and denote it by (h, v).

Step 4 Select at random (with equal probabilities) one of the following directions "up",
"down", "left", "right".

Step 5 Assign the contents of s(h− 1, v) to s(h, v), if the direction is "left". Assign the contents
of s(h + 1, v) to s(h, v), if the direction is "right" etc. Go to Step 2.

In Step 5 it may happen that the contents assigned to s(h, v) is still "empty", but after a short
time gray levels of samples nicely "smear" over the image. The result of the reconstruction
is random, but repeated reconstructions produce visually stable images in a relatively short
time. In Steps 4 and 5 one can use the neighborhood containing eight or more pixels.
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5.1.1 1-NN reconstruction scheme
A seemingly naive algorithm of reconstructing the underlying image is the following.

Preparations For all Nh Nv positions (h, v) pixels find the nearest neighbor (1-NN) among
positions of samples (nh(i), nv(i)), i = 1, 2, . . . , n and store these positions in Nh × Nv
table C, say. Its elements c(h, v), h = 1, 2 . . . , Nh, v = 1, 2 . . . , Nv contain addresses to
the closest sample point.

Step 1 Repeat Step 2 for h = 1, 2 . . . , Nh, v = 1, 2 . . . , Nv.

Step 3 Attach gray level of the nearest sample point f(c(h, v)) to pixel (h, v).

The most time consuming Step 1 is performed only once. As a result we obtain table C, which
is of the same size as an original image and – at a first glance – all the compression effect is
distracted. Note however, that when frames from a long video sequence are sampled and later
some of them have to be reconstructed, then it pays to store matrix C in order to have an al-
most immediate reconstruction of selected frames. This is exactly the case when a production
quality is monitored by a camera and we have to store (and keep for a long time) very long
sequences of images, which document the quality of products.

5.1.2 k-NN reconstruction using RBF net
We can generalize the above reconstruction scheme by taking into account gray levels of near-
est neighbors starting from the first one, second nearest up to k-th nearest. It is convenient to
express such a generalized reconstruction scheme as a neural network from the well known
radial basis functions (RBF) class.
To this end, we select a nonnegative kernel K : R1 → R1, which is a function such that

∫ ∞

−∞
t K(t) dt = 0,

∫ ∞

−∞
t2 K(t) dt < ∞, (17)

which is normalized K(0) = 1. This kind of normalization is not typical, but convenient
for our purposes. Typical examples include the uniform kernel (K(t) = 1, |t| < 1 and zero
otherwise), the Epanechnikov kernel etc.
Denote by f̃(h, v) the reconstructed gray level at (h, v), which is calculated as follows

f̃(h, v) =
k

∑
j=1

wj(h, v) fc(j, h, v) , (18)

where c(j, h, v) is the address of j-th closest point among positions of samples (nh(i), nv(i)),
i = 1, 2, . . . , n, while weights wj(h, v) are defined as follows:

wj(h, v) =
K
(

||(h, v)− c(j, h, v)||2/H(k)
)

∑
k
j=1 K (||(h, v)− c(j, h, v)||2/H(k))

, (19)

where
H(k)

de f
= ||(h, v)− c(k, h, v)||2. (20)

Note that when k = 1 and kernel K is the uniform one, then (18) reduces to 1-NN reconstruc-
tion scheme.
We remark that (18) is the approximation scheme rather than interpolatory one, as it was used
in Anton et all (2001).

5.2 Reconstruction using RBF nets and neighbors along SFC
We can reduce the computational burden on finding nearest neighbors by replacing the exact
search by the approximate one, which is performed along a space-filling curve. The proposed
method is as follows.

1-NN along SFC

Step 1 For all pixels (h, v) perform the following steps:

1. normalize current pixel (h, v) to I2 as xh, v
de f
= (h/Nh, v/Nv).

2. calculate its quasi-inverse th v
de f
= Ψ(xh, v)

3. find its nearest neighbor among all t(i)’s and denote its number by ĉ(h, v).

and store the resulting Nh × Nv matrix as Ĉ.

Step 2 As the approximate value of f at pixel (h, v) (or at xh, v) take f at ĉ(h, v).

Step 3 Repeat Step 2 for all (h, v).

The main advantage of this scheme is in that finding NN among ordered t(i)’s has computa-
tional complexity O(log2(n)). The price for that is a possibility of missing the true NN in I2,
since in Step 1 we use the quasi-inverse of SFC. Nevertheless, a point found in this is close to
NN in I2 due to F2). Matrix Ĉ can be treated as approximation of matrix C in the sense that
many of its entries are the same as the corresponding entries of matrix C. The differences arise
due to self-crossing of SFC.
We do not provide details of reconstruction by RBF net, which is based on approximate nearest
neighbors, since changes in (19) and (20) are obvious.

5.3 Reconstruction by local random spreading of grey levels
In opposite to the above-described reconstruction schemes, which are based on searching (ap-
proximate) neighbors to each pixel, the method considered here spreads gray levels of sam-
ples in their neighborhoods. Below, we describe the simplest way of such spreading, which is
based on a random choice of neighbors.

Reconstruction by random spreading

Step 1 Prepare Nh × Nv matrix S, say, as follows. Fill its entries, denoted as s(h, v) by sam-
pled gray levels at appropriate positions. The remaining entries fill by "empty" symbol
(coded as a number greater than 1 (or 255)).

Step 2 Check whether "empty" entries are present in S. If not, the stop and S contains the
reconstructed image. Otherwise, go to Step 3.

3 Find the position of the next "empty" element of matrix S and denote it by (h, v).

Step 4 Select at random (with equal probabilities) one of the following directions "up",
"down", "left", "right".

Step 5 Assign the contents of s(h− 1, v) to s(h, v), if the direction is "left". Assign the contents
of s(h + 1, v) to s(h, v), if the direction is "right" etc. Go to Step 2.

In Step 5 it may happen that the contents assigned to s(h, v) is still "empty", but after a short
time gray levels of samples nicely "smear" over the image. The result of the reconstruction
is random, but repeated reconstructions produce visually stable images in a relatively short
time. In Steps 4 and 5 one can use the neighborhood containing eight or more pixels.
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5.4 Examples
As explained in the Introduction, the proposed sampling and reconstruction schemes are ded-
icated mainly for industrial images. However, it is instructive to verify their performance us-
ing the well-known example, which is shown in Fig. 4. Analysis of the differences between
the original and the reconstructed images indicate that 1-NN reconstruction scheme provides
the most exact reconstruction, but the reconstruction by random spreading provides the nicest
looking image.
The application to industrial images is illustrated in Fig. 5, in which a copper slab with defects
is shown. Note that it suffices to store 4096 samples in order to reconstruct 1000× 1000 image,
without distorting gray levels of samples from the original image. This is equivalent to the
compression ratio of about 1/250. Such a compression rate plus loss-less compression allows
us to store a video sequence (30 fps) from one month of a continuous production process on a
disk or tape, having 1 TB (terra byte) capacity.

6. Appendix – proof of Proposition 3

Take arbitrary ε > 0. By the Lusin theorem, there exists a set E = E(ε/4) such that f |E is
continuous and µ2(E − I2) < ε/4. Denote by FE(ω) the Fourier transform of f |E. Then, for

D
de f
= E − I2 we have

|F (ω)−FE(ω)| =
∣

∣

∣

∣
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D
e−j ωT x f (x) dx
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Clearly, ∆n ≤ N (I2 − E)/n, where

N (I2 − E)
de f
= card{i : xi ∈ (I2 − E)}.

From Proposition 1 it follows that for n → ∞

∆n ≤ N (I2 − E)
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→ µ2(I2 − E) < ε/4. (24)

Thus, for n sufficiently large we have ∆n < ε/4. Define
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Fig. 4. Lena image, 512 × 512 pixels, (upper-left panel) sampled at 10 000 points equidis-
tributed along the Sierpiński space-filling curve (upper-middle panel). Gray levels at sample
points are shown in the upper-right panel. The results of reconstruction by 1-NN method
(middle left panel), by 1-NN along the space-filling curve (central panel) and by spread to
random-NN (middle right panel). The differences between the original image and the recon-
structed one are shown in the last row of this figure.

Thus, for n large enough
δn ≤ |(N (E)/n − 1|) < ε/4, (25)

since, by Proposition 1, |(N (E)/n − µ2(I2)|) → 0 as n → ∞. We omit argument ω in the
formulas that follow. Summarizing, we obtain.

∣

∣F − F̂n
∣

∣ < ε/4 +
∣

∣FE − F̂n
∣

∣ , (26)
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Fig. 4. Lena image, 512 × 512 pixels, (upper-left panel) sampled at 10 000 points equidis-
tributed along the Sierpiński space-filling curve (upper-middle panel). Gray levels at sample
points are shown in the upper-right panel. The results of reconstruction by 1-NN method
(middle left panel), by 1-NN along the space-filling curve (central panel) and by spread to
random-NN (middle right panel). The differences between the original image and the recon-
structed one are shown in the last row of this figure.

Thus, for n large enough
δn ≤ |(N (E)/n − 1|) < ε/4, (25)

since, by Proposition 1, |(N (E)/n − µ2(I2)|) → 0 as n → ∞. We omit argument ω in the
formulas that follow. Summarizing, we obtain.
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Fig. 5. Copper slab with defects, 1000 × 1000 pixels (upper left panel) and its reconstruction
from n = 2048 samples by 1-NN method (upper right panel). The same slab reconstructed
from n = 4096 samples (lower left panel) and the difference between the original image and
the reconstructed one (lower right panel). Compression ratio 1/250.

since, by (21), |F − FE| < ε/4. Analogously,
∣

∣FE − F̂n
∣
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due to (24). Finally,
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.

The last term in (28) approaches zero, since f is continuous in E and Proposition 1 holds.
Hence,

∣

∣FE − F̂E
∣

∣ < ε/2 for n large enough, due to (25). Using this inequality in (27) and
invoking (26) we obtain that for n large enough we have

∣

∣F − F̂n
∣

∣ < ε. •

7. Appendix – Generating the Sierpiński space-filling curve and equidistributed
points along it.

In this Appendix we provide implementations of procedures for generating points from the
Sierpiński space-filling curve and its quasi-inverse, which are written in Wolfram’s Mathe-
matica language. Special features of new versions of Mathematica are not implemented with
the hope that the code should run and be useful for all versions, starting from version 3.
The following procedure tranr calculates one point of the Sierpiński curve, i.e., for given
t ∈ I1 an approximation to Φ(t) ∈ Id is provided, but only for d ≥ 2 and even. Parameter
k of this procedure controls the accuracy to which the curve is approximated. It should be a
positive integer. In the examples presented in this chapter k = 32 was used.

tranr[d_,k_,t_]:= Module[{bd,cd,ii,j,jj,tt,KM,km,be,kb},
bd=1; tt:=t;xx={1};
Do[bd=2^ii-bd+1; AppendTo[xx,1],{ii,d-1}];
cd=bd*2^(-d); km={};
Do[kb=Floor[(tt-cd/2^d)*2^d]+1;

tt=2^d*(tt-cd/2^d-(kb-1)*2^(-d));
If[kb==2^d, kb=0];
If[ Floor[kb/2]<kb/2,tt=1-tt]; AppendTo[km,kb] ,{j,k}];

Do[ KM=km[[k-j+1]]; ww={};
Do[ If[KM< 2^(d-jj),be=0,be=1]; AppendTo[ww,be];

KM=KM-be*2^(d-jj);
If[be==1,KM=2^(d-jj)-KM-1] ,{jj,d}];

Do[xx[[d-jj+1]]=1/2-(1/2-ww[[jj]])*xx[[d-jj+1]] ,{jj,d}] ,{j,k}];
(*out*) xx]

The following lines of the Mathematica code generate the sequence of 2D points, which are
equidistributed along the Siepinski space-filling curve.

dim = 2; deep = 32; n = 512; th = (Sqrt[5.] - 1.)/2.; {i, 1, n}]];
points = Map[tranr[dim, deep, #] &, Sort[Table[FractionalPart[i*th]];
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Fig. 5. Copper slab with defects, 1000 × 1000 pixels (upper left panel) and its reconstruction
from n = 2048 samples by 1-NN method (upper right panel). The same slab reconstructed
from n = 4096 samples (lower left panel) and the difference between the original image and
the reconstructed one (lower right panel). Compression ratio 1/250.
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Miȩdzyzdroje, August 2003,

Skubalska-Rafajłowicz E. (2004) Recurrent network structure for computing quasi-inverses of
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1. Introduction  

Periodicities are found in speech signals, musical rhythms, biomedical signals and machine 
vibrations. In many signal processing applications, signals are assumed to be periodic or 
quasi-periodic. Especially in acoustic signal processing, signal models based on periodicities 
have been studied for speech and audio processing. 
The sinusoidal modelling has been proposed to transform an acoustic signal to a sum of 
sinusoids [1]. In this model, the frequencies of the sinusoids are often assumed to be 
harmonically related. The fundamental frequency of the set of sinusoids has to be specified 
for this model. In order to compose an accurate model of an acoustic signal, the noise-robust 
and accurate fundamental frequency estimation techniques are required. Many fundamental 
frequency estimation techniques are performed in the short-time Fourier transform (STFT) 
spectrum by peak-picking and clustering of harmonic components [2][3][4]. These 
approaches depend on the frequency spectrum of the signal. 
The signal modeling in the time-domain has been also proposed to extract a waveform of an 
acoustic signal and its parameters of the amplitude and frequency variations [5]. This 
approach aims to represent an acoustic signal that has single fundamental frequency. For 
detection and estimation of more than one periodic signal hidden in a signal mixture, 
several signal decomposition that are capable of decomposing a signal into a set of periodic 
subsignals have been proposed. 
In Ref. [7], an orthogonal decomposition method based on periodicity has been proposed. 
This technique achieves the decomposition of a signal into periodic subsignals that are 
orthogonal to each other. The periodicity transform [8] decomposes a signal by projecting it 
onto a set of periodic subspaces. In this method, seeking periodic subspaces and rejecting 
found periodic subsignals from the observed signal are performed iteratively. For reduction 
of the redundancy of the periodic representation, a penalty of sparsity has been introduced 
to the decomposition in Ref. [9]. 
In these periodic decomposition methods, the amplitude of each periodic signal in the 
mixture is assumed to be constant. Hence, it is difficult to obtain the significant 
decomposition results for the mixtures of quasi-periodic signals with time-varying 
amplitude. In this chapter, we introduce a model for periodic signals with time-varying 
amplitude into the periodic decomposition [10]. In order to reduce the number of resultant 
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periodic subsignals obtained by the decomposition and represent the mixture with only 
significant periodic subsignals, we impose a sparsity penalty on the decomposition. This 
penalty is defined as the sum of l2 norms of the resultant periodic subsignals to find the 
shortest path to the approximation of the mixture. The waveforms and amplitude of the 
hidden periodic signals are iteratively estimated with the penalty of sparsity. The proposed 
periodic decomposition can be interpreted as a sparse coding [15] [16] with non-negativity 
of the amplitude and the periodic structure of signals. 
In our approach, the decomposition results are associated with the fundamental frequencies 
of the source signals in the mixture. So, the pitches of the source signals can be detected 
from the mixtures by the proposed decomposition. 
First, we explain the definition of the model for the periodic signals. Then, the cost function 
that is a sum of the approximation error and the sparsity penalty is defined for the periodic 
decomposition. A relaxation algorithm [9] [10] [18] for the sparse periodic decomposition is 
also explained. The source estimation capability of our decomposition method is 
demonstrated by several examples of the decomposition of synthetic periodic signal 
mixtures. Next, we apply the proposed decomposition to speech mixtures and demonstrate 
the speech separation. In this experiment, the ideal separation performance of the proposed 
decomposition is compared with the separation method obtained by an ideal binary 
masking [10] of a STFT. Finally, we provide the results of the single-channel speech 
separation with simple assignment technique to demonstrate the possibility of the proposed 
decomposition. 

 
2. Periodic decomposition of signals  

For signal analysis, the periodic decomposition methods that decompose a signal into a sum 
of periodic signals have been proposed. Most fundamental periodic signal is a sinusoid. In 
speech processing area, the sinusoidal modeling [1] that represents the signal into the linear 
combination of sinusoids with various frequencies is utilized. The sinusoidal representation 
of the signal f(n) with constant amplitude and constant frequencies is obtained as the form of 
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This model relies on the estimation of the parameters of the model. Many estimation 
techniques have been proposed for the parameters. If the frequencies {j}1jJ are 
harmonically related, all frequencies are assumed to be the multiples of the fundamental 
frequency. To detect the fundamental frequencies from mixtures of source signals that has 
periodical nature, multiple pitch detection algorithms have been proposed [2][3][4]. 
The signal modelling with (1) is a parametric modeling of the signal. On the contrast, the 
non-parametric modeling techniques that obtain a set of periodic signals that are specified in 
time-domain have been also proposed. 
For time-domain approach of the periodic decomposition, the periodic signal is defined as a 
sum of time-translated waveforms. Let us suppose that a sequence {fp(n)}0n<N is a finite 
length periodic signal with a length N and an integer period p2. It satisfies the periodicity 
condition with an integer period p and is represented as 
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where K = (N-1)/p that is the largest integer less than or equal to (N-1)/p. The sequence 
{tp(n)}0n<p corresponds to a waveform of the signal within a period and is defined over the 
interval [0, p-1]. tp(n) = 0 for n  p and n < 0. This sequence is referred to as the p-periodic 
template. The sequence {a(n)}0n<N represents the envelope of the periodic signal. If the 
amplitude coefficient a(n) is constant, the model is reduced to  

   



K

k
pp kpntnf

0
.                                                             (2) 

Several periodic decomposition methods based on the periodic signal model (2) have been 
proposed [6] [7] [8] [9]. These methods decompose a signal f(n) into a set of the periodic 
signals as: 
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where P is a set of periods for the decomposition. This signal decomposition can be 
represented in the matrix form as: 
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where tp is the vector which corresponds to the p-periodic template. The i-th column vector 
of Ap represent an impulse train with a period p. The elements of Up are defined as 
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The subspace that is spanned by the column vectors of Up is referred to as the p-periodic 
subspace [8] [9]. 
If the estimations of the periods hidden in signal f are available, we can choose the periodic 
subspaces with the periods that are estimated before the decomposition. For MAS [6], the 
signal is decomposed into periodic subsignals as the least-squares solution along with an 
additional constrained matrix. In Ref. [8], the periodic bases are chosen to decompose a 
signal into orthogonal periodic subsignals. Therefore, these methods require that the 
number of the periodic signals and their periods have to be estimated before decomposition. 
Periodic decomposition methods that do not require predetermined periods have also been 
proposed. In Ref. [7], the concept of periodicity transform is proposed. Periodicity transform 
decomposes a signal by projecting it onto a set of periodic subspaces. Each subspace consists 
of all possible periodic signals with a specific period. In this method, seeking periodic 
subspaces and rejecting found periodic subsignals from an input signal are performed 
iteratively. Since a set of the periodic subspaces lacks orthogonality and is redundant for 
signal representation, the decomposition result depends on the order of the subspaces onto 
which the signals are projected. In Ref. [7], four different signal decomposition methods -
small to large, best correlation, M-best, and best frequency - have been proposed. In Ref. [9], 
the penalty of sparsity is imposed on the decomposition results in order to reduce the 
redundancy of the decomposition. 
In this chapter, we discuss the decomposition of mixtures of the periodic signals with time-
varying amplitude that can be represented in the form of (1). To simplify the periodic signal 
model, we assume that the amplitude of the periodic signal varies slowly and can be 
approximated to be constant within a period. By this simplification, we define an 
approximate model for the periodic signals with time-varying amplitude as 



Sparse	signal	decomposition	for	periodic	signal	mixtures	 153

 

periodic subsignals obtained by the decomposition and represent the mixture with only 
significant periodic subsignals, we impose a sparsity penalty on the decomposition. This 
penalty is defined as the sum of l2 norms of the resultant periodic subsignals to find the 
shortest path to the approximation of the mixture. The waveforms and amplitude of the 
hidden periodic signals are iteratively estimated with the penalty of sparsity. The proposed 
periodic decomposition can be interpreted as a sparse coding [15] [16] with non-negativity 
of the amplitude and the periodic structure of signals. 
In our approach, the decomposition results are associated with the fundamental frequencies 
of the source signals in the mixture. So, the pitches of the source signals can be detected 
from the mixtures by the proposed decomposition. 
First, we explain the definition of the model for the periodic signals. Then, the cost function 
that is a sum of the approximation error and the sparsity penalty is defined for the periodic 
decomposition. A relaxation algorithm [9] [10] [18] for the sparse periodic decomposition is 
also explained. The source estimation capability of our decomposition method is 
demonstrated by several examples of the decomposition of synthetic periodic signal 
mixtures. Next, we apply the proposed decomposition to speech mixtures and demonstrate 
the speech separation. In this experiment, the ideal separation performance of the proposed 
decomposition is compared with the separation method obtained by an ideal binary 
masking [10] of a STFT. Finally, we provide the results of the single-channel speech 
separation with simple assignment technique to demonstrate the possibility of the proposed 
decomposition. 

 
2. Periodic decomposition of signals  

For signal analysis, the periodic decomposition methods that decompose a signal into a sum 
of periodic signals have been proposed. Most fundamental periodic signal is a sinusoid. In 
speech processing area, the sinusoidal modeling [1] that represents the signal into the linear 
combination of sinusoids with various frequencies is utilized. The sinusoidal representation 
of the signal f(n) with constant amplitude and constant frequencies is obtained as the form of 
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This model relies on the estimation of the parameters of the model. Many estimation 
techniques have been proposed for the parameters. If the frequencies {j}1jJ are 
harmonically related, all frequencies are assumed to be the multiples of the fundamental 
frequency. To detect the fundamental frequencies from mixtures of source signals that has 
periodical nature, multiple pitch detection algorithms have been proposed [2][3][4]. 
The signal modelling with (1) is a parametric modeling of the signal. On the contrast, the 
non-parametric modeling techniques that obtain a set of periodic signals that are specified in 
time-domain have been also proposed. 
For time-domain approach of the periodic decomposition, the periodic signal is defined as a 
sum of time-translated waveforms. Let us suppose that a sequence {fp(n)}0n<N is a finite 
length periodic signal with a length N and an integer period p2. It satisfies the periodicity 
condition with an integer period p and is represented as 
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where K = (N-1)/p that is the largest integer less than or equal to (N-1)/p. The sequence 
{tp(n)}0n<p corresponds to a waveform of the signal within a period and is defined over the 
interval [0, p-1]. tp(n) = 0 for n  p and n < 0. This sequence is referred to as the p-periodic 
template. The sequence {a(n)}0n<N represents the envelope of the periodic signal. If the 
amplitude coefficient a(n) is constant, the model is reduced to  
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Several periodic decomposition methods based on the periodic signal model (2) have been 
proposed [6] [7] [8] [9]. These methods decompose a signal f(n) into a set of the periodic 
signals as: 
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where P is a set of periods for the decomposition. This signal decomposition can be 
represented in the matrix form as: 
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where tp is the vector which corresponds to the p-periodic template. The i-th column vector 
of Ap represent an impulse train with a period p. The elements of Up are defined as 
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The subspace that is spanned by the column vectors of Up is referred to as the p-periodic 
subspace [8] [9]. 
If the estimations of the periods hidden in signal f are available, we can choose the periodic 
subspaces with the periods that are estimated before the decomposition. For MAS [6], the 
signal is decomposed into periodic subsignals as the least-squares solution along with an 
additional constrained matrix. In Ref. [8], the periodic bases are chosen to decompose a 
signal into orthogonal periodic subsignals. Therefore, these methods require that the 
number of the periodic signals and their periods have to be estimated before decomposition. 
Periodic decomposition methods that do not require predetermined periods have also been 
proposed. In Ref. [7], the concept of periodicity transform is proposed. Periodicity transform 
decomposes a signal by projecting it onto a set of periodic subspaces. Each subspace consists 
of all possible periodic signals with a specific period. In this method, seeking periodic 
subspaces and rejecting found periodic subsignals from an input signal are performed 
iteratively. Since a set of the periodic subspaces lacks orthogonality and is redundant for 
signal representation, the decomposition result depends on the order of the subspaces onto 
which the signals are projected. In Ref. [7], four different signal decomposition methods -
small to large, best correlation, M-best, and best frequency - have been proposed. In Ref. [9], 
the penalty of sparsity is imposed on the decomposition results in order to reduce the 
redundancy of the decomposition. 
In this chapter, we discuss the decomposition of mixtures of the periodic signals with time-
varying amplitude that can be represented in the form of (1). To simplify the periodic signal 
model, we assume that the amplitude of the periodic signal varies slowly and can be 
approximated to be constant within a period. By this simplification, we define an 
approximate model for the periodic signals with time-varying amplitude as 
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In order to represent a periodic component without a DC component, the average of fp(n) 
over the interval [0, p-1] is zero. The amplitude coefficients ap, k are restricted to non-negative 
values.  
These p-periodic signals can also be represented in a matrix form as well as the previous 
periodic signal model. The matrix representation of (6) is defined as 

ppp tAf                                                                        (7) 
In this form, the amplitude coefficients and the template are represented in an N by p matrix 
Ap and a p-dimensional template vector tp, which is associated with the sequence tp(n), 
respectively. Ap is a union of the matrices as 

 T1,2,1, ,  Kpppp DDDA                                                         (8) 
where superscript T denotes transposition. 
{ Dp, j}1  j  K+1 are p by p diagonal matrices whose elements correspond to ap, j-1. Dp, K+1 is the p 
by N-pK matrix whose non-zero coefficients that correspond to ap, K appear only in (i, i) 
elements. Since only one element is non-zero in any row of the Ap, the column vectors of Ap 
are orthogonal to each other. The l2 norm of each column vector is supposed to be 
normalized to unity. In (6), the average of the waveform over the interval [0, p-1] must be 
zero. Hence, the condition 

0T pp tu                                                                        (9) 
where up is a vector, of which elements correspond to the diagonal elements of Dp, 1. 
Alternatively, the p-periodic signal in (2) can be represented as 

ppp aTf  .                                                                    (10) 
In this form, the amplitude coefficients and the template are represented in a N by K+1 
matrix Tp and K+1-dimensional amplitude coefficients vector ap whose elements are 
associated with the amplitude coefficients ap, k, respectively. Tp consists of the column 
vectors that correspond to the shifted versions of the p-periodic template. As same as Ap, 
only one element is non-zero in any row of Tp. So, we defined Tp as the matrix which 
consists of the normalized vectors that are orthogonal to each other. 
In this study, we propose an approximate decomposition method that obtains a 
representation of a given signal f as a form: 
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where e is an approximation error between the model and the signal f. 
We suppose that the signal f is a mixture of some periodic signals that can be approximated 
by the form of (2), however, the periods of the source signals are unknown. So, we specify 
the set of periods P as a set of all possible periods of the source signals for the 
decomposition. If the number of the periods in P is large, the set of the periodic signals 
{fp }pP that approximate the signal f with small error is not unique. To achieve the 
significant decomposition with the periodic signals that are represented in the form of (2), 
we introduce the penalty of the sparsity into the decomposition. 

 

 

3. Sparse decomposition of signals 

In Ref. [15] [16] [17], sparse decomposition methods that are capableof decomposing a signal 
into a small number of basis vectors that belong to an overcomplete dictionary have been 
proposed. Basis pursuit (BP) [17] is a well known sparse decomposition method and 
decomposes a signal into the vectors of a predetermined overcomplete dictionary. The 
signal f is represented as c, where  and c are the matrix that contains the normalized 
basis vectors and the coefficient vector, respectively. 
In sparse decomposition, the number of basis vectors in  is larger than the dimensionality 
of the signal vector f. For this decomposition, the penalty of the sparsity is defined as l1-
norm of c. The signal decomposition by BP is represented as a constrained minimization 
problem as follows: 

1min c  subject to cf                                                       (12) 

where 1 denotes the l1 norm of a vector. 
Since the l1-norm is defined as the sum of the absolutes of the elements in the coefficient 
vector c, BP determines the shortest path to the signal from the origin through the basis 
vectors. The number of the basis vectors with nonzero coefficients obtained by choosing the 
shortest path is much smaller than the least square solution obtained by minimizing the l2-
norm [17]. 
Usually, (12) is solved by linear programming [17]. However, it is difficult to apply linear 
programming to the large number of samples that appear in signal processing applications. 
So, an approximation of the solution of BP is obtained from the penalty problem of (12) as 
follows: 

1
2
22
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                                                   (13) 

where  denotes a Lagrange multiplier. 2 denotes the l2 norm of the vector. This 
unconstrained minimization problem is referred to as a basis pursuit denoising (BPDN) [17] 
[18]. When  is specified as a union of orthonormal bases, an efficient relaxation algorithm 
can be applied [18]. 
From Bayesian point of view, the minimization (13) is the equivalent of MAP estimation of 
the coefficient vector c under the assumption that the probability distribution of each 
element of the coefficient vector is an identical Laplace distribution [15]. 
The dictionary  is fixed for signal representation in the BP and BPDN. In a sparse coding 
strategy [15] [16], the dictionary  is adapted to the set of the signals. The dictionary is 
updated with the most probable one under the estimated sparse coefficients and the set of 
the signals [15]. 
For our periodic decomposition, we also impose the sparsity penalty on the decomposition 
under the assumption that the mixture contains a small number of periodic signals that can 
be approximated in the form of (6). Our objective is to achieve signal decomposition to 
obtain a small number of periodic subsignals rather than basis vectors. In order to achieve 
this, we define the sparsity measure as the sum of l2 norms of the periodic subsignals to find 
the shortest path to the approximation of the signal as well as BPDN. 
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In order to represent a periodic component without a DC component, the average of fp(n) 
over the interval [0, p-1] is zero. The amplitude coefficients ap, k are restricted to non-negative 
values.  
These p-periodic signals can also be represented in a matrix form as well as the previous 
periodic signal model. The matrix representation of (6) is defined as 
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In this form, the amplitude coefficients and the template are represented in an N by p matrix 
Ap and a p-dimensional template vector tp, which is associated with the sequence tp(n), 
respectively. Ap is a union of the matrices as 
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zero. Hence, the condition 

0T pp tu                                                                        (9) 
where up is a vector, of which elements correspond to the diagonal elements of Dp, 1. 
Alternatively, the p-periodic signal in (2) can be represented as 
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In this form, the amplitude coefficients and the template are represented in a N by K+1 
matrix Tp and K+1-dimensional amplitude coefficients vector ap whose elements are 
associated with the amplitude coefficients ap, k, respectively. Tp consists of the column 
vectors that correspond to the shifted versions of the p-periodic template. As same as Ap, 
only one element is non-zero in any row of Tp. So, we defined Tp as the matrix which 
consists of the normalized vectors that are orthogonal to each other. 
In this study, we propose an approximate decomposition method that obtains a 
representation of a given signal f as a form: 
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where e is an approximation error between the model and the signal f. 
We suppose that the signal f is a mixture of some periodic signals that can be approximated 
by the form of (2), however, the periods of the source signals are unknown. So, we specify 
the set of periods P as a set of all possible periods of the source signals for the 
decomposition. If the number of the periods in P is large, the set of the periodic signals 
{fp }pP that approximate the signal f with small error is not unique. To achieve the 
significant decomposition with the periodic signals that are represented in the form of (2), 
we introduce the penalty of the sparsity into the decomposition. 
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where 1 denotes the l1 norm of a vector. 
Since the l1-norm is defined as the sum of the absolutes of the elements in the coefficient 
vector c, BP determines the shortest path to the signal from the origin through the basis 
vectors. The number of the basis vectors with nonzero coefficients obtained by choosing the 
shortest path is much smaller than the least square solution obtained by minimizing the l2-
norm [17]. 
Usually, (12) is solved by linear programming [17]. However, it is difficult to apply linear 
programming to the large number of samples that appear in signal processing applications. 
So, an approximation of the solution of BP is obtained from the penalty problem of (12) as 
follows: 
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where  denotes a Lagrange multiplier. 2 denotes the l2 norm of the vector. This 
unconstrained minimization problem is referred to as a basis pursuit denoising (BPDN) [17] 
[18]. When  is specified as a union of orthonormal bases, an efficient relaxation algorithm 
can be applied [18]. 
From Bayesian point of view, the minimization (13) is the equivalent of MAP estimation of 
the coefficient vector c under the assumption that the probability distribution of each 
element of the coefficient vector is an identical Laplace distribution [15]. 
The dictionary  is fixed for signal representation in the BP and BPDN. In a sparse coding 
strategy [15] [16], the dictionary  is adapted to the set of the signals. The dictionary is 
updated with the most probable one under the estimated sparse coefficients and the set of 
the signals [15]. 
For our periodic decomposition, we also impose the sparsity penalty on the decomposition 
under the assumption that the mixture contains a small number of periodic signals that can 
be approximated in the form of (6). Our objective is to achieve signal decomposition to 
obtain a small number of periodic subsignals rather than basis vectors. In order to achieve 
this, we define the sparsity measure as the sum of l2 norms of the periodic subsignals to find 
the shortest path to the approximation of the signal as well as BPDN. 
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4. Sparse periodic decomposition 

4. 1 Cost function for periodic decomposition 
For our periodic decomposition, we also impose the sparsity penalty on the decomposition 
under the assumption that the mixture consists of a small number of periodic signals that 
can be approximated in the form of (2). Our objective is to achieve signal decomposition 
with a small number of periodic subsignals rather than the basis vectors. In order to achieve 
this, the probability distribution of the l2 norm of each periodic signal is assumed to be a 
Laplace distribution, and then the probability distribution of the set of the periodic signals is 
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The noise is assumed to be Gaussian, and then the conditional probability distribution of f is 
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Along with Bayes' rule, the conditional probability distribution of the set of the periodic 
signals is 
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Substituting the prior distributions of the periodic signals and the noise into (16), we can 
derive the likelihood function of the set of periodic signals. From the likelihood function, we 
define the cost function E for the periodic decomposition as: 
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In our periodic decomposition, a signal f is decomposed into a set of periodic subsignals 
while reducing the cost E and maximizing the likelihood. 
In the cost for BPDN (12), the sparsity penalty is defined as the l1-norm of the coefficient 
vector that is identical the total length of the decomposed vector of the signal. In our 
periodic decomposition, the sparsity penalty is also defined as the sum of the decomposed 
vectors that are represented in the form of the periodic signal model shown in (6). 

 
4. 2 Algorithm for sparse periodic decomposition 
To find the set of the periodic subsignals {fp}pP, we employ a relaxation algorithm. This 
relaxation algorithm always updates one chosen periodic subsignal while decreasing the 
cost function (17). The template vector tp and amplitude vector ap of the chosen period p are 
alternatively updated in an iteration. In the algorithm, we suppose that the set of the periods 
P consists of M periods which are indexed as {p1 pM}. 
The relaxation algorithm for the sparse periodic decomposition is as follows: 
 
1)   Set the initial amplitude coefficients for {Ap}.  
2)  i = 1 
3)  Compute the residual 
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 where “a  0” denotes that the all elements of the vector a is positive.  
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For stable computation, the update stage of the amplitude coefficient in Step 5) is omitted 
when the l2-norm of the template 

ipt becomes zero after Step 4). 
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()+ denotes replacing the negative elements of a vector with zero. The both solutions of the 
subproblems guarantee the decrement of the cost E. Thus, the cost E decreases until 
convergence. However, the set of the resultant periodic subsignals after the convergence of 
the iteration does not always obtain a minimum of the cost function E exactly. If any 
periodic subsignal becomes zero in iteration, the amplitude coefficients are specified to be 



Sparse	signal	decomposition	for	periodic	signal	mixtures	 157

 

4. Sparse periodic decomposition 

4. 1 Cost function for periodic decomposition 
For our periodic decomposition, we also impose the sparsity penalty on the decomposition 
under the assumption that the mixture consists of a small number of periodic signals that 
can be approximated in the form of (2). Our objective is to achieve signal decomposition 
with a small number of periodic subsignals rather than the basis vectors. In order to achieve 
this, the probability distribution of the l2 norm of each periodic signal is assumed to be a 
Laplace distribution, and then the probability distribution of the set of the periodic signals is 
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Along with Bayes' rule, the conditional probability distribution of the set of the periodic 
signals is 
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Substituting the prior distributions of the periodic signals and the noise into (16), we can 
derive the likelihood function of the set of periodic signals. From the likelihood function, we 
define the cost function E for the periodic decomposition as: 
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In our periodic decomposition, a signal f is decomposed into a set of periodic subsignals 
while reducing the cost E and maximizing the likelihood. 
In the cost for BPDN (12), the sparsity penalty is defined as the l1-norm of the coefficient 
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()+ denotes replacing the negative elements of a vector with zero. The both solutions of the 
subproblems guarantee the decrement of the cost E. Thus, the cost E decreases until 
convergence. However, the set of the resultant periodic subsignals after the convergence of 
the iteration does not always obtain a minimum of the cost function E exactly. If any 
periodic subsignal becomes zero in iteration, the amplitude coefficients are specified to be 
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constant in step 4) of the next iteration. The proper search direction for 
ipt may not be 

obtained by these amplitude coefficients. However, the l2 norms of the periodic signals that 
eliminated by the shrinkage in (21) and (23) is small enough to approximate the signal. 
Hence, we accept the periodic subsignals obtained by this algorithm as the result of the 
sparse decomposition instead of the proper minimiser of the cost E. 
 

Tested set Ave. Std. Dev 
28, 44, 52 14.6, 16.6, 12.6 2.4, 2.4, 2.2 
30, 31, 32 16.9, 21.0, 20.7 3.1, 2.7, 2.7 
50, 51, 52 10.8, 12.7, 10.8 1.7, 1.9, 1.7 

Table 1. SNR improvements (dB) obtained by the sparse periodic decomposition for 
mixtures of three periodic signals. 

 
5. Decomposition examples 

In this section, we provide several examples of the sparse periodic decomposition. The 
examples demonstrate the decomposition of synthetic signals generated by adding three 
periodic signals. The length of the mixture and three source signals N is 256. Each source 
signal is generated with the model for the periodic signals shown in (1). Each waveform 
within a period is generated by Gaussian random variables. The average of the waveform of 
a period is normalized to zero. The amplitude envelope of one of the three source signals are 
specified as a constant. The envelopes of the other two source signals are specified as a 
decreasing Gaussian function 
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respectively. The squared norms of the three source signals are normalized to unity. Since 
the three source periodic signals can be assumed to be independent to each other, the SNR 
of each source signal in the mixture is about -3.0 dB. The sets of three periods for mixtures 
are shown in the first column of Table. 1. The first set contains the periods have three 
divisors. The second and third consist of closely spaced periods. An example of the mixture 
is shown in Fig. 1(a). The three source periodic signals are shown in Fig. 1(b), (c) and (d), 
respectively. 
For the sparse periodic decomposition, the sequence of the parameters {p}pP and the 
sparsity parameter  have to be specified. The shrinkage of the l2-norm of the periodic 
component in the decomposition algorithm is performed with the threshold p in (21) and 
(23).  The periodic signal fp with the l2-norm that is less than the threshold is eliminated by 
the shrinkage. Obviously, if the residual r in (18) can be assumed to be a noise that is small 
enough to approximate the input signal, its periodic approximation has to be eliminated 
during the decomposition. We assume that the noise as a Gaussian noise with a variance 2. 
The product p is specified as proportional value to the expected l2 norm of the 

 

approximated Gaussian noise with the periodic signal model. The expected l2 norm of the 
periodic signal fp that approximates a Gaussian noise, of which envelope is constant, is 
approximated as  
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2
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Fig. 1. (a) Example of mixture of three periodic signals, the source periodic signals, (a) p = 28, 
(c) p = 44 and (d) p =52. 
 
The product p is hence specified to a value that is proportional to this expectation. In 
actual decomposition,  is assumed to be 1% of the l2-norm of the input signal. p is 
specified as the expectation shown in (25). 
In the experiments, we supposed that the period of the source signals are integer in the 
range [10, 59]. The periods for the decomposition are also defined as integers in this range. 
So, the number of the periodic signals that are obtained by the decomposition is 60. The 
iteration of the decomposition algorithm explained in Sect. 4. 2 is stopped when l-norm of 
the difference of the periodic signals before and after updating is lower than a threshold 
value. The threshold is specified as 0.01 p for all experiments. 
In order to evaluate the decomposition, we compute the improvement in SNR. The 
improvement in SNR is computed as the difference of the SNRs of the mixture and 
decomposition results for each source period. We generate 1,000 mixtures to test the 
decomposition algorithm for each set of periods. Table 1 shows the averages and standard 
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respectively. The squared norms of the three source signals are normalized to unity. Since 
the three source periodic signals can be assumed to be independent to each other, the SNR 
of each source signal in the mixture is about -3.0 dB. The sets of three periods for mixtures 
are shown in the first column of Table. 1. The first set contains the periods have three 
divisors. The second and third consist of closely spaced periods. An example of the mixture 
is shown in Fig. 1(a). The three source periodic signals are shown in Fig. 1(b), (c) and (d), 
respectively. 
For the sparse periodic decomposition, the sequence of the parameters {p}pP and the 
sparsity parameter  have to be specified. The shrinkage of the l2-norm of the periodic 
component in the decomposition algorithm is performed with the threshold p in (21) and 
(23).  The periodic signal fp with the l2-norm that is less than the threshold is eliminated by 
the shrinkage. Obviously, if the residual r in (18) can be assumed to be a noise that is small 
enough to approximate the input signal, its periodic approximation has to be eliminated 
during the decomposition. We assume that the noise as a Gaussian noise with a variance 2. 
The product p is specified as proportional value to the expected l2 norm of the 

 

approximated Gaussian noise with the periodic signal model. The expected l2 norm of the 
periodic signal fp that approximates a Gaussian noise, of which envelope is constant, is 
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Fig. 1. (a) Example of mixture of three periodic signals, the source periodic signals, (a) p = 28, 
(c) p = 44 and (d) p =52. 
 
The product p is hence specified to a value that is proportional to this expectation. In 
actual decomposition,  is assumed to be 1% of the l2-norm of the input signal. p is 
specified as the expectation shown in (25). 
In the experiments, we supposed that the period of the source signals are integer in the 
range [10, 59]. The periods for the decomposition are also defined as integers in this range. 
So, the number of the periodic signals that are obtained by the decomposition is 60. The 
iteration of the decomposition algorithm explained in Sect. 4. 2 is stopped when l-norm of 
the difference of the periodic signals before and after updating is lower than a threshold 
value. The threshold is specified as 0.01 p for all experiments. 
In order to evaluate the decomposition, we compute the improvement in SNR. The 
improvement in SNR is computed as the difference of the SNRs of the mixture and 
decomposition results for each source period. We generate 1,000 mixtures to test the 
decomposition algorithm for each set of periods. Table 1 shows the averages and standard 
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deviations of the SNR improvements of the decomposed periodic signals for 1,000 tests. The 
average SNR improvements of the decomposition results exceed 10 dB. By these results, we 
see that the proposed decomposition can obtain significant decomposition results and 
separate three sources into its periods. In Fig. 2 and 3, an example of the mixture and its 
decomposition result are shown. The discrete Fourier transform (DFT) spectrum of the 
mixture (Fig. 1(a)) is shown in Fig. 2(a). 

  
Fig. 2. (a) DFT spectrum of the mixture in Fig. 1(a)  and (b) distribution of the l2 norm of the 
decomposed periodic signals. 
 

 
Fig. 3. Decomposed periodic signals, (a) p =28, (b) p = 44 and (c) p =52. 
 
The distribution of l2 norm of the resultant periodic signals of the mixture is shown in Fig. 
2(b). As seen in Fig. 2(b), three periodic signals with large amplitude appear at the source 
periods. Small harmonics components are separated from the source periods due to the 

 

weighting of the sparsity penalty, however, the almost energy of the mixture is decomposed 
into the three source periods. In Fig. 3, the periodic signals that appear in the decomposition 
result are also shown. In this set of the periods, the harmonics with periods 1, 2, and 4 which 
are the common divisors of the source periods cannot be separated accurately. However, the 
other harmonics are well collected to three fundamental periods. 
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Fig. 4. (a) Speech signal (male, duration: 8.1 s, sampling freq. : 8 kHz) and (b) time-period 
energy distribution of (a). 
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Fig. 5. (a) Speech signal (female, duration: 8.1 s, sampling freq. : 8 kHz) and (b) time-period 
energy distribution of (a). 

 
6. Application to speech representation 

In the synthetic signal examples, the signal mixtures consist of source periodic signals with 
integer periods. However, periods of many periodic signals that include speech and acoustic 
signals are not integer. In order to examine the sparse periodic decomposition for the signals 
with non-integer periods, we apply the proposed sparse decomposition to speech mixtures. 
The speech signals for the experiments were selected 3 Japanese male and 3 female 
continuous speeches of about 8 s taken from ATR-SLDB (Spoken Language Database). The 
sampling rate of each speech signal is converted to 8 kHz. 15 speech mixtures that consist of 
two different speeches that are normalized to same power are generated. 
For periodic decomposition, each mixture is divided into segments that contain 360 samples 
with 3/4 overlap. In each segment, the periods for decomposition are specified to be 
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deviations of the SNR improvements of the decomposed periodic signals for 1,000 tests. The 
average SNR improvements of the decomposition results exceed 10 dB. By these results, we 
see that the proposed decomposition can obtain significant decomposition results and 
separate three sources into its periods. In Fig. 2 and 3, an example of the mixture and its 
decomposition result are shown. The discrete Fourier transform (DFT) spectrum of the 
mixture (Fig. 1(a)) is shown in Fig. 2(a). 
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result are also shown. In this set of the periods, the harmonics with periods 1, 2, and 4 which 
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Fig. 5. (a) Speech signal (female, duration: 8.1 s, sampling freq. : 8 kHz) and (b) time-period 
energy distribution of (a). 
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In the synthetic signal examples, the signal mixtures consist of source periodic signals with 
integer periods. However, periods of many periodic signals that include speech and acoustic 
signals are not integer. In order to examine the sparse periodic decomposition for the signals 
with non-integer periods, we apply the proposed sparse decomposition to speech mixtures. 
The speech signals for the experiments were selected 3 Japanese male and 3 female 
continuous speeches of about 8 s taken from ATR-SLDB (Spoken Language Database). The 
sampling rate of each speech signal is converted to 8 kHz. 15 speech mixtures that consist of 
two different speeches that are normalized to same power are generated. 
For periodic decomposition, each mixture is divided into segments that contain 360 samples 
with 3/4 overlap. In each segment, the periods for decomposition are specified to be 
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integers in the range [10, 120] which corresponds to the range of the fundamental 
frequencies of most men and women. The stopping rule of the iteration of the relaxation 
method and the parameters are specified as the same rule that is mentioned in Sect. 5. 
The examples of the male and female utterances and its time-period energy distributions are 
shown in Fig. 4 and Fig. 5, respectively. In Fig. 4(b) and 5(b), the brightness indicates the 
power of the resultant periodic signals for each segment and period. Darker pixels indicate 
higher powers of the resultant periodic subsignals. 

 
Fig. 6. (a) Mixture of female and male speeches and (b) time-period energy distribution of (a) 
 

Speakers Ave. SNR Min. SNR Max. SNR Ave. num. of 
periods 

(M, M) 20.1 10.4 28.9 16.1 
(F, F) 20.2 10.3 27.6 11.2 
(F, M) 20.2 10.2 28.9 14.0 

Table. 2. Average, minimum and maximum SNRs (dB) of approximated speech segments 
and average numbers of periodic signals obtained by the sparse decomposition 
 
Our method decomposes a signal into the periodic signals with only integer periods. Under 
this limitation, the speech components with non-integer periods and the frequency 
variations that occur in a segment are represented as the sum of some periodic signals. So, 
we see that the pitch contours are represented by some neighbouring periods in these time-
period distribution. Moreover, small periodic components with periods that are multiples 
and divisors of the fundamental periods appear. These periodic components appear due to 
the non-integer periodic components of the speeches and the weighting of the sparsity 
measure in (17). However, the most of the signal energy is concentrated around the 
fundamental pitch periods of the speeches. 
We also show the time-period energy distributions of the mixture of two speeches. Fig. 6(a) 
and (b) show the mixture of the source speech signals shown in Fig. 3(a) and Fig. 4(a) and its 
time-period energy distributions, respectively. We see that the time-period energy 
distribution of the mixture in Fig. 6 is almost equal to the sum of the two distributions of the 
source speeches shown in Fig. 4(b) and Fig. 5(b). The both of the pitch contours of the two 
source speeches are preserved in the distribution of the mixture. The proposed 
decomposition method can approximate the mixture while concentrating the energy of each 
speech to its pitch periods and provides sparse representation of the mixture. It is expected 
that the pitch periods of both the speech signals will be tracked in this time-period energy 

 

distribution. Moreover, speech separation will be achieved by assigning the resultant 
periodic signals to the sources. 
In order to evaluate the approximate decomposition, we compute the SNR and the number 
of the non-zero resultant periodic signals for each segment where the l2 norm is greater than 
the noise level. The average, maximum and minimum SNRs over all voice active segments 
of mixtures are shown in Table 2. In this table, F an M denote female and male source 
speeches, respectively. The average numbers of periods for approximation of a segment are 
also shown. We see that the average approximation precision of the proposed 
decomposition is about 20 dB in the segmental SNR. The average number of the periods 
yield by the decomposition is about 14 for segments of speech mixtures consist of two 
speeches. 
 

Speaker Proposed 
(with sources) 

DFT 
(with sources) 

Proposed 
(with ref. sig.) 

(M, M) 9.90.6 13.50.5 3.91.0 
(F, F) 9.50.3 13.50.5 3.20.9 
(F, M) F: 10.11.5 

M: 9.81.0 
F: 14.41.0 
M: 14.31.0 

F: 6.52.5 
M: 6.72.7 

Table  3.  Average SNRs (dB) of separated speeches. 
 
Next, we demonstrate the speech separation from a mixture with the sparse periodic 
decomposition. In this experiment, the speech separation is performed by assignment of the 
resultant periodic subsignals to the sources in each segment. 
First, we use the clean source signals for assignment of the resultant periodic signals. 
The separation is carried out by the following steps for each segment: 
 
1.  The segment of the mixture is decomposed into the set of the periodic signals {fp}pP. 
2.  The normalized correlations between the resultant periodic signals and the clean source 

segments {si}i = 1, 2 are computed. 
3.  Each resultant periodic signal fp are added to the separated output that is associated 

with the i-th source si that obtains larger correlation. 
 
For recovering source signals, each resultant periodic signal is multiplied with a Hanning 
window in each segment. This assignment method does not obtain optimum separated 
results in terms of the SNR exactly. However, this experiment gives the rough ideal 
performance of the source separation by using the proposed sparse decomposition. 
For comparison, the ideal separation results that are obtained by a STFT that is widely 
utilized for the sparse representation of speech signals are demonstrated. In the separation 
with the STFT, the ideal binary masks [20] are computed from the clean source speeches. 
The mixture and the source signals are segmented by 512 points Hamming window with 
3/4 overlap. In each segment, the DFT spectrum of the mixture and the source signals are 
computed. Each frequency bin of the DFT is assigned to the source whose amplitude of the 
frequency bin is larger than the other. The separation results obtained by the proposed 
decomposition and the DFT are shown in Table 3. 
In this table, the SNRs of the separated speech signals are shown. We see that the SNRs of 
the separated speeches obtained by the proposed method are lower than the DFT by about 
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For recovering source signals, each resultant periodic signal is multiplied with a Hanning 
window in each segment. This assignment method does not obtain optimum separated 
results in terms of the SNR exactly. However, this experiment gives the rough ideal 
performance of the source separation by using the proposed sparse decomposition. 
For comparison, the ideal separation results that are obtained by a STFT that is widely 
utilized for the sparse representation of speech signals are demonstrated. In the separation 
with the STFT, the ideal binary masks [20] are computed from the clean source speeches. 
The mixture and the source signals are segmented by 512 points Hamming window with 
3/4 overlap. In each segment, the DFT spectrum of the mixture and the source signals are 
computed. Each frequency bin of the DFT is assigned to the source whose amplitude of the 
frequency bin is larger than the other. The separation results obtained by the proposed 
decomposition and the DFT are shown in Table 3. 
In this table, the SNRs of the separated speech signals are shown. We see that the SNRs of 
the separated speeches obtained by the proposed method are lower than the DFT by about 
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4dB. In the separation obtained by the proposed method, the approximation errors caused 
during the decomposition are involved in the separated output. Since the frequency 
resolution of the periodic decomposition is lower than the DFT at high frequency bands, the 
interferences between two speeches mainly occur at high-frequencies. However, the 
proposed representation is sparser than the DFT spectrum. In this experiment, the DFT 
yields 257 frequency bins for each segment. So, the DFT based separation is the problem of 
the assignment of the 257 frequency bins. In contrast, the average number of the periodic 
signals yield by the proposed method is about 14 for a segment. Comparing the proposed 
decomposition with the DFT, the separation problem can be reduced to relatively small size 
of a combinatorial optimization by the proposed decomposition. 
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Fig. 7. Separated speech signals obtained by sparse periodic decomposition with reference 
speeches, (a) separated male speech (SNR: 7.2dB) and (b) female speech (SNR: 7.1dB) from 
the mixture shown in Fig. 5(a) 
 
In above separation experiments, we assume that the source speeches are known. Next, we 
demonstrate the single-channel speech separation by referencing the clean speech segments.  
In this scenario of the separation, two speakers in a mixture are known and the clean 
speeches of the speakers are available, but the contents of the speeches in the mixture are 
unknown. In order to assign the periodic signals to the sources, a set of the clean speech 
segments of the i-th speaker is defined as {ci, j}1jNr where Nr is the number of the reference 
segments. 
The resultant periodic signal fp is assigned to the i-th speaker that gives the maximum of the 
normalized correlation as: 
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For this experiment, segments that are generated from a clean speech of 20 s are used for the 
references of each speaker. The segments where the voice is not active are rejected from the 
references. The references do not include the source utterances in the mixtures. The SNRs 
obtained by the separation with the references are also shown in Table. 3. Obviously, such a 
simple separation method causes many false assignments. For separation of the mixture 
consists of the speakers of same gender, the averages of the improvements of SNR are lower 
than 4dB. However, the averages of SNR close to the ideal results and are about 6.5dB for 

 

the speakers of opposite gender. The separated signals from the mixture in Fig. 6(a) are 
shown in Fig. 7(a) and (b). 
The single channel speech separation methods based on frequency masking of spectrum 
have been proposed [12] [13] [14]. In these methods, statistical models for the frequency 
spectra of the speakers are preliminary learnt. The separation is performed on the frequency 
spectrum of the mixture by using the statistical models. In our approach, the proposed 
sparse decomposition yields the small number of the periodic signals which approximate 
the source signal due to the sparsity penalty. So, the separation of two speeches that have 
less similarity can be performed by such a lazy assignment method. 

 
7. Conclusions 

In this chapter, we present a sparse decomposition method for periodic signal mixtures. The 
proposed decomposition is based on the model for the periodic signals with time-varying 
amplitude and the sparsity of the periods that appear in the decomposition result. In 
decomposition experiments of the synthetic signal and the speech mixtures, we 
demonstrated that the proposed decomposition has the ability of source separation. 
The assignment method that is employed for the single-channel speech separation 
demonstrated in this paper is too simple to obtain good separation results. In our 
decomposition results, as seen in the figures in Sect. 4, the speech pitch contours are 
involved. We can use the temporal continuity of the speech pitches and spectra over the 
consecutive segments for improvement of the accuracy of the assignment.  The accurate and 
robust assignment of the decomposed periodic signals is a topic for future research. 
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1. Introduction: magnetic resonance spectroscopic (MRS) signals

A magnetic resonance spectroscopic (MRS) signal is made of several frequencies typical of the
active nuclei and their chemical environments. The amplitude of these contributions in the
time domain depends on the amount of those nuclei, which is then related to the concentration
of the substance (Hornak, 1997).
This property is exploited in many applications of MRS, in particular in the clinical one. The
MRS spectra contain a wealth of biochemical information characterizing the molecular content
of living tissues (Govindaraju et al., 2000). Therefore, MRS is a unique non-invasive tool for
monitoring human brain tumours, etc. (Devos et al., 2004), if it is well quantified.
When an MRS proton signal is acquired at short echo-time (TE), the distortion of spectral mul-
tiplets due to J-evolution can be minimized and the signals are minimally affected by trans-
verse relaxation. Such signals exhibit many more metabolite contributions, such as glutamate
and myo-inositol, compared to long TE spectra. Therefore, an MRS signal acquired at short
TE presents rich in vivo metabolic information through complicated, overlapping spectral sig-
natures. However, it is usually contaminated by water residue and a baseline which mainly
originates from large molecules, known as macromolecules. As the shape and intensity of the
baseline are not known a priori, this contribution becomes one of the major obstructions to
accurately quantify the overlapping signals from the metabolites, especially by peak integra-
tion, which is commonly used in frequency-based quantification techniques. Also, by seeing
only the frequency aspect, one loses all information about time localization.
A number of quantification techniques have been proposed, which work either in the time
domain (see Vanhamme et al. (2001) for a review) or in the frequency domain (see Mierisová
& Ala-Korpela (2001) for a review). The time-domain based methods are divided into two
main classes: on one side, non-interactive methods such as SVD-based methods (Pijnappel
et al., 1992) and, on the other side, methods based on iterative model function fitting using
strong prior knowledge such as QUEST (Ratiney et al., 2004; 2005), LCModel (Provencher,
1993), AQSES (Poullet et al., 2007), or AMARES (Vanhamme et al., 1997).
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However, there also exist techniques that analyse a signal in the two domains simultaneously
and are therefore more efficient than, say, the Fourier transform, which gives only spectral in-
formation. The result is a time-scale and or a time-frequency representation, such as provided
by the wavelet transform (WT) and the Short-Time Fourier transform (STFT). In addition, both
transforms are local, in the sense that a small perturbation of a signal which may occur during
the data acquisition will result only in a small, local modification of the transform.
A number of wavelet-based techniques have been proposed for spectral line estimation in
MRS, including the continuous wavelet transform (Delprat et al., 1992; Guillemain et al., 1992;
Serrai et al., 1997) and the wavelet packet decomposition (Mainardi et al., 2002). Among the
various possibilities, we will concentrate our discussion on the continuous wavelet transform
(CWT) with the Morlet wavelet (MWT). All wavelet calculations have been performed by our
own wavelet toolbox, called YAWTb (Jacques et al., 2007). Some of the experimental aspects
have been reported in Suvichakorn et al. (2009). For the convenience of the reader we have
collected in the Appendix the basic features and properties of the CWT.
In the following sections, we will study the performance of the Morlet WT to retrieve parame-
ters of interest such as resonances frequencies, amplitude and damping factors, for nuisances
or impairments generally encountered in in vivo MRS signals: noise, baseline, solvent, and
non-Lorentzian lineshapes.

2. The Morlet wavelet transform

The wavelet transform (WT) of a signal s(t) with respect to a basic wavelet g(t) is

S(τ, a) =
1√
a

∫

g
(

t − τ

a

)

s(t) dt

=
1

2π

√
a
∫

G(aω) S(ω) eiωτ dω, (1)

where S(ω) is the Fourier transform of the signal, a > 0 is a dilation parameter that charac-
terizes the frequency of the signal (since 1/a is essentially a frequency), τ ∈ R is a translation
parameter that indicates the localization in time and G(aω) is the complex conjugate of the
(scaled) Fourier transform of g(t). We can think of the basic wavelet as a window which slides
through the signal, giving the information at instantaneous time τ. The window is also dilated
by a, so that a small a corresponds to a high frequency of the signal, and vice versa. As a re-
sult, the WT becomes a function of both time and frequency (scale). For more details, see the
Appendix.
A technique based on the continuous wavelet transform (CWT) was proposed by Guillemain
et al. (1992). By exploiting the ability of the CWT to see the information in the two domains
simultaneously, it can extract the information from MRS signals directly without any decom-
position or pre-processing, in order to quantify an MRS signal. The technique proceeds in two
steps: (i) detection of the frequency of the peaks in MRS signals and (ii) characterization at
each detected frequency. It can be described as follows.
At a particular value of a, the WT Sa(τ) ≡ S(τ, a) can be represented in terms of its modulus
|Sa(τ)| and phase Φa(τ), namely,

Sa(τ) = |Sa(τ)|eiΦa(τ), (2)

with an instantaneous frequency

Ωa(τ) =
∂

∂τ
Φa(τ)

=
∂

∂τ
Im[ln Sa(τ)]

= Im
[

1
Sa(τ)

d
dτ

Sa(τ)

]

, (3)

Next, let us consider an MRS signal with a Lorentzian damping function, namely,

sL(t) = Ae−Dtei(ωs t+ϕ) ⇔ SL(ω) = 2πAeiϕδ(ω − (ωs + iD)), (4)

where D and ϕ denote the damping factor and the phase of the signal. Its WT is accordingly

SL(τ, a) =
√

aAeiϕe−DτeiωsτG(a(ωs + iD))

=
√

as(τ)G(a(ωs + iD)). (5)

For a Morlet function scaled by a dilation parameter a (we omit the negligible correction term,
see Eq.(A.9)), namely,

GM(aω) = exp
(

− 1
2 σ2(aω − ω0)

2), (6)

it can be seen that the modulus of S(τ, a) is maximum, i.e., ∂
∂a S(τ, a) → 0, when ∂

∂a G → 0.
Given that a > 0 and the assumption that ωs � D, the maximum can be found along the scale
ar = ω0/ωs (this is called a horizontal ridge), which then gives

GM(ar(ωs + iD)) = exp
(

σarD√
2

)2
, (7)

and consequently

Sar (τ) =
√

ar exp
(

σarD√
2

)2
s(τ), (8)

which is identical to the signal s(t) multiplied by a coefficient depending on the still unknown
D. Consider the modulus of the Morlet wavelet transform (MWT) along ar,

|Sar (τ)| =
√

ar exp
(

σarD√
2

)2
|s(τ)|

ln |Sar (τ)| =
1
2

ln a +
(

σarD√
2

)2
+ ln A − Dτ. (9)

That is,

D = − ∂

∂τ
ln |Sar (τ)|. (10)

Knowing D can now lead to the estimation of the amplitude resonance A of the signal by

A = |s(t)|eDt. (11)
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Fig. 1. (a) Phase of the Morlet wavelet transform of a signal s(t) containing two frequencies
ωs=32 and 64 rad/s and (b) its instantaneous frequency. Here σ = 1, ω0 = 5 rad/s, sampling
frequency Fs = 256 s−1, data length l = 1024 points.

Since Sar (τ) is a function of time, the derived D is also a function of time. This is beneficial for
analysing signals that do not have a steady damping function. In addition, considering the
phase of the MWT along ar, namely,

arg Sar (τ) = ωsτ + ϕ,

we also have

ωs =
∂

∂τ
arg Sar (τ)

= Ωar (τ), (12)

as in Eq.(3). Strictly speaking, the instantaneous frequency at the scale ar of the Morlet trans-
form is ωs. This can be observed in Figure 1, which shows that the instantaneous frequency
intersects the line ω0/a at a = ω0/ωs, where ωs=32 and 64 rad/s are the frequencies of the
signal. The phase of the signal ϕ ∈ (−π, π) can also be derived from the phase of the WT, if
needed. The property given in Eq.(12) is useful for analysing an n-frequency signal; it indi-
cates the actual frequencies of the signal and the scale a that we should consider. In addition,
if its frequencies are sufficiently far away from each other, so that G(aω) treats each spectral
line independently (Barache et al., 1997), the amplitude at each frequency can thus be derived.
When two frequencies are very close to each other (this also depends on the sampling fre-
quency), increasing the frequency of the Morlet function ω0 can better localize and distinguish
the overlapping frequencies. On the other hand, ωs can be obtained iteratively by

1. Initializing a = ai at some values.
2. Calculating the instantaneous frequency, namely Ωai .
3. Assigning the new value to ai+1 = ω0/Ωai .
4. Repeating the process until a converges to ωs.

Figure 2 illustrates an overlap of two frequencies and the derived instantaneous frequencies
using the iteration method. The derived frequencies converge to the true frequencies within a
few steps.
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Fig. 2. (a) The MWT of y(t) = exp(i55t) + exp(i60t) and (b) its instantaneous frequencies
when using the iterative method. Here σ = 1, ω0 = 5.5 rad/s, Fs = 800 s−1, l = 1024 points.
(c) Comparison of the instantaneous frequencies by the non-iterative and the iterative method.
The symbol ◦ indicates an initial value of a.

3. Continuous Wavelet Transform and the in vivo MRS challenges

3.1 Gaussian White Noise
An in vivo MRS signal is always impaired by additive noise, which is usually assumed to be
white gaussian. This noise causes oscillations in the instantaneous frequency derived with
the CWT representation, as illustrated in Figure 3 which shows the instantaneous frequency
derived from a signal with a peak at a frequency of 32 rad/s with an additive Gaussian noise
corresponding to a signal to noise ratio (SNR) of 10.1 In order to reduce this effect, Guillemain

1 The Signal to Noise ratio SNR is defined as the ratio of the time domain first point amplitude of the
resonance to the time domain noise standard deviation
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ωs=32 and 64 rad/s and (b) its instantaneous frequency. Here σ = 1, ω0 = 5 rad/s, sampling
frequency Fs = 256 s−1, data length l = 1024 points.

Since Sar (τ) is a function of time, the derived D is also a function of time. This is beneficial for
analysing signals that do not have a steady damping function. In addition, considering the
phase of the MWT along ar, namely,

arg Sar (τ) = ωsτ + ϕ,

we also have

ωs =
∂

∂τ
arg Sar (τ)

= Ωar (τ), (12)

as in Eq.(3). Strictly speaking, the instantaneous frequency at the scale ar of the Morlet trans-
form is ωs. This can be observed in Figure 1, which shows that the instantaneous frequency
intersects the line ω0/a at a = ω0/ωs, where ωs=32 and 64 rad/s are the frequencies of the
signal. The phase of the signal ϕ ∈ (−π, π) can also be derived from the phase of the WT, if
needed. The property given in Eq.(12) is useful for analysing an n-frequency signal; it indi-
cates the actual frequencies of the signal and the scale a that we should consider. In addition,
if its frequencies are sufficiently far away from each other, so that G(aω) treats each spectral
line independently (Barache et al., 1997), the amplitude at each frequency can thus be derived.
When two frequencies are very close to each other (this also depends on the sampling fre-
quency), increasing the frequency of the Morlet function ω0 can better localize and distinguish
the overlapping frequencies. On the other hand, ωs can be obtained iteratively by

1. Initializing a = ai at some values.
2. Calculating the instantaneous frequency, namely Ωai .
3. Assigning the new value to ai+1 = ω0/Ωai .
4. Repeating the process until a converges to ωs.

Figure 2 illustrates an overlap of two frequencies and the derived instantaneous frequencies
using the iteration method. The derived frequencies converge to the true frequencies within a
few steps.
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Fig. 2. (a) The MWT of y(t) = exp(i55t) + exp(i60t) and (b) its instantaneous frequencies
when using the iterative method. Here σ = 1, ω0 = 5.5 rad/s, Fs = 800 s−1, l = 1024 points.
(c) Comparison of the instantaneous frequencies by the non-iterative and the iterative method.
The symbol ◦ indicates an initial value of a.

3. Continuous Wavelet Transform and the in vivo MRS challenges

3.1 Gaussian White Noise
An in vivo MRS signal is always impaired by additive noise, which is usually assumed to be
white gaussian. This noise causes oscillations in the instantaneous frequency derived with
the CWT representation, as illustrated in Figure 3 which shows the instantaneous frequency
derived from a signal with a peak at a frequency of 32 rad/s with an additive Gaussian noise
corresponding to a signal to noise ratio (SNR) of 10.1 In order to reduce this effect, Guillemain

1 The Signal to Noise ratio SNR is defined as the ratio of the time domain first point amplitude of the
resonance to the time domain noise standard deviation
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Fig. 3. (a) A spectrum with one resonance at 32 rad/s with SNR=10 (σn = 0.079) and (b)
its instantaneous frequency derived by the Morlet wavelet at t = 4.7 s (ω0 = 5 rad/s, σ=1,
Fs = 800 s−1).
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Fig. 4. For the signal shown in Figure 3(a): Derived Lorentzian damping factor and (b) ab-
solute frequency estimation error with respect to the averaging time, calculated at the scale
a = ω0/ωs of the Morlet wavelet transform (SNR = 10, ωs = 32 rad/s,ω0 = 5 rad/s, σ = 1, Fs =
800 s−1).

et al. (1992) suggested averaging in time the derived parameters, for instance Ωa(τ), i.e.,

Ωa =
1
T

∫ τ0+T

τ0

Ωa(τ)dτ. (13)

As can be seen in Figure 3, averaging in time reduces the noise effect on the derivation of
the instantaneous frequency.2 One can see that averaging creates many steady points. At the
scale a = ω0/32, the instantaneous frequency is about, but not exactly, 32 rad/s. Here, the

2 This property might be used for denoising, but this has not been exploited.
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Fig. 5. (a) The Fourier transform of a 1056-rad/s signal with baseline; b) Its instantaneous
frequency (ω0 = 10 rad/s, σ = 1). The baseline is modelled by a cubic spline.

averaging time is 1.56 s. Figure 4(b) shows the evolution of the absolute frequency estimation
with respect to the averaging time. Increasing the averaging time is likely to decrease the
estimation error, as illustrated in Figure 4(b). The same approach can be used to derive the
instantaneous damping factor. The estimated instantaneous damping factor is also smoother
and closer to the actual damping factor when time averaging is employed. Although the
method described above should work at any value of a, there is a particular range of a that is
meaningful, and should be wisely selected. As a rule of thumb, this range should not be far
from the scale that maximizes the modulus of the Morlet WT.

3.2 Baseline
The baseline corresponds to contributions from large molecules, with a broad frequency pat-
tern in the MRS spectrum. Thus, it becomes a major obstruction in the quantification of
metabolite contribution from the MRS signals. First, we simulate the baseline by cubic splines
in order to study the performance of the MWT when a baseline is present. In the case of
Figure 5, the simulated baseline has no effect on the instantaneous frequency derived from
the WT. Then, we used a baseline modelled with 50 randomly distributed Lorentzian pro-
files with a large damping factor, compared to the signal-of-interest at 3447 rad/s, e.g. sL(t) =
exp(−10t) exp(i3447t)+ B(t) where B(t) = exp(−50t)[0.2 exp(i3447t)+ 0.3 exp(i2000t)+ . . .]
is the baseline (see Figure 6). The first component of B(t) has the same frequency as the sig-
nal, in order to imitate the overlap between the baseline and the signal. It is found that the
modelled baseline does not prevent an accurate estimation of both the damping factor and
the amplitude derived from the Morlet WT, provided one waits until both the effect of the
baseline and the edge effect (discussed in Section 4.1 below) have died out. In the example
shown here, the waiting time is approximately 0.2 s.
The MWT in Figure 6(b) tells us that the baseline affects only the beginning of the transform in
the time (τ) axis, comparing to the long, clear peak of our 3447-rad/s signal. This means that
the baseline can be assumed to decay faster than the pure signal, and the method described
should still be effective without removing the baseline beforehand. Such an assumption has
been widely used in spectroscopic signal processing, where several authors have proposed
truncation of the initial data points in the time domain, which are believed to contain a major
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et al. (1992) suggested averaging in time the derived parameters, for instance Ωa(τ), i.e.,

Ωa =
1
T

∫ τ0+T

τ0

Ωa(τ)dτ. (13)

As can be seen in Figure 3, averaging in time reduces the noise effect on the derivation of
the instantaneous frequency.2 One can see that averaging creates many steady points. At the
scale a = ω0/32, the instantaneous frequency is about, but not exactly, 32 rad/s. Here, the

2 This property might be used for denoising, but this has not been exploited.
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Fig. 5. (a) The Fourier transform of a 1056-rad/s signal with baseline; b) Its instantaneous
frequency (ω0 = 10 rad/s, σ = 1). The baseline is modelled by a cubic spline.

averaging time is 1.56 s. Figure 4(b) shows the evolution of the absolute frequency estimation
with respect to the averaging time. Increasing the averaging time is likely to decrease the
estimation error, as illustrated in Figure 4(b). The same approach can be used to derive the
instantaneous damping factor. The estimated instantaneous damping factor is also smoother
and closer to the actual damping factor when time averaging is employed. Although the
method described above should work at any value of a, there is a particular range of a that is
meaningful, and should be wisely selected. As a rule of thumb, this range should not be far
from the scale that maximizes the modulus of the Morlet WT.

3.2 Baseline
The baseline corresponds to contributions from large molecules, with a broad frequency pat-
tern in the MRS spectrum. Thus, it becomes a major obstruction in the quantification of
metabolite contribution from the MRS signals. First, we simulate the baseline by cubic splines
in order to study the performance of the MWT when a baseline is present. In the case of
Figure 5, the simulated baseline has no effect on the instantaneous frequency derived from
the WT. Then, we used a baseline modelled with 50 randomly distributed Lorentzian pro-
files with a large damping factor, compared to the signal-of-interest at 3447 rad/s, e.g. sL(t) =
exp(−10t) exp(i3447t)+ B(t) where B(t) = exp(−50t)[0.2 exp(i3447t)+ 0.3 exp(i2000t)+ . . .]
is the baseline (see Figure 6). The first component of B(t) has the same frequency as the sig-
nal, in order to imitate the overlap between the baseline and the signal. It is found that the
modelled baseline does not prevent an accurate estimation of both the damping factor and
the amplitude derived from the Morlet WT, provided one waits until both the effect of the
baseline and the edge effect (discussed in Section 4.1 below) have died out. In the example
shown here, the waiting time is approximately 0.2 s.
The MWT in Figure 6(b) tells us that the baseline affects only the beginning of the transform in
the time (τ) axis, comparing to the long, clear peak of our 3447-rad/s signal. This means that
the baseline can be assumed to decay faster than the pure signal, and the method described
should still be effective without removing the baseline beforehand. Such an assumption has
been widely used in spectroscopic signal processing, where several authors have proposed
truncation of the initial data points in the time domain, which are believed to contain a major
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Fig. 6. (a) The Fourier transform of a 3447-rad/s Lorentzian signal with baseline. The latter is
modelled by large Lorentzian damping factors; (b) Its Morlet WT and the derived parameters:
(c) damping factor and (d) amplitude. The actual parameters are 10 s−1 and 1 a.u. for the
damping factor and amplitude, respectively. (ω0 = 100 rad/s, σ = 1). From Suvichakorn
et al. (2009).

part of the baseline. However, some information of the metabolites could be lost and a strat-
egy for properly selecting the number of data points is needed (see Rabeson et al. (2006) for
examples and further references).
Next, in order to study the characteristics of the real baseline by the Morlet wavelet, an in
vivo macromolecule MRS signal was acquired on a horizontal 4.7T Biospec system (BRUKER
BioSpin MRI, Germany). The data acquisition was done using the differences in spin-lattice
relaxation times (T1) between low molecular weight metabolites and macromolecules (Behar
et al., 1994; Cudalbu et al., 2009; 2007).
As seen in Figure 7, the metabolite-nullified signal from a volume-of-interest (VOI) central-

0 0.2 0.4 0.6 0.8 1
0

5

10
x 105

ba
se

lin
e 

am
pl

itu
de

 (a
.u

.)

0 0.2 0.4 0.6 0.8 1
0

1

2

3

4
x 104

time (s)

C
r a

m
pl

itu
de

 (a
.u

.)

acquired  baseline

simulated creatine

(a)

−1 −0.5 0 0.5 1
x 104

0

0.5

1

1.5

2

2.5
x 104

frequency (rad/s)

am
pl

itu
de

 (a
.u

.)

(b)
Fig. 7. (a) The signal of baseline + residual water (a) in time domain; and (b) in frequency
domain.
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Fig. 8. (a) Frequency response of creatine at 4.7 Tesla and (b) its Morlet WT (ω0 = 10 rad/s,
σ = 1, Fs = 4006.41 s−1). The parameters derived from the Morlet transform are D = 10 s−1,
ω1 = 1056 rad/s, A1 = 1330 a.u. and ω2 = 2168 rad/s, A1 = 1965 a.u.

ized in the hippocampus of a healthy mouse3 resulted from a combination of residual water,
baseline and noise. Compared to the simulated signal of creatine, whose frequency response
and Morlet WT are shown in Figure 8, the signal decays much faster, making it suitable to use
the Morlet wavelet to analyse the MRS signal as described earlier. For studying this, the two
signals are normalised to the same amplitude and added together. Then the amplitude of the

3 An Inversion-Recovery module was included prior to the PRESS sequence (echo-time = 20ms, repe-
tition time = 3.5s, bandwidth of 4kHz, 4096 data-points) in order to measure the metabolite-nullified
signal. The water signal was suppressed by variable power RF pulses with optimized relaxation delays
(VAPOR). All first- and second-order shimming terms were adjusted using the Fast, Automatic Shim-
ming technique by Mapping Along Projections (FASTMAP) for each VOI (3 × 3 × 3 mm3). Inversion
time = 700 ms.
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Fig. 6. (a) The Fourier transform of a 3447-rad/s Lorentzian signal with baseline. The latter is
modelled by large Lorentzian damping factors; (b) Its Morlet WT and the derived parameters:
(c) damping factor and (d) amplitude. The actual parameters are 10 s−1 and 1 a.u. for the
damping factor and amplitude, respectively. (ω0 = 100 rad/s, σ = 1). From Suvichakorn
et al. (2009).

part of the baseline. However, some information of the metabolites could be lost and a strat-
egy for properly selecting the number of data points is needed (see Rabeson et al. (2006) for
examples and further references).
Next, in order to study the characteristics of the real baseline by the Morlet wavelet, an in
vivo macromolecule MRS signal was acquired on a horizontal 4.7T Biospec system (BRUKER
BioSpin MRI, Germany). The data acquisition was done using the differences in spin-lattice
relaxation times (T1) between low molecular weight metabolites and macromolecules (Behar
et al., 1994; Cudalbu et al., 2009; 2007).
As seen in Figure 7, the metabolite-nullified signal from a volume-of-interest (VOI) central-
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Fig. 7. (a) The signal of baseline + residual water (a) in time domain; and (b) in frequency
domain.

−5000 0 5000 10000
0

200

400

600

800

1000

1200

1400

1600

1800

2000

frequency (rad/s)

am
pl

itu
de

 (a
.u

.)

(a)

translation (s)

di
la

tio
n 

pa
ra

m
et

er
 (x

 1
0−3

)

0 0.2 0.4 0.6 0.8 1

5.2

7.0

9.3

12

(b)

Fig. 8. (a) Frequency response of creatine at 4.7 Tesla and (b) its Morlet WT (ω0 = 10 rad/s,
σ = 1, Fs = 4006.41 s−1). The parameters derived from the Morlet transform are D = 10 s−1,
ω1 = 1056 rad/s, A1 = 1330 a.u. and ω2 = 2168 rad/s, A1 = 1965 a.u.

ized in the hippocampus of a healthy mouse3 resulted from a combination of residual water,
baseline and noise. Compared to the simulated signal of creatine, whose frequency response
and Morlet WT are shown in Figure 8, the signal decays much faster, making it suitable to use
the Morlet wavelet to analyse the MRS signal as described earlier. For studying this, the two
signals are normalised to the same amplitude and added together. Then the amplitude of the

3 An Inversion-Recovery module was included prior to the PRESS sequence (echo-time = 20ms, repe-
tition time = 3.5s, bandwidth of 4kHz, 4096 data-points) in order to measure the metabolite-nullified
signal. The water signal was suppressed by variable power RF pulses with optimized relaxation delays
(VAPOR). All first- and second-order shimming terms were adjusted using the Fast, Automatic Shim-
ming technique by Mapping Along Projections (FASTMAP) for each VOI (3 × 3 × 3 mm3). Inversion
time = 700 ms.
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creatine is derived with the Morlet WT. Next, we multiply the simulated, normalised creatine
by 0.5, 1, 1.5,. . . . For each of these values, we derive the amplitude and plot the result in Figure
9. The recovery of the (simulated) creatine at different amplitudes, after adding it to the base-
line signal, reveals that the amplitude of the metabolite can be correctly derived using t = 0.4
s, whereas at earlier time (t < 0.2 s) the derived amplitude still suffers from the boundary
effect (we will discuss this effect in Section 4.1). However, the metabolite signal is covered
later by noise (t = 0.77 s), giving an inaccurate amplitude estimate. Therefore, the time to
monitor the amplitude of the metabolite should be properly selected. Another data set of the
baseline4 acquired at 9.4T, with a better signal to noise ratio and a better water suppression,
shows similar characteristics (see Figure 10).
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3.3 Solvent
In MRS quantification, a large resonance from the solvent needs to be suppressed to unveil the
metabolites without altering their magnitudes. The intensity of the solvent is usually several
orders of magnitude larger than those of the metabolites.

4 received from Cristina Cubaldu, Laboratory for Functional and Metabolic Imaging (LIFMET), Ecole
Polytechnique Fédérale de Lausanne (EPFL).
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Fourier transforms and their Morlet WT.

The Morlet WT sees the signal at each frequency individually, therefore it can work well even
if the amplitudes at various frequencies are hugely different, which normally occurs when
there is a solvent peak in the signal. In order to illustrate this, the Morlet WT has been applied
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creatine is derived with the Morlet WT. Next, we multiply the simulated, normalised creatine
by 0.5, 1, 1.5,. . . . For each of these values, we derive the amplitude and plot the result in Figure
9. The recovery of the (simulated) creatine at different amplitudes, after adding it to the base-
line signal, reveals that the amplitude of the metabolite can be correctly derived using t = 0.4
s, whereas at earlier time (t < 0.2 s) the derived amplitude still suffers from the boundary
effect (we will discuss this effect in Section 4.1). However, the metabolite signal is covered
later by noise (t = 0.77 s), giving an inaccurate amplitude estimate. Therefore, the time to
monitor the amplitude of the metabolite should be properly selected. Another data set of the
baseline4 acquired at 9.4T, with a better signal to noise ratio and a better water suppression,
shows similar characteristics (see Figure 10).
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3.3 Solvent
In MRS quantification, a large resonance from the solvent needs to be suppressed to unveil the
metabolites without altering their magnitudes. The intensity of the solvent is usually several
orders of magnitude larger than those of the metabolites.

4 received from Cristina Cubaldu, Laboratory for Functional and Metabolic Imaging (LIFMET), Ecole
Polytechnique Fédérale de Lausanne (EPFL).
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The Morlet WT sees the signal at each frequency individually, therefore it can work well even
if the amplitudes at various frequencies are hugely different, which normally occurs when
there is a solvent peak in the signal. In order to illustrate this, the Morlet WT has been applied
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to the following signal

s(t) = 100e−8.5tei32t + e−1.5tei60t + e−0.5tei90t + e−tei120t + e−2tei150t, (14)

as seen in Figure 11 (a). This signal has an amplitude of 100 at 32 rad/s and 1 elsewhere. The
high amplitude can affect other frequencies if they are close to each other. This is illustrated in
Figure 11 (b) when a Hann window is applied to the signal in order to separate each frequency.
Using the aforementioned method, the amplitude of 1 is derived as 0.980, 0.911, 0.988 and
0.974 respectively. The error ranges within 1.2-8.9 %, without any preprocessing.
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Fig. 11. (a) The Fourier transform of a signal with different amplitudes and the spectrum
extracted by the Morlet wavelet and (b) by a Hann window.

3.4 Non-Lorentzian lineshape
The ideal Lorentzian lineshape assumes that the homogeneous broadening is equally con-
tributed from each individual molecule. However, imperfect shimming and susceptibility
effects from internal heterogeneity within tissues lead to non-Lorentzian lineshapes in real ex-
periments (Cudalbu et al., 2008). These effects are typically modelled by a Gaussian lineshape
(Franzen, 2002; Hornak, 1997). Since the inhomogeneous broadening is often significantly
larger than the lifetime broadening, the Gaussian lineshape is often dominant. If the line-
shape is intermediate between a Gaussian and a Lorentzian form, the spectrum can be fitted
to a convolution of the two functions (Marshall et al., 2000; Ratiney et al., 2008). Such lineshape
is known as a Voigt profile.
Next we will explore how the Morlet WT can deal with the Gaussian and Voigt lineshapes.
Consider a pure Gaussian function modulated at the frequency ωs, namely,

sG(t) = Ae−γt2
eiωs t. (15)

Its Morlet WT is

SG(τ, a) =
1√
a

∫

gM

(

t − τ

a

)

sG(t) dt

=
A

2π
√

aσ

∫

e−γt2
eiωs te−

(

t−τ√
2σa

)2

e−iω0( t−τ
a )dt

=
A

2π
√

aσ

∫

e−(k1t2+k2t+k3)dt, (16)

where

k1 = γ +
1

2σ2a2

k2 = −i(ωs −
ω0
a
)− τ

σ2a2

k3 = −i
ω0τ

a
+

τ2

2σ2a2 .

Eq.(16) is known as a Gaussian integral and can be computed explicitly:

∫ ∞

−∞
e−(k1t2+k2t+k3)dt =

√

π

k1
e

k2
2

4k1
−k3 . (17)

As a result, the Morlet WT at the scale ar = ω0/ωs is

SG,ar (τ) = k4 Ae−k5τ2
eiωsτ , (18)

where

k4 =

√

ar

2π(2γσ2a2
r + 1)

k5 =
γ

2γσ2a2
r + 1

,

which is also a Gaussian function at the frequency ωs. The width and amplitude of this new
Gaussian function are functions of ωs and of the width of the original Gaussian signal sG(t).
Therefore, similarly to the process of the Lorentzian lineshape, the amplitude (A) and the
width of the Gaussian function (inversely proportional to γ) can be obtained as follows:

1. Find ωs =
∂

∂τ arg SG,ar (τ).

2. Find γ from the second derivative of ln |SG,ar (τ)|, which yields

γ = − 0.5
(

∂2

∂τ2 ln |SG,ar (τ)|
)−1

+ σ2a2
r

. (19)

3. Find A from the calculated ωs and γ.

On the other hand, the Morlet WT at the scale ar = ω0/ωs of a Voigt lineshape,

sV(t) = Ae−γt2
e−Dteiωs t, (20)

is given by
SV,ar (τ) = k6 Ae−k5(τ−k7)2

eiωsτ , (21)

where

k6 = k4e
−D2

4γ

k7 =
D
2γ

.
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as seen in Figure 11 (a). This signal has an amplitude of 100 at 32 rad/s and 1 elsewhere. The
high amplitude can affect other frequencies if they are close to each other. This is illustrated in
Figure 11 (b) when a Hann window is applied to the signal in order to separate each frequency.
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The ideal Lorentzian lineshape assumes that the homogeneous broadening is equally con-
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effects from internal heterogeneity within tissues lead to non-Lorentzian lineshapes in real ex-
periments (Cudalbu et al., 2008). These effects are typically modelled by a Gaussian lineshape
(Franzen, 2002; Hornak, 1997). Since the inhomogeneous broadening is often significantly
larger than the lifetime broadening, the Gaussian lineshape is often dominant. If the line-
shape is intermediate between a Gaussian and a Lorentzian form, the spectrum can be fitted
to a convolution of the two functions (Marshall et al., 2000; Ratiney et al., 2008). Such lineshape
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Fig. 12. (a) The modulus of the Morlet WT (ω0 = 15 rad/s) of a signal of a frequency 60 rad/s
with (a) undamped s(t) = ei60t; (b) Lorentzian s(t) = e−tei60t; (c) Gaussian s(t) = e−t2

ei60t;
and (d) Voigt s(t) = e−te−t2

ei60t lineshape.

That is, at the scale ar, the Morlet WT of the Voigt lineshape is also a Gaussian function with
the same width, but shifted in time, with the amplitude smaller than that of the Gaussian
lineshape, and its instantaneous frequency is also equal to ωs.
Note that the scale ar = ω0/ωs does not give exactly the maximum modulus of the WT.
However, as seen in Figure 12, the modulus of the Morlet WT of a signal with a Lorentzian
lineshape or a Gaussian lineshape (and also a Voigt lineshape) are maximal at the same scale
ar, provided that a ∈ R and ωs � D.
Figure 13 shows that the second derivative of the modulus of the Morlet WT can be used to
describe the second-order broadening of the lineshape, no matter whether it is Gaussian or
Voigt. In the case of a Voigt lineshape, γ actually gives back a Lorentzian whose damping
factor is obtained by Eq.(10).
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Fig. 13. The Gaussian damping factor derived from the pure Gaussian signal and the Voigt
signal considered in Figure 12

0.18 0.2 0.22 0.24 0.26 0.28 0.3 0.32 0.34

54

56

58

60

62

64

66

dilation parameter (a)

in
st

an
ta

ne
ou

s 
fre

qu
en

cy
 (r

ad
/s

)

Lorentzian
Gaussian
Voigt
Kubo (α =4)

(a)

0 1 2 3 4 5 6 7 8
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

translation (seconds)

am
pl

itu
de

Lorentzian
Gaussian
Voigt
Kubo (α =4)

(b)

Fig. 14. (a) The comparison of the derived instantaneous frequency of the Morlet WT of
a signal of a frequency 60 rad/s with different lineshapes, e.g. Lorentzian s(t) = e−tei60t,
Gaussian s(t) = e−t2

ei60t, Voigt s(t) = e−te−t2
ei60t and Kubo s(t) = e−0.25(e−t−1+t)ei60t at t=

4.7 s. Panel (b) shows the modulus of the Morlet WT of each line at ar = ω0/60. Note: σ =1,
ω0 =15 rad/s, Fs = 800 s−1, l = 1024 points.

Kubo’s lineshape
The interaction between the Lorentzian and Gaussian broadening of lineshape depends on
the time scale. For example, if the relaxation time (T2) is much longer than any effect modu-
lating the energy of a molecule, the lineshape will approach the Lorentzian lineshape. On the
contrary, if T2 is short, the lineshape is likely to be Gaussian. In order to account for this time
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ei60t;
and (d) Voigt s(t) = e−te−t2

ei60t lineshape.

That is, at the scale ar, the Morlet WT of the Voigt lineshape is also a Gaussian function with
the same width, but shifted in time, with the amplitude smaller than that of the Gaussian
lineshape, and its instantaneous frequency is also equal to ωs.
Note that the scale ar = ω0/ωs does not give exactly the maximum modulus of the WT.
However, as seen in Figure 12, the modulus of the Morlet WT of a signal with a Lorentzian
lineshape or a Gaussian lineshape (and also a Voigt lineshape) are maximal at the same scale
ar, provided that a ∈ R and ωs � D.
Figure 13 shows that the second derivative of the modulus of the Morlet WT can be used to
describe the second-order broadening of the lineshape, no matter whether it is Gaussian or
Voigt. In the case of a Voigt lineshape, γ actually gives back a Lorentzian whose damping
factor is obtained by Eq.(10).
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ei60t, Voigt s(t) = e−te−t2
ei60t and Kubo s(t) = e−0.25(e−t−1+t)ei60t at t=

4.7 s. Panel (b) shows the modulus of the Morlet WT of each line at ar = ω0/60. Note: σ =1,
ω0 =15 rad/s, Fs = 800 s−1, l = 1024 points.

Kubo’s lineshape
The interaction between the Lorentzian and Gaussian broadening of lineshape depends on
the time scale. For example, if the relaxation time (T2) is much longer than any effect modu-
lating the energy of a molecule, the lineshape will approach the Lorentzian lineshape. On the
contrary, if T2 is short, the lineshape is likely to be Gaussian. In order to account for this time



Signal	Processing182

1 2 3 4 5 6 7 8 9 10
−16

−14

−12

−10

−8

−6

−4

−2

0

γ

∂ t ln
 IS

(t)
I

α= 4
α=1
α=0.25

Fig. 15. ∂
∂τ ln |SG,ar (τ)| with respect to Kubo’s γ for the pure gaussian signal given in Eq.(15), at the scale

ar = ω0/ωs. We have put α = γ/ς, where γ and ς are the two parameters of the Kubo lineshape defined
in Eq.(22).

scale, Kubo (1969) uses a so-called Gaussian-Markovian modulation, namely

s(t) = A exp
(

− ς2

γ2

(

e−γt − 1 + γt
) )

. (22)

The parameter γ is inversely proportional to T2 and ς is the amplitude of the solvent-induced
fluctuations in the frequency. If α = γ/ς � 1, the lineshape becomes Gaussian, whereas
α � 1 leads to Lorentzian. The width of the lineshape is ς2γ.
Solving Eq.(22) seems to be complicated, though may be possible. However, it turns out that
the maximum modulus of the Morlet WT of a Kubo lineshape at ωs = 60 rad/s occurs also at
the scale ar = ω0/ωs, like those of the Gaussian and Lorentzian lineshapes. In addition, the
instantaneous frequency is still able to derive the ωs, even better than the Gaussian lineshape,
as shown in Figure 14(a), although the amplitude is broader than those of the Lorentzian,
Gaussian or Voigt profiles, as shown in Figure 14(b). The damping parameters can also be
derived by the linear relation between ∂

∂τ ln |SG,ar (τ)| and γ, as seen in Figure 15, whereas α

is related directly to ∂2

∂τ2 ln |SG,ar (τ)|.

4. Limitations of the Morlet wavelet transform

In the previous section, the Morlet WT shows its potential for analysing an MRS signal by
means of its amplitude and phase, in addition to its time-frequency representation. However,
these techniques can be applied to well-defined lineshapes only. Another limitation is the
requirement of a proper ω0 that should distinguish the signal from the solvent, but should not
introduce noise in the result. In this section, we will look further on some more limitations
that prevent the use of the Morlet WT to quantify MRS signals directly.

4.1 Edge effects
Errors in the wavelet analysis can occur at both ends of the spectrum due to the limited time
series. The region of the wavelet spectrum in which effects become important5 increases lin-
early with the scale a, thus it has a conic shape at both ends, as already seen in Figure 1(a)
(see also the Appendix). The size of the forbidden region, which is affected by the boundary
effect, varies with the frequency ω0 of the Morlet wavelet function and the ratio between the
frequency of the signal (ωs) and the sampling frequency (Fs). Figure 16 shows that the size
becomes larger for a large ω0 and low ωs/Fs. In practice, the working region is chosen so that
the edge effects are negligible outside and the characterization of the MRS signals should be
made inside this region, disregarding the presence of the macromolecular contamination.
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Fig. 16. Lines showing the width (in number of sample points) of the forbidden regions where
the boundary effect becomes important, as a function of ω0 (rad/s) and the ratio between the
signal frequency (ωs) and the sampling frequency (Fs). From (Suvichakorn et al., 2009).

4.2 Interacting/overlapping frequencies
If two frequencies of the signal are close to each other, the wavelet can interact with both
of them at the same time. This was already observed in Figure 2(a). Barache et al. (1997)
suggested the use of a linear equation system to solve the problem. In the sequel, the simu-
lated N-Acetyl Aspartate (NAA) is used to illustrate how the problem could be solved. The
spectrum of the NAA, shown in Figure 17(a), is composed of two different regions, the high,
single peak (NAA–acetyl part) and a group of overlapping frequencies (NAA–aspartate part).
By using a high ω0 to separate the overlapping frequencies, the Morlet WT reveals that there
are eight frequency peaks in the group as seen in Figure 17(b). The damping factors of the
two parts of NAA are shown in Figure 18(a). Applying Eq.(10) directly to each peak causes
an oscillation in the derived damping factor, compared to the smooth and stationary damping

5 defined as the e-folding time for the autocorrelation of wavelet power at each scale.
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scale, Kubo (1969) uses a so-called Gaussian-Markovian modulation, namely
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The parameter γ is inversely proportional to T2 and ς is the amplitude of the solvent-induced
fluctuations in the frequency. If α = γ/ς � 1, the lineshape becomes Gaussian, whereas
α � 1 leads to Lorentzian. The width of the lineshape is ς2γ.
Solving Eq.(22) seems to be complicated, though may be possible. However, it turns out that
the maximum modulus of the Morlet WT of a Kubo lineshape at ωs = 60 rad/s occurs also at
the scale ar = ω0/ωs, like those of the Gaussian and Lorentzian lineshapes. In addition, the
instantaneous frequency is still able to derive the ωs, even better than the Gaussian lineshape,
as shown in Figure 14(a), although the amplitude is broader than those of the Lorentzian,
Gaussian or Voigt profiles, as shown in Figure 14(b). The damping parameters can also be
derived by the linear relation between ∂

∂τ ln |SG,ar (τ)| and γ, as seen in Figure 15, whereas α

is related directly to ∂2

∂τ2 ln |SG,ar (τ)|.

4. Limitations of the Morlet wavelet transform

In the previous section, the Morlet WT shows its potential for analysing an MRS signal by
means of its amplitude and phase, in addition to its time-frequency representation. However,
these techniques can be applied to well-defined lineshapes only. Another limitation is the
requirement of a proper ω0 that should distinguish the signal from the solvent, but should not
introduce noise in the result. In this section, we will look further on some more limitations
that prevent the use of the Morlet WT to quantify MRS signals directly.

4.1 Edge effects
Errors in the wavelet analysis can occur at both ends of the spectrum due to the limited time
series. The region of the wavelet spectrum in which effects become important5 increases lin-
early with the scale a, thus it has a conic shape at both ends, as already seen in Figure 1(a)
(see also the Appendix). The size of the forbidden region, which is affected by the boundary
effect, varies with the frequency ω0 of the Morlet wavelet function and the ratio between the
frequency of the signal (ωs) and the sampling frequency (Fs). Figure 16 shows that the size
becomes larger for a large ω0 and low ωs/Fs. In practice, the working region is chosen so that
the edge effects are negligible outside and the characterization of the MRS signals should be
made inside this region, disregarding the presence of the macromolecular contamination.
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Fig. 16. Lines showing the width (in number of sample points) of the forbidden regions where
the boundary effect becomes important, as a function of ω0 (rad/s) and the ratio between the
signal frequency (ωs) and the sampling frequency (Fs). From (Suvichakorn et al., 2009).

4.2 Interacting/overlapping frequencies
If two frequencies of the signal are close to each other, the wavelet can interact with both
of them at the same time. This was already observed in Figure 2(a). Barache et al. (1997)
suggested the use of a linear equation system to solve the problem. In the sequel, the simu-
lated N-Acetyl Aspartate (NAA) is used to illustrate how the problem could be solved. The
spectrum of the NAA, shown in Figure 17(a), is composed of two different regions, the high,
single peak (NAA–acetyl part) and a group of overlapping frequencies (NAA–aspartate part).
By using a high ω0 to separate the overlapping frequencies, the Morlet WT reveals that there
are eight frequency peaks in the group as seen in Figure 17(b). The damping factors of the
two parts of NAA are shown in Figure 18(a). Applying Eq.(10) directly to each peak causes
an oscillation in the derived damping factor, compared to the smooth and stationary damping

5 defined as the e-folding time for the autocorrelation of wavelet power at each scale.
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Fig. 17. NAA : (a) Frequency response; (b) Its Morlet wavelet transform for ω0 = 100 rad/s
(left) and ω0 = 500 rad/s (right). From (Suvichakorn et al., 2009).

factor of the single peak. The size and frequency of the oscillation depends on the numbers
of neighbours of each peak and the spectral distance to these neighbours. A proper damping
factor can be achieved by averaging these oscillations in time.
Next, we will try to derive the amplitude of each peak. Let us consider an MRS signal com-
posed of n Lorentzian lines s(t) = e−Dt ∑n sn(t), where sn(t) = Aneiωnt+ϕn and n = 1, 2, . . .
is an indexing number. Its Morlet WT gives local maxima close to the scales a1 = ω0/ω1,
a2 = ω0/ω2, and so on. Therefore, we can establish a systematic relation between Sar and
sn(t) at each scale as follows:
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where C = [Cmn] is a matrix with

Cnn = exp
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σ2a2
nD2
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)

Cmn = exp
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σ2ω2
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ωn − ωm − iD
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]

, m �= n.

The value of |Cmn| decreases when the resonating peaks are well resolved (no overlapping
frequencies), in fact, it goes to zero when |ωm − ωn| increases, independently of D. Also,
|Cmn| decreases when ωm is high. If Cmn is not negligible (overlapping frequencies), solving
the linear equations gives the information for each sn(t).
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Fig. 18. NAA: (a) Damping function derived by Eq.(10); (b) Amplitudes of NAA–aspartate
part, derived by the linear equations (with zero phase). From (Suvichakorn et al., 2009).

The damping parameter D for the equations can be derived by Eq.(10), although the over-
lapping frequencies may cause oscillations in the solution, but these can be smoothened by
averaging in time.
There can be a bias from the estimation, depending on the number and distribution of overlap-
ping frequencies, e.g. the distance between neighbouring frequencies and ω0. For the NAA
(ω = 3447 rad/s), the bias is approximately 1% of its amplitude (in time domain), when ω0
= 200 rad/s is used. Note that Lorentzian lineshapes are assumed in these linear equations,
and the result is presented in Figure 18(b). In case of non-Lorentzian lineshapes, the arbitrary
damping function should be determined, and taken into account to solve the equation.
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factor of the single peak. The size and frequency of the oscillation depends on the numbers
of neighbours of each peak and the spectral distance to these neighbours. A proper damping
factor can be achieved by averaging these oscillations in time.
Next, we will try to derive the amplitude of each peak. Let us consider an MRS signal com-
posed of n Lorentzian lines s(t) = e−Dt ∑n sn(t), where sn(t) = Aneiωnt+ϕn and n = 1, 2, . . .
is an indexing number. Its Morlet WT gives local maxima close to the scales a1 = ω0/ω1,
a2 = ω0/ω2, and so on. Therefore, we can establish a systematic relation between Sar and
sn(t) at each scale as follows:
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The value of |Cmn| decreases when the resonating peaks are well resolved (no overlapping
frequencies), in fact, it goes to zero when |ωm − ωn| increases, independently of D. Also,
|Cmn| decreases when ωm is high. If Cmn is not negligible (overlapping frequencies), solving
the linear equations gives the information for each sn(t).
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Fig. 18. NAA: (a) Damping function derived by Eq.(10); (b) Amplitudes of NAA–aspartate
part, derived by the linear equations (with zero phase). From (Suvichakorn et al., 2009).

The damping parameter D for the equations can be derived by Eq.(10), although the over-
lapping frequencies may cause oscillations in the solution, but these can be smoothened by
averaging in time.
There can be a bias from the estimation, depending on the number and distribution of overlap-
ping frequencies, e.g. the distance between neighbouring frequencies and ω0. For the NAA
(ω = 3447 rad/s), the bias is approximately 1% of its amplitude (in time domain), when ω0
= 200 rad/s is used. Note that Lorentzian lineshapes are assumed in these linear equations,
and the result is presented in Figure 18(b). In case of non-Lorentzian lineshapes, the arbitrary
damping function should be determined, and taken into account to solve the equation.
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Fig. 19. In vitro measured Creatine at 9.4 T

4.3 Arbitrary lineshape
Let us consider a signal with an arbitrary damping function D(t), namely,

s(t) = AD(t)e(iωs t+ϕ). (23)

Its Morlet WT is defined by

S(τ, a) =
Aeiϕ

2πσ
√

a

∫

D(t)eiωs te−
1

2σ2 (
t−τ

a )
2

e−iω0( t−τ
a )dt

= AC1

∫

D(x + τ)eiωs xe−
1

2σ2 (
x
a )

2

e−iω0( x
a )dx; x = t − τ,

= AC1

∫

F [D(x + τ)]F [e−
x2

2σ2 a2 e
−i(ω0−ωs )x

a ]dω (Parseval’s theorem)

1√
a

S(τ, a) = AC2

∫

F [D(x)]eiτωe
−σ2

2 (aω+ωs−ω0)
2
dω,

where C1 = ei(ωsτ+ϕ)

2πσ
√

a and C2 = (
√

2π)−1ei(ωs x+ϕ). When implemented (thus discretized), the
equation above can be seen as the product of two matrices, namely,

S = C2DG,

and the damping function could be solved from the following equations

AF [D(x)] = C−1
2 SG−1,

AD(x) = C−1
2 F−1[SG−1],

AD(t) = C−1
2 F−1[SG−1eiτω ],

where S is the matrix of the scaled wavelet coefficients, G is derived from the Morlet WT and
the frequency-of-interest ωs, and A is the unknown amplitude of the signal. For a combination
of frequencies with the same damping function, dividing by |D(t)| should give us a possibility
for comparing the amplitude at each peak relatively.

5. Working in a real life environment

By real life environment, we mean genuine acquired data, either in vitro or in vivo, rather than
simulated ones. In that case, the ideal Lorentzian lineshape of individual peaks gets distorted.
To give an example, we show in Figure 19 the analysis of an in vitro creatine signal. We see
that intermittent noise appears, in the form of many disrupted, horizontal bands in the WT.
Thus the noise occurs for a while at some particular frequencies and then disappears.6 Such
characteristics differ from the Gaussian white noise that usually appears as vertical bands in
the WT. It is also possible that the Gaussian white noise at that duration has the same intensity,
however. The analysis of this in vitro creatine signal shows that the frequency distribution
at each peak is broad and the almost stationary Gaussian damping factor indicates that the
acquired signal has a lineshape close to that of the Gaussian function. Nevertheless, deriving
the amplitude using the Gaussian assumption may lead to an inaccurate estimation.

6 We don’t know the origin of that noise, which in fact represents the part of the signal that we cannot
identify in terms of specific, known contributions.
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Fig. 19. In vitro measured Creatine at 9.4 T

4.3 Arbitrary lineshape
Let us consider a signal with an arbitrary damping function D(t), namely,

s(t) = AD(t)e(iωs t+ϕ). (23)

Its Morlet WT is defined by

S(τ, a) =
Aeiϕ

2πσ
√
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∫
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= AC1
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a ]dω (Parseval’s theorem)

1√
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S(τ, a) = AC2

∫

F [D(x)]eiτωe
−σ2

2 (aω+ωs−ω0)
2
dω,

where C1 = ei(ωsτ+ϕ)

2πσ
√

a and C2 = (
√

2π)−1ei(ωs x+ϕ). When implemented (thus discretized), the
equation above can be seen as the product of two matrices, namely,

S = C2DG,

and the damping function could be solved from the following equations

AF [D(x)] = C−1
2 SG−1,

AD(x) = C−1
2 F−1[SG−1],

AD(t) = C−1
2 F−1[SG−1eiτω ],

where S is the matrix of the scaled wavelet coefficients, G is derived from the Morlet WT and
the frequency-of-interest ωs, and A is the unknown amplitude of the signal. For a combination
of frequencies with the same damping function, dividing by |D(t)| should give us a possibility
for comparing the amplitude at each peak relatively.

5. Working in a real life environment

By real life environment, we mean genuine acquired data, either in vitro or in vivo, rather than
simulated ones. In that case, the ideal Lorentzian lineshape of individual peaks gets distorted.
To give an example, we show in Figure 19 the analysis of an in vitro creatine signal. We see
that intermittent noise appears, in the form of many disrupted, horizontal bands in the WT.
Thus the noise occurs for a while at some particular frequencies and then disappears.6 Such
characteristics differ from the Gaussian white noise that usually appears as vertical bands in
the WT. It is also possible that the Gaussian white noise at that duration has the same intensity,
however. The analysis of this in vitro creatine signal shows that the frequency distribution
at each peak is broad and the almost stationary Gaussian damping factor indicates that the
acquired signal has a lineshape close to that of the Gaussian function. Nevertheless, deriving
the amplitude using the Gaussian assumption may lead to an inaccurate estimation.

6 We don’t know the origin of that noise, which in fact represents the part of the signal that we cannot
identify in terms of specific, known contributions.
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When the acquisition is made in an in vivo environment, the exponential decay of an MRS
signal is severely distorted. This is due to the inhomogeneity of the static magnetic field and
to eddy currents induced in the magnet walls by switching magnetic gradient fields on and
off. Apart from the problem of overlapping frequencies in each metabolite, an in vivo MRS
signal is composed of several metabolite signatures. Therefore, the challenge is to find a good
combination of the amplitudes that the Morlet WT derives at each frequency. Determining
complete spectra of each metabolite is preferred to individual resonance. This is yet to be
solved.

Appendix:The mathematics of the CWT

A.1. General definitions and properties
The continuous WT is a mathematical tool which permits to decompose a signal in terms of
elementary contributions called wavelets. A large body of literature exists for wavelet anal-
ysis. We might refer the interested reader to the textbooks of Daubechies (1992), Torrésani
(1995), Ali et al. (2000), Antoine et al. (2004), or the elementary introductions (Antoine, 1994)
and (Antoine, 2000). These wavelets are obtained from a single function g by translations and
dilations,

g(τ,a)(t) =
1√
a

g
(

t − τ

a

)

, (A.1)

where the parameters of translation, τ ∈ R, and dilation, a > 0, may be continuous or discrete.
The CWT of a signal s with the analysing wavelet g is the convolution of s with a scaled and
conjugated wavelet ga(t) = g(−t/a)/a, where the overbar denotes complex conjugation :

S(τ, a) = ga ∗ s(τ) =
1√
a

∫

g
(

t − τ

a

)

s(t) dt. (A.2)

It should be remarked that one uses often the so-called L1-normalisation, with a factor 1/a in
(A.1) and (A.2), instead of 1/

√
a, in order to enhance small scales, where the finer details lie.

In the Fourier domain, the expression (A.2) takes the following form:

S(τ, a) =
1

2π

∫

G(aω) S(ω) eiωτ dω, (A.3)

where S and G are the Fourier transforms of the signal s and of the wavelet g, respectively. The
equations (A.2) and (A.3) show clearly that the wavelet analysis is a time-frequency analysis,
or, more properly, a time-scale analysis (the scale parameter a behaves as the inverse of a
frequency). In particular, the relation (A.3) shows that the CWT of a signal s is a filter with a
constant relative bandwidth ∆ω/ω = const.
Then a straightforward calculation shows that this transform conserves energy (in the sense
of signal processing), that is,

∫∫

|S(τ, a)|2 da dτ

a2 = cg

∫ ∞

−∞
|s(t)|2 dt. (A.4)

Clearly we must require the wavelet g to satisfy the so-called admissibility condition, namely,

cg ≡ 2π
∫

|G(ω)|2 dω

|ω| < ∞. (A.5)
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Fig. 20. Two usual one-dimensional wavelets: (left) The Mexican hat or Marr wavelet; (right)
The real part of the 1-D Morlet wavelet, for ω0 = 5.6.

Eq.(A.4) means that the CWT is an isometry from the space of signals onto a closed subspace
Hg of L2(R2

+, da dτ/a2), where R2
+ denotes the scale-position half-plane R2

+ = {(τ, a), τ ∈
R, a > 0}. Therefore, the CWT may be inverted on its range Hg by the adjoint map, and this
gives an exact reconstruction formula:

s(t) = c−1
g

∫∫

g(τ,a)(t) S(τ, a)
da dτ

a
. (A.6)

This formula may also be interpreted as an expansion of the signal into the wavelets g(τ,a),
with (wavelet) coefficients S(τ, a).
A necessary (and almost sufficient) condition for admissibility is that the wavelet have no DC
component:

G(0) = 0 ⇐⇒
∫

g(t) dt = 0. (A.7)

This is in fact the admissibility condition that is used in practice.
This transform is very general in the sense that there is one CWT for each choice of the
analysing wavelet g. For each application, one should select an analysing wavelet adapted
to the type of signal at hand. For instance, in order to detect and to characterize the singular-
ities of a signal or a curve, it is advantageous to use as analysing wavelet a derivative of the
Gaussian, for instance, the familiar Mexican hat (Figure 20, left),

gH(x) = (1 − x2) e−x2/2 ⇔ GH(ω) = ω2 e−ω2
. (A.8)

In our case, MRS signals are relatively well defined in frequency, so it is more interesting to
use analysing wavelets which are well localized in frequency space. This is the case of the
Morlet wavelet, defined by

gM(t) = eiω0t e−t2/(2σ2
0 ) + h(t) ⇔ GM(ω) =

√
2π σ0 e−(ω−ω0)2σ2

0 /2 + H(ω), (A.9)

where the correction term h is necessary to enforce the admissibility condition (in the sequel
we shall use the value σ0 = 1). If ω0σ0 is sufficiently large (typically ω0σ0 > 5.5), then h is
numerically negligible, and will indeed be omitted. The Morlet wavelet can be interpreted as
a bandpass linear filter centered around ω = ω0/a and of weight 1/(σ0a) (Figure 20, right).
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When the acquisition is made in an in vivo environment, the exponential decay of an MRS
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complete spectra of each metabolite is preferred to individual resonance. This is yet to be
solved.
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It should be remarked that one uses often the so-called L1-normalisation, with a factor 1/a in
(A.1) and (A.2), instead of 1/
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a, in order to enhance small scales, where the finer details lie.
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where S and G are the Fourier transforms of the signal s and of the wavelet g, respectively. The
equations (A.2) and (A.3) show clearly that the wavelet analysis is a time-frequency analysis,
or, more properly, a time-scale analysis (the scale parameter a behaves as the inverse of a
frequency). In particular, the relation (A.3) shows that the CWT of a signal s is a filter with a
constant relative bandwidth ∆ω/ω = const.
Then a straightforward calculation shows that this transform conserves energy (in the sense
of signal processing), that is,

∫∫

|S(τ, a)|2 da dτ
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∫ ∞
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Clearly we must require the wavelet g to satisfy the so-called admissibility condition, namely,
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This formula may also be interpreted as an expansion of the signal into the wavelets g(τ,a),
with (wavelet) coefficients S(τ, a).
A necessary (and almost sufficient) condition for admissibility is that the wavelet have no DC
component:

G(0) = 0 ⇐⇒
∫

g(t) dt = 0. (A.7)

This is in fact the admissibility condition that is used in practice.
This transform is very general in the sense that there is one CWT for each choice of the
analysing wavelet g. For each application, one should select an analysing wavelet adapted
to the type of signal at hand. For instance, in order to detect and to characterize the singular-
ities of a signal or a curve, it is advantageous to use as analysing wavelet a derivative of the
Gaussian, for instance, the familiar Mexican hat (Figure 20, left),

gH(x) = (1 − x2) e−x2/2 ⇔ GH(ω) = ω2 e−ω2
. (A.8)

In our case, MRS signals are relatively well defined in frequency, so it is more interesting to
use analysing wavelets which are well localized in frequency space. This is the case of the
Morlet wavelet, defined by
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where the correction term h is necessary to enforce the admissibility condition (in the sequel
we shall use the value σ0 = 1). If ω0σ0 is sufficiently large (typically ω0σ0 > 5.5), then h is
numerically negligible, and will indeed be omitted. The Morlet wavelet can be interpreted as
a bandpass linear filter centered around ω = ω0/a and of weight 1/(σ0a) (Figure 20, right).
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Fig. 21. Support properties of the Morlet wavelet gM: for a = 0.5, 1, 2 (left to right), g(τ,a)
has width 3, 6, 12, respectively (top), while G(τ,a) has width 3, 1.5, 0.75, and peaks at 12, 6, 3
(bottom).

All the results presented here have been obtained with the Morlet wavelet, but they can easily
be generalized to any analysing wavelet whose Fourier transform has a single maximum at
ω = ω0, or even to the Short Time Fourier Transform (STFT)7 (Delprat et al., 1992).
An important fact is the so-called reproduction property. Indeed it may be shown that the
orthogonal projection Pg from L2(R2

+, dadτ/a2) onto the closed subspace Hg (the space of
wavelet transforms) is an integral operator, with kernel

K(τ′, a′; τ, a) = c−1
g 〈g(τ′ ,a′)|g(τ,a)〉. (A.10)

In other words, a function f ∈ L2(R2
+, da dτ/a2) is the WT of some signal if and only if it

satisfies the reproduction identity

f (τ′, a′) =
∫∫

K(τ′, a′; τ, a) f (τ, a)
da dτ

a2 . (A.11)

For this reason, K is called the reproducing kernel of g. It is also the autocorrelation function g
and as such it plays an essential role in calibrating the CWT (Antoine, 1994).
Now the relation (A.11) shows that the CWT is enormously redundant (the signal has been
unfolded from one variable t to two variables (τ, a)). Thus it is not surprising that the whole
information is already contained in a small subset of the values of S(τ, a). An example of
such a subset is the so-called skeleton, that is, the set of ridges, which are essentially the lines of
maxima of the modulus of the WT (in the case of a monochromatic signal, the ridges become
horizontal lines a = ar, as we have seen in Section 2). Another example is obtained by taking
an appropriate discrete subset Γ = {aj, τk} of the half-plane R2

+, as it is necessary in any case

7 The STFT is obtained by replacing scaling by modulation in the definition of the wavelets, that is,
replacing Eq.(A.1) by g̃(τ,a)(t) = eit/a g(t − τ).

for numerical evaluation of the integrals. However, for most wavelets g, the resulting family
{g(aj ,τk)} is never an orthogonal basis (for the Morlet wavelet, for instance, the kernel K is a
Gaussian, thus it never vanishes). At best, it is an overcomplete set of vectors, technically
called a frame, provided Γ contains sufficiently many points (Daubechies, 1992).

A.2. Localization properties and interpretation
The main virtues of the CWT follow from the support properties of g. Assume g and G to
be as well localized as possible (compatible with the Fourier uncertainty principle). More
specifically, assume that g has an ‘essential’ support of width L, centered around 0, while G
has an essential support of width Ω, centered around ω0. Then the transformed wavelets
g(τ,a) and G(τ,a) have, respectively, an essential support of width aL around τ and an essential
support of width Ω/a around ω0/a. This behavior is illustrated in Figure 21, which shows
the Morlet wavelet in the time and frequency domains, for three successive scales a = 0.5, 1
and 2, from left to right. Notice that the product of the two widths is constant (we know it has
to be bounded below by a fixed constant, by the (Fourier) uncertainty principle). Remember
that 1/a behaves like a frequency. Therefore:

• if a � 1, g(τ,a) is a wide window, whereas G(τ,a) is very peaked around a small fre-
quency ω0/a: this transform is most sensitive to low frequencies.

• if a � 1, g(τ,a) is a narrow window and G(τ,a) is wide and centered around a high
frequency ω0/a: this wavelet has a good localization capability in the space domain
and is mostly sensitive to high frequencies.

Combining now these localization properties with the zero mean condition and the fact that
g(τ,a) acts like a filter (convolution), we see that the CWT performs a local filtering, both in time
and in scale. The WT S(τ, a) is nonnegligible only when the wavelet g(τ,a) matches the signal
s(t), that is, it filters the part of the signal, if any, that lives around the time τ and the scale a.
Taking all these properties together, one is naturally led to the interpretation of the CWT as
a mathematical microscope, with optics g, position τ and global magnification 1/a. In addition,
the analysis works at constant relative bandwidth (∆ω/ω = constant), so that it has a better
resolution at high frequency, i.e., small scales. This property makes it an ideal tool for detect-
ing singularities (for instance, discontinuities in the signal or one of its derivatives), and also
scale dependent features, in particular, for analysing fractals.

A.3. Implementation questions
Faced with this new tool, one must begin by learning the rules of the trade, that is, one must
learn how to read and understand a CWT (Grossmann et al., 1990). The simplest way is to
get some practice on very simple academic signals, such as a simple discontinuity in time or a
monochromatic signal (pure sinusoid). We note that it is natural to use a logarithmic scale for
the scale parameter a. The visual effect is that the lines, τ/a = constant, are not straight lines,
but hyperbolic curves; at the same time, the horizon a = 0 recedes to infinity (see Figure 22).
The analysing wavelet g is supposed to be complex, so that we may treat separately the mod-
ulus and the phase of the transform. The scale axis, in units of ln a, points downward, so that
high frequencies (small a) correspond to the top of the plots, and low frequencies (large a)
to the bottom. The results are presented by coding the height of the function by density of
points (12 levels of gray, from white to black). The phase is 2π-periodic. When it reaches 2π,
it is wrapped around to the value 0. Thus the lines of constant phase with value 2kπ are lines
of discontinuity, where the density of points drops abruptly from 1 (black) to 0 (white). In
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Fig. 21. Support properties of the Morlet wavelet gM: for a = 0.5, 1, 2 (left to right), g(τ,a)
has width 3, 6, 12, respectively (top), while G(τ,a) has width 3, 1.5, 0.75, and peaks at 12, 6, 3
(bottom).

All the results presented here have been obtained with the Morlet wavelet, but they can easily
be generalized to any analysing wavelet whose Fourier transform has a single maximum at
ω = ω0, or even to the Short Time Fourier Transform (STFT)7 (Delprat et al., 1992).
An important fact is the so-called reproduction property. Indeed it may be shown that the
orthogonal projection Pg from L2(R2

+, dadτ/a2) onto the closed subspace Hg (the space of
wavelet transforms) is an integral operator, with kernel

K(τ′, a′; τ, a) = c−1
g 〈g(τ′ ,a′)|g(τ,a)〉. (A.10)

In other words, a function f ∈ L2(R2
+, da dτ/a2) is the WT of some signal if and only if it

satisfies the reproduction identity

f (τ′, a′) =
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K(τ′, a′; τ, a) f (τ, a)
da dτ

a2 . (A.11)

For this reason, K is called the reproducing kernel of g. It is also the autocorrelation function g
and as such it plays an essential role in calibrating the CWT (Antoine, 1994).
Now the relation (A.11) shows that the CWT is enormously redundant (the signal has been
unfolded from one variable t to two variables (τ, a)). Thus it is not surprising that the whole
information is already contained in a small subset of the values of S(τ, a). An example of
such a subset is the so-called skeleton, that is, the set of ridges, which are essentially the lines of
maxima of the modulus of the WT (in the case of a monochromatic signal, the ridges become
horizontal lines a = ar, as we have seen in Section 2). Another example is obtained by taking
an appropriate discrete subset Γ = {aj, τk} of the half-plane R2

+, as it is necessary in any case

7 The STFT is obtained by replacing scaling by modulation in the definition of the wavelets, that is,
replacing Eq.(A.1) by g̃(τ,a)(t) = eit/a g(t − τ).

for numerical evaluation of the integrals. However, for most wavelets g, the resulting family
{g(aj ,τk)} is never an orthogonal basis (for the Morlet wavelet, for instance, the kernel K is a
Gaussian, thus it never vanishes). At best, it is an overcomplete set of vectors, technically
called a frame, provided Γ contains sufficiently many points (Daubechies, 1992).

A.2. Localization properties and interpretation
The main virtues of the CWT follow from the support properties of g. Assume g and G to
be as well localized as possible (compatible with the Fourier uncertainty principle). More
specifically, assume that g has an ‘essential’ support of width L, centered around 0, while G
has an essential support of width Ω, centered around ω0. Then the transformed wavelets
g(τ,a) and G(τ,a) have, respectively, an essential support of width aL around τ and an essential
support of width Ω/a around ω0/a. This behavior is illustrated in Figure 21, which shows
the Morlet wavelet in the time and frequency domains, for three successive scales a = 0.5, 1
and 2, from left to right. Notice that the product of the two widths is constant (we know it has
to be bounded below by a fixed constant, by the (Fourier) uncertainty principle). Remember
that 1/a behaves like a frequency. Therefore:

• if a � 1, g(τ,a) is a wide window, whereas G(τ,a) is very peaked around a small fre-
quency ω0/a: this transform is most sensitive to low frequencies.

• if a � 1, g(τ,a) is a narrow window and G(τ,a) is wide and centered around a high
frequency ω0/a: this wavelet has a good localization capability in the space domain
and is mostly sensitive to high frequencies.

Combining now these localization properties with the zero mean condition and the fact that
g(τ,a) acts like a filter (convolution), we see that the CWT performs a local filtering, both in time
and in scale. The WT S(τ, a) is nonnegligible only when the wavelet g(τ,a) matches the signal
s(t), that is, it filters the part of the signal, if any, that lives around the time τ and the scale a.
Taking all these properties together, one is naturally led to the interpretation of the CWT as
a mathematical microscope, with optics g, position τ and global magnification 1/a. In addition,
the analysis works at constant relative bandwidth (∆ω/ω = constant), so that it has a better
resolution at high frequency, i.e., small scales. This property makes it an ideal tool for detect-
ing singularities (for instance, discontinuities in the signal or one of its derivatives), and also
scale dependent features, in particular, for analysing fractals.

A.3. Implementation questions
Faced with this new tool, one must begin by learning the rules of the trade, that is, one must
learn how to read and understand a CWT (Grossmann et al., 1990). The simplest way is to
get some practice on very simple academic signals, such as a simple discontinuity in time or a
monochromatic signal (pure sinusoid). We note that it is natural to use a logarithmic scale for
the scale parameter a. The visual effect is that the lines, τ/a = constant, are not straight lines,
but hyperbolic curves; at the same time, the horizon a = 0 recedes to infinity (see Figure 22).
The analysing wavelet g is supposed to be complex, so that we may treat separately the mod-
ulus and the phase of the transform. The scale axis, in units of ln a, points downward, so that
high frequencies (small a) correspond to the top of the plots, and low frequencies (large a)
to the bottom. The results are presented by coding the height of the function by density of
points (12 levels of gray, from white to black). The phase is 2π-periodic. When it reaches 2π,
it is wrapped around to the value 0. Thus the lines of constant phase with value 2kπ are lines
of discontinuity, where the density of points drops abruptly from 1 (black) to 0 (white). In
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Fig. 22. Morlet WT of a δ function: (left) modulus; (right) phase.

addition, the functions plotted are thresholded at 1% of the maximum value of the modulus
of S(τ, a). We will now analyse the two academic signals mentioned above.
(i) A simple discontinuity

The simplest signal is a simple discontinuity in time, at t = t0, modelled by s(t) = δ(t − t0).
The WT is obtained immediately and reads

S(τ, a) = a−1/2 g
(

a−1(t0 − τ)
)

. (A.12)

The following features may be read off Eq.(A.12):

• The phase of S(τ, a) is constant on the lines τ/a = constant, originating from the point
τ = t0 on the horizon. These lines point towards the position of the singularity, like a
finger.

• On the same lines of constant phase, the modulus of S(τ, a) increases as a−1/2 when
a → 0, so that the singularity is enhanced. The effect is even more pronounced if one
uses the L1 normalisation.

This is illustrated on Figure 22, which presents the modulus and phase of the WT of a δ func-
tion, using a standard Morlet wavelet (but the result is independent of the choice of g).
The interesting point is that this behavior is extremely robust. For instance, the ‘finger’ point-
ing to a δ-singularity remains clearly visible when the latter is superposed on a continuous
signal (even if the amplitude of the δ function is too small to be invisible on the signal it-
self), or even in the presence of substantial background noise. Similarly, the discontinuity
corresponding to the abrupt onset of a signal is readily identified with the CWT. We refer to
(Grossmann et al., 1990) for several spectacular examples.
This is the origin of the edge or boundary effects that we have encountered in Section 4.1. The
first notion is that of cone of confidence or cone of influence. Let the wavelet g vanish outside
the interval Ig = [tmin, tmax]. Then, given a point t0 in the support of the signal, the region
in which it influences the WT is the cone τ ∈ aIg + t0 = [−atmin + t0, atmax + t0]. Thus
the region of influence increases linearly with a. The effect is clearly seen in Figure 1: the
cones of influence of the two endpoints of the spectrum are the regions where the phase of the
WT differs from that of a pure sinusoid (see (ii) below). This is the region to be avoided, as
discussed in Section 4.1.
(ii) A single monochromatic wave

Fig. 23. Morlet WT of a single sinusoid: (left) modulus; (right) phase.

Equally simple is a single harmonic signal (monochromatic wave):

s(t) = eiωs t ⇔ S(ω) =
1√
2π

δ(ω − ωs), (A.13)

which gives

S(τ, a) =
√

a
2π

G(aωs) eiωsτ = S(a, 0) eiωsτ . (A.14)

The same relations remain true for a real monochromatic signal, s(t) = sin ωst or s(t) =
cos ωst, if the wavelet g is progressive (that is, G(ω) = 0 for ω � 0).
Again two important properties may be read off immediately from Eq.(A.14):

• The modulus of S(τ, a) is independent of τ. Hence, the graph of |S(τ, a)| consists of
horizontal bands and the profile for a fixed time τ essentially reproduces the profile of
G.

• The phase of S(τ, a) is linear in τ. Since the phase is 2π-periodic, the graph of Φ(τ, a) :=
arg S(τ, a) is a linear sawtooth function:

Φ(τ, a) = ωsτ (mod 2π). (A.15)

These properties are illustrated on Figure 23 for a single sine function analysed with a Morlet
wavelet. This pattern of equidistant vertical black-to-white bands is the signature of a pure
frequency signal. This can be seen already in Figure 1.
Both the modulus and the phase allow to determine the frequency ωs of the signal. If the
modulus of the wavelet G(ω) has a single maximum for ω = ω0, Eq.(A.14) gives immediately
ωs = ω0/ar, where ar is the scale corresponding to the maximum in the profile of |S(τ, a)| for
fixed τ. For instance, the (truncated) Morlet wavelet g(t) = exp(iω0t) exp(−t2/2) yields:

S(τ, a) =
√

a e−
1
2 (aωs−ω0)2

eiωsτ , (A.16)

and the result is obvious. As for the phase, Eq.(A.15) gives, at least locally:

∂Φ(τ, a)
∂τ

= ωs =
ω0
ar

. (A.17)



Wavelet-based	techniques	in	MRS 193

Fig. 22. Morlet WT of a δ function: (left) modulus; (right) phase.

addition, the functions plotted are thresholded at 1% of the maximum value of the modulus
of S(τ, a). We will now analyse the two academic signals mentioned above.
(i) A simple discontinuity

The simplest signal is a simple discontinuity in time, at t = t0, modelled by s(t) = δ(t − t0).
The WT is obtained immediately and reads
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The following features may be read off Eq.(A.12):

• The phase of S(τ, a) is constant on the lines τ/a = constant, originating from the point
τ = t0 on the horizon. These lines point towards the position of the singularity, like a
finger.

• On the same lines of constant phase, the modulus of S(τ, a) increases as a−1/2 when
a → 0, so that the singularity is enhanced. The effect is even more pronounced if one
uses the L1 normalisation.

This is illustrated on Figure 22, which presents the modulus and phase of the WT of a δ func-
tion, using a standard Morlet wavelet (but the result is independent of the choice of g).
The interesting point is that this behavior is extremely robust. For instance, the ‘finger’ point-
ing to a δ-singularity remains clearly visible when the latter is superposed on a continuous
signal (even if the amplitude of the δ function is too small to be invisible on the signal it-
self), or even in the presence of substantial background noise. Similarly, the discontinuity
corresponding to the abrupt onset of a signal is readily identified with the CWT. We refer to
(Grossmann et al., 1990) for several spectacular examples.
This is the origin of the edge or boundary effects that we have encountered in Section 4.1. The
first notion is that of cone of confidence or cone of influence. Let the wavelet g vanish outside
the interval Ig = [tmin, tmax]. Then, given a point t0 in the support of the signal, the region
in which it influences the WT is the cone τ ∈ aIg + t0 = [−atmin + t0, atmax + t0]. Thus
the region of influence increases linearly with a. The effect is clearly seen in Figure 1: the
cones of influence of the two endpoints of the spectrum are the regions where the phase of the
WT differs from that of a pure sinusoid (see (ii) below). This is the region to be avoided, as
discussed in Section 4.1.
(ii) A single monochromatic wave

Fig. 23. Morlet WT of a single sinusoid: (left) modulus; (right) phase.

Equally simple is a single harmonic signal (monochromatic wave):

s(t) = eiωs t ⇔ S(ω) =
1√
2π

δ(ω − ωs), (A.13)

which gives
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G(aωs) eiωsτ = S(a, 0) eiωsτ . (A.14)

The same relations remain true for a real monochromatic signal, s(t) = sin ωst or s(t) =
cos ωst, if the wavelet g is progressive (that is, G(ω) = 0 for ω � 0).
Again two important properties may be read off immediately from Eq.(A.14):

• The modulus of S(τ, a) is independent of τ. Hence, the graph of |S(τ, a)| consists of
horizontal bands and the profile for a fixed time τ essentially reproduces the profile of
G.

• The phase of S(τ, a) is linear in τ. Since the phase is 2π-periodic, the graph of Φ(τ, a) :=
arg S(τ, a) is a linear sawtooth function:

Φ(τ, a) = ωsτ (mod 2π). (A.15)

These properties are illustrated on Figure 23 for a single sine function analysed with a Morlet
wavelet. This pattern of equidistant vertical black-to-white bands is the signature of a pure
frequency signal. This can be seen already in Figure 1.
Both the modulus and the phase allow to determine the frequency ωs of the signal. If the
modulus of the wavelet G(ω) has a single maximum for ω = ω0, Eq.(A.14) gives immediately
ωs = ω0/ar, where ar is the scale corresponding to the maximum in the profile of |S(τ, a)| for
fixed τ. For instance, the (truncated) Morlet wavelet g(t) = exp(iω0t) exp(−t2/2) yields:

S(τ, a) =
√

a e−
1
2 (aωs−ω0)2

eiωsτ , (A.16)

and the result is obvious. As for the phase, Eq.(A.15) gives, at least locally:

∂Φ(τ, a)
∂τ

= ωs =
ω0
ar

. (A.17)
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A.4. The discrete wavelet transform
Notice that the discretized CWT which is used in practice, including in the present text, is
totally different from the so-called discrete WT (DWT). Indeed, orthogonal bases of wavelets
may be constructed, but from a completely different approach based on the notion of multires-
olution analysis.
We emphasize that the DWT is totally different in spirit from the CWT, either truly continuous
or discretized, and they have complementary ranges of applications:

• In the CWT, there is a lot of freedom in choosing the wavelet g, but one does not get an
orthonormal basis, at best a frame. This is a tool for analysis and feature determination,
as in MRS or other problems where the scaling properties of the signal are unknown a
priori, for instance in fractal analysis.

• In the DWT, one insists on having an orthonormal basis, but the wavelet is derived from
the multiresolution analysis. This is the preferred tool for data compression and signal
synthesis, and the most popular in the signal processing community.

More radically, one may even say that the kind of problems treated here can be solved only
with the CWT, the DWT is simply not adapted to the underlying physics, although it has been
proposed for MRS (Neue, 1996). For instance, the algorithm for detecting spectral lines, as
well as the ridge concept, rest upon a stationary phase argument. Similarly, the determination
of fractal exponents exploits the scaling behaviour of homogeneous functions or distributions
and the covariance properties of the CWT. All these notions are foreign to the DWT, which is
more a signal processing tool.
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1. Introduction

According to the development of the Internet, multi-media contents such as music, picture,
movie, etc. are treated by digital format on the network. It enables us to purchase digital
contents via a net easily. However, it causes several problems such as violation of ownership
and illegal distribution of the copy. Digital fingerprinting is used to trace back the illegal users,
where unique ID known as digital fingerprints is embedded into digital contents before distri-
bution Wu et al. (2004). When a suspicious copy is found, the owner can identify illegal users
by extracting the fingerprint. The fingerprinting techniques of multimedia contents involve
the generation of a fingerprint, the embedding operation, and the realization of traceability
from redistributed copies. The research on such fingerprinting techniques is classified into
two studies; secure cryptographic protocol and design of collusion resistant fingerprint.
In a cryptographic protocol, the goal is to achieve the asymmetric property between a buyer
and a seller such that only the former can obtain a uniquely fingerprinted copy because of
the threat of dispute. If both of the parties know the fingerprinted copy, the buyer may re-
distribute a pirated copy but later repudiate it by insisting that it came from the seller. An
asymmetric protocol Pfitzmann & Schunter (1996) is executed by exploiting the homomor-
phic property of the public key cryptosystem that enables a seller to produce the ciphertext of
fingerprinted copy by operating an encrypted fingerprint with encrypted contents.
Since each user purchases multimedia contents involving his own fingerprint, each copy is
slightly different. A coalition of users will therefore combine their different marked copies
of a same content for the purpose of removing/changing the original fingerprint. A number
of works on designing fingerprints that are resistant against the collusion attack have been
proposed. Many of them can be categorized into two approaches. One is to exploit the Spread
Spectrum (SS) technique Cox et al. (1997); Wang et al. (2004; 2005); Zhao et al. (2005), and
the other approach is to devise an exclusive code, known as collusion-secure code Boneh
& Shaw (1998); Staddon et al. (2001); Tardos (2003); Trappe et al. (2003); Yacobi (2001); Zhu
et al. (2005), which has traceability of colluders. Although cryptographic protocols provide
the asymmetric property, the production of embedding information is based on the design of
collusion-resistant fingerprint.
In this chapter, we introduce the implementation method of watermarking technique in the
encrypted domain during the fingerprinting protocol. As the robustness against attacks, a
transformed domain like frequency domain is generally suitable to embed watermark infor-
mation into an image. In such a case, the components of the transformed domain may be
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represented by real values. In order to apply a public-key cryptosystem, all frequency compo-
nents of an image must be quantized to integer. In the operation, a fingerprinting information
is embedded to the quantized value. From the perceptual property, the changes in low fre-
quency components stand out compared with that of the other components and hence each
component is quantized adaptively by a special quantization step size. In the conventional
method Kuribayashi & Tanaka (2005), for the embedding of an information bit of which value
is unknown, the frequency components in the embedding positions are quantized to a special
number before embedding so that the value can be changed depending on the information
bit, which embedding method is based on QIM watermarking Chen & Wornel (2001). We pro-
pose the method for implementing the spread spectrum watermarking technique by carefully
designing parameters for rounding operation. As the precision of the representing watermark
signal is sensitive for the implementation, the parameters are scaled by multiplying a constant
factor. For the characteristic of the fingerprinting protocol, frequency components and the wa-
termark signal must be separately encrypted after quantization. In such a case, the consistency
of the precision is a sensitive issue. Then, the separate rounding operation causes interference
term in a deciphered data at a buyer side. Without loss of secrecy of an original content, the
interference term is removed after decryption in the post-processing. The proposed approach
provides a guideline for the selection of watermarking technique suitable for a multimedia
forensic system.

2. Fingerprinting Protocol

One of serious threats in the fingerprinting is dispute and repudiation of a purchase. The pur-
pose of fingerprinting protocol is to solve such threats by achieving the asymmetric property,
where only a buyer knows a fingerprinted copy. If both a buyer and a seller know a finger-
printed copy, the seller cannot prove to a third party whose copy it was even if the buyer’s
fingerprint can be extracted. This is because a malicious seller may distribute the copy in order
to frame an innocent buyer. Hence, it is desirable that only a buyer is able to obtain his own
fingerprinted copy in the protocol. Such a protocol is called the asymmetric fingerprinting
protocol. As in real-life market places, it is desired that electronic market places offer privacy
to the customers. It should be possible to buy different articles anonymously, since purchased
items can reveal a lot of behavioristic information about a buyer. The solution is the anony-
mous fingerprinting protocol. Thus, the fingerprinting protocol is classified into the following
three classes.

Symmetric: The operation to embed a fingerprint is performed only by a seller. Therefore, he
cannot convince any third party of the traitor’s treachery even if he has found out the
identity of a traitor in an illegal copy.

Asymmetric: Fingerprinting is an interactive protocol between a buyer and a seller. After the
sale, only the buyer obtains the copy with a fingerprint. If the seller finds the finger-
printed copy somewhere, he can identify the traitor and convince a third party that the
the copy is illegally distributed by the traitor.

Anonymous: A buyer can purchase a fingerprinted copy without informing his identity to a
seller, but he can identify the traitor later. It also retains the asymmetric property.

In asymmetric fingerprinting, the plain value of a fingerprint should not be revealed to a seller,
otherwise he can produce a fingerprinted copy by himself. Therefore an interactive protocol is
performed to prevent the seller obtaining the fingerprinted copy. Such a protocol is based on

public-key cryptosystems because they assure only a buyer can decrypt a ciphertext though
both of them can perform the enciphering operation. In order to achieve the asymmetric
fingerprinting, a homomorphic property of public-key cryptosystems is applied.

2.1 Asymmetric Property
In order to achieve an asymmetric property, a homomorphic property of public-key cryptosys-
tems is introduced in the fingerprinting protocols Pfitzmann & Sadeghi (1999). The homomor-
phic property enables a seller to obtain the ciphertext of fingerprinted copy by operating an
encrypted fingerprint with an encrypted original content. Since the ciphertext is computed
using a buyer’s encryption key, only the buyer can decrypt it; hence, only he can obtain the
fingerprinted copy.
The homomorphic property of public-key cryptosystems is often applied for cryptographic
protocol as operations that can be performed without revealing the plain value. If an opera-
tion on a ciphertext space results in an operation on the message space, the cryptosystem is
homomorphic, and principally the former operation is multiplication and the latter is one of
three operations, “addition, multiplication, exclusive or”, in public-key cryptosystems.
Let E(M) be a ciphertext of a message M. The homomorphic property satisfies the following
equation:

g
(

E(M1), E(M2)
)

= E
(

f (M1, M2)
)

, (1)

where g(·) and f (·) is one of the operations, addition, multiplication, XOR, etc., which is re-
lated to the applied cryptosystem and the embedding algorithm (Most public-key cryptosys-
tems select multiplication for g(·)). If M1 is regarded as a digital content and M2 as a fin-
gerprint, the fingerprint can be embedded in the content without decryption by multiplying
those ciphertexts. Since they are calculated using buyer’s public encryption-key, the finger-
printed copy is decrypted only by the buyer, hence the asymmetric property is satisfied. The
embedding operation based on the homomorphic property is basically performed for each
element of fingerprint information which will be composed of bit-sequence or spread spec-
trum sequence, hence each element is separately embedded in its corresponding position.
Thus, M1 is not the entire content, but one of the components like the frequency elements
to be fingerprinted by a watermarking technique. Note that in watermarking techniques
Katzenbeisser & Petitcolas (2000) for digital images, it is advisable to embed information in
the frequency components for both the robustness and perceptual quality. When the vector
representation of M1 is given by {m1,1, m1,2, m1,3, . . .}, the ciphertext is also represented as
E(M1) = {E(m1,1), E(m1,2), E(m1,3), . . .}. As the consequence, the detail of Eq.(1) is given by

g
(

E(m1,i), E(m2,i)
)

= E
(

f (m1,i, m2,i)
)

, (i = 1, 2, 3, . . .). (2)

The multiplicative property of RSA scheme Rivest et al. (1978) is applied to embed a finger-
print in Memon & Wong (2001), the homomorphism of a bit commitment scheme based on the
quadratic residues Brassard et al. (1988) is exploited Pfitzmann & Sadeghi (1999; 2000), and
the additive homomorphic property of public-key cryptosystem such as Okamoto-Uchiyama
encryption scheme Okamoto & Uchiyama (1998) and Paillier cryptosystem Paillier (1999) is
utilized in Kuribayashi & Tanaka (2005). In these schemes, to convince a seller that a trans-
mitted ciphertexts really contains his fingerprinting information, zero-knowledge interactive
protocol (ZKIP) must be performed, which is easily constructed using the applied public-key
cryptosystem. Such characteristic is necessary for the security reason and the anonymity of a
buyer is achieved.
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represented by real values. In order to apply a public-key cryptosystem, all frequency compo-
nents of an image must be quantized to integer. In the operation, a fingerprinting information
is embedded to the quantized value. From the perceptual property, the changes in low fre-
quency components stand out compared with that of the other components and hence each
component is quantized adaptively by a special quantization step size. In the conventional
method Kuribayashi & Tanaka (2005), for the embedding of an information bit of which value
is unknown, the frequency components in the embedding positions are quantized to a special
number before embedding so that the value can be changed depending on the information
bit, which embedding method is based on QIM watermarking Chen & Wornel (2001). We pro-
pose the method for implementing the spread spectrum watermarking technique by carefully
designing parameters for rounding operation. As the precision of the representing watermark
signal is sensitive for the implementation, the parameters are scaled by multiplying a constant
factor. For the characteristic of the fingerprinting protocol, frequency components and the wa-
termark signal must be separately encrypted after quantization. In such a case, the consistency
of the precision is a sensitive issue. Then, the separate rounding operation causes interference
term in a deciphered data at a buyer side. Without loss of secrecy of an original content, the
interference term is removed after decryption in the post-processing. The proposed approach
provides a guideline for the selection of watermarking technique suitable for a multimedia
forensic system.

2. Fingerprinting Protocol

One of serious threats in the fingerprinting is dispute and repudiation of a purchase. The pur-
pose of fingerprinting protocol is to solve such threats by achieving the asymmetric property,
where only a buyer knows a fingerprinted copy. If both a buyer and a seller know a finger-
printed copy, the seller cannot prove to a third party whose copy it was even if the buyer’s
fingerprint can be extracted. This is because a malicious seller may distribute the copy in order
to frame an innocent buyer. Hence, it is desirable that only a buyer is able to obtain his own
fingerprinted copy in the protocol. Such a protocol is called the asymmetric fingerprinting
protocol. As in real-life market places, it is desired that electronic market places offer privacy
to the customers. It should be possible to buy different articles anonymously, since purchased
items can reveal a lot of behavioristic information about a buyer. The solution is the anony-
mous fingerprinting protocol. Thus, the fingerprinting protocol is classified into the following
three classes.

Symmetric: The operation to embed a fingerprint is performed only by a seller. Therefore, he
cannot convince any third party of the traitor’s treachery even if he has found out the
identity of a traitor in an illegal copy.

Asymmetric: Fingerprinting is an interactive protocol between a buyer and a seller. After the
sale, only the buyer obtains the copy with a fingerprint. If the seller finds the finger-
printed copy somewhere, he can identify the traitor and convince a third party that the
the copy is illegally distributed by the traitor.

Anonymous: A buyer can purchase a fingerprinted copy without informing his identity to a
seller, but he can identify the traitor later. It also retains the asymmetric property.

In asymmetric fingerprinting, the plain value of a fingerprint should not be revealed to a seller,
otherwise he can produce a fingerprinted copy by himself. Therefore an interactive protocol is
performed to prevent the seller obtaining the fingerprinted copy. Such a protocol is based on

public-key cryptosystems because they assure only a buyer can decrypt a ciphertext though
both of them can perform the enciphering operation. In order to achieve the asymmetric
fingerprinting, a homomorphic property of public-key cryptosystems is applied.

2.1 Asymmetric Property
In order to achieve an asymmetric property, a homomorphic property of public-key cryptosys-
tems is introduced in the fingerprinting protocols Pfitzmann & Sadeghi (1999). The homomor-
phic property enables a seller to obtain the ciphertext of fingerprinted copy by operating an
encrypted fingerprint with an encrypted original content. Since the ciphertext is computed
using a buyer’s encryption key, only the buyer can decrypt it; hence, only he can obtain the
fingerprinted copy.
The homomorphic property of public-key cryptosystems is often applied for cryptographic
protocol as operations that can be performed without revealing the plain value. If an opera-
tion on a ciphertext space results in an operation on the message space, the cryptosystem is
homomorphic, and principally the former operation is multiplication and the latter is one of
three operations, “addition, multiplication, exclusive or”, in public-key cryptosystems.
Let E(M) be a ciphertext of a message M. The homomorphic property satisfies the following
equation:

g
(

E(M1), E(M2)
)

= E
(

f (M1, M2)
)

, (1)

where g(·) and f (·) is one of the operations, addition, multiplication, XOR, etc., which is re-
lated to the applied cryptosystem and the embedding algorithm (Most public-key cryptosys-
tems select multiplication for g(·)). If M1 is regarded as a digital content and M2 as a fin-
gerprint, the fingerprint can be embedded in the content without decryption by multiplying
those ciphertexts. Since they are calculated using buyer’s public encryption-key, the finger-
printed copy is decrypted only by the buyer, hence the asymmetric property is satisfied. The
embedding operation based on the homomorphic property is basically performed for each
element of fingerprint information which will be composed of bit-sequence or spread spec-
trum sequence, hence each element is separately embedded in its corresponding position.
Thus, M1 is not the entire content, but one of the components like the frequency elements
to be fingerprinted by a watermarking technique. Note that in watermarking techniques
Katzenbeisser & Petitcolas (2000) for digital images, it is advisable to embed information in
the frequency components for both the robustness and perceptual quality. When the vector
representation of M1 is given by {m1,1, m1,2, m1,3, . . .}, the ciphertext is also represented as
E(M1) = {E(m1,1), E(m1,2), E(m1,3), . . .}. As the consequence, the detail of Eq.(1) is given by

g
(

E(m1,i), E(m2,i)
)

= E
(

f (m1,i, m2,i)
)

, (i = 1, 2, 3, . . .). (2)

The multiplicative property of RSA scheme Rivest et al. (1978) is applied to embed a finger-
print in Memon & Wong (2001), the homomorphism of a bit commitment scheme based on the
quadratic residues Brassard et al. (1988) is exploited Pfitzmann & Sadeghi (1999; 2000), and
the additive homomorphic property of public-key cryptosystem such as Okamoto-Uchiyama
encryption scheme Okamoto & Uchiyama (1998) and Paillier cryptosystem Paillier (1999) is
utilized in Kuribayashi & Tanaka (2005). In these schemes, to convince a seller that a trans-
mitted ciphertexts really contains his fingerprinting information, zero-knowledge interactive
protocol (ZKIP) must be performed, which is easily constructed using the applied public-key
cryptosystem. Such characteristic is necessary for the security reason and the anonymity of a
buyer is achieved.
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2.2 Asymmetric Fingerprinting Protocol Based on Bit Commitments
In the asymmetric fingerprinting scheme, a buyer and a seller jointly embed a fingerprint.
First, the buyer encrypts a fingerprint and sends it to the seller. Then the seller verifies that
the received ciphertext is made from the real fingerprint, and embeds it in his encrypted copy
by multiplying those ciphertexts. Finally, the buyer receives the encrypted and fingerprinted
copy and decrypts it. After the protocol, only the buyer gets the fingerprinted copy without
disclosing his identity. The model of asymmetric fingerprinting protocol is described in Fig.1.
A concept of an anonymous fingerprinting protocol was first presented in Pfitzmann & Waid-
ner (1997), and the fingerprinting system composed of several protocols was presented Pfitz-
mann & Sadeghi (1999), which security was further improved in Pfitzmann & Sadeghi (2000).
There are three parties, buyer B, seller S , and registration center RC. First, RC generates a
pair of keys, secret key and public key, and distributes the latter to all participants of the sys-
tem. When B begins a trade to a seller S , first B must register at RC. And then B withdraws
a digital coin which includes an identify proof W = proo f (id) of his identity(fingerprint), id,
and its signature which can be verified using the RC’s public key and can assure the legiti-
macy of the buyer. In Fingerprinting Protocol, B encrypts his fingerprint and sends to S . Then
using a zero-knowledge proof, B proves that the contents of the ciphertext is equivalent to
that of W. After S is convinced the validity of the ciphertext, he encrypts his image, and mul-
tiplies the received ciphertext and the ciphertext of his image to embed the fingerprint in his
image based on a homomorphic property. In order to prove that the ciphertext really includes
the fingerprint without revealing the plain value, two kinds of bit commitment schemes are
applied. One is based on the discrete logarithm assumption, and the other is on the quadratic
residues Brassard et al. (1988) which security depends on the p-subgroup assumption and
quadratic residues assumption, respectively. The commitment schemes BCDL and BCRQ are
described as follows.

BCDL: Let p be a large prime, and g and h be the generators. The commitment comDL(b, r) of
a bit b is calculated using a random number r as follows.

comDL(b, r) = gbhr (mod p) (3)

BCQR: Let p and q be large primes, and n = pq. The commitment comQR(b, r) is obtained by
the following equation.

comQR(b, r) = (−1)br2 (mod n) (4)

Here, it is remarkable that the committed value b of BCDL is not only binary, it can take
an integer of (Z/pZ). When W is calculated based on BCDL, namely W = comDL(id, r) =
gidhr mod p, then it is difficult for a seller to embed directly the value of id using the commit-
ment. Because of the characteristic of the commitment scheme, the recovery of the committed
value is generally impossible. So instead of W, the commitment of each information bit of
id = ∑ wj2j, which is calculated by comQR(wj, rj), is applied for embedding. For a certain
bit Xi ∈ {0, 1} of digital contents, S computes the commitment comQR(Xi, ri), and multiplies
comQR(wj, rj) to it.

comQR(Xi, ri) · comQR(wj, rj) = (−1)Xiwj (rirj)
2 (mod n) (5)

It is noticed that if Xiwj is 0, the result is quadratic residue, otherwise, it is quadratic non-
residue. The knowledge of two primes p and q allow B to compute the value Xiwi mod 2
using the Jacobi Symbol while S can not determine that it is quadratic residue or not. So the
security is based on the difficulty of factoring n = pq.
Before the above computation, B must certify that the values comQR(wj, rj) of the commit-
ments are equivalent to that of W. Using BCDL, B convinces S by zero-knowledge interactive
protocol that the committed value of comDL(id, r) is equivalent to that of comQR(id, r). After
the above protocol, only B can decrypt the fingerprinted copy and S can obtain the proof of
the communication which can be used later if B illegally redistributes the copy.
The function f (·) in the homomorphic property of BCQR is exclusive or operation. Based on
the property, an encrypted fingerprint can be embedded in the encrypted copy, but the en-
ciphering rate is extremely small because the commitment can contain only one-bit message
in log2 n-bit ciphertext, where n is composed of two large primes such that the bit-length of n
should be more than 1024. Therefore, the enciphering rate of this method is more than 1/1024.

2.3 Unbinding Problem
It is also desirable for the fingerprinting protocol to solve the unbinding problem such that the
relation between fingerprint information and a specific transaction performed by a buyer and
a seller. In the elementary fingerprinting protocol Memon & Wong (2001), fingerprint infor-
mation to be embedded is not well considered, which is merely related to user’s information
such as name, address, phone number, e-mail address, etc.. When a seller finds an illegal copy
and detects the corresponding buyer by extracting the fingerprint, he will go to court with
the collected proofs. A malicious seller, however, frames the detected buyer by embedding
the obtained fingerprint into the other contents which are more expensive than the detected
one what he really sold to the buyer. Therefore, once a seller obtains such a fingerprint, it
is possible for him to transplant it into another much expensive contents so that he can get
compensated more.
In Lei et al. (2004), a fingerprint is binded with a common agreement (ARG) by producing the
signature of a trusted watermark certification authority (WCA), and the transaction of digital
contents is uniquely associated with a log file. For anonymity of buyers, a digital certifica-
tion authority (CA) is introduced in the fingerprinting protocol. A buyer B first randomly
selects a key pair (pkB , skB), where pkB and skB are the public and secret keys of public-key
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2.2 Asymmetric Fingerprinting Protocol Based on Bit Commitments
In the asymmetric fingerprinting scheme, a buyer and a seller jointly embed a fingerprint.
First, the buyer encrypts a fingerprint and sends it to the seller. Then the seller verifies that
the received ciphertext is made from the real fingerprint, and embeds it in his encrypted copy
by multiplying those ciphertexts. Finally, the buyer receives the encrypted and fingerprinted
copy and decrypts it. After the protocol, only the buyer gets the fingerprinted copy without
disclosing his identity. The model of asymmetric fingerprinting protocol is described in Fig.1.
A concept of an anonymous fingerprinting protocol was first presented in Pfitzmann & Waid-
ner (1997), and the fingerprinting system composed of several protocols was presented Pfitz-
mann & Sadeghi (1999), which security was further improved in Pfitzmann & Sadeghi (2000).
There are three parties, buyer B, seller S , and registration center RC. First, RC generates a
pair of keys, secret key and public key, and distributes the latter to all participants of the sys-
tem. When B begins a trade to a seller S , first B must register at RC. And then B withdraws
a digital coin which includes an identify proof W = proo f (id) of his identity(fingerprint), id,
and its signature which can be verified using the RC’s public key and can assure the legiti-
macy of the buyer. In Fingerprinting Protocol, B encrypts his fingerprint and sends to S . Then
using a zero-knowledge proof, B proves that the contents of the ciphertext is equivalent to
that of W. After S is convinced the validity of the ciphertext, he encrypts his image, and mul-
tiplies the received ciphertext and the ciphertext of his image to embed the fingerprint in his
image based on a homomorphic property. In order to prove that the ciphertext really includes
the fingerprint without revealing the plain value, two kinds of bit commitment schemes are
applied. One is based on the discrete logarithm assumption, and the other is on the quadratic
residues Brassard et al. (1988) which security depends on the p-subgroup assumption and
quadratic residues assumption, respectively. The commitment schemes BCDL and BCRQ are
described as follows.

BCDL: Let p be a large prime, and g and h be the generators. The commitment comDL(b, r) of
a bit b is calculated using a random number r as follows.

comDL(b, r) = gbhr (mod p) (3)

BCQR: Let p and q be large primes, and n = pq. The commitment comQR(b, r) is obtained by
the following equation.

comQR(b, r) = (−1)br2 (mod n) (4)

Here, it is remarkable that the committed value b of BCDL is not only binary, it can take
an integer of (Z/pZ). When W is calculated based on BCDL, namely W = comDL(id, r) =
gidhr mod p, then it is difficult for a seller to embed directly the value of id using the commit-
ment. Because of the characteristic of the commitment scheme, the recovery of the committed
value is generally impossible. So instead of W, the commitment of each information bit of
id = ∑ wj2j, which is calculated by comQR(wj, rj), is applied for embedding. For a certain
bit Xi ∈ {0, 1} of digital contents, S computes the commitment comQR(Xi, ri), and multiplies
comQR(wj, rj) to it.

comQR(Xi, ri) · comQR(wj, rj) = (−1)Xiwj (rirj)
2 (mod n) (5)

It is noticed that if Xiwj is 0, the result is quadratic residue, otherwise, it is quadratic non-
residue. The knowledge of two primes p and q allow B to compute the value Xiwi mod 2
using the Jacobi Symbol while S can not determine that it is quadratic residue or not. So the
security is based on the difficulty of factoring n = pq.
Before the above computation, B must certify that the values comQR(wj, rj) of the commit-
ments are equivalent to that of W. Using BCDL, B convinces S by zero-knowledge interactive
protocol that the committed value of comDL(id, r) is equivalent to that of comQR(id, r). After
the above protocol, only B can decrypt the fingerprinted copy and S can obtain the proof of
the communication which can be used later if B illegally redistributes the copy.
The function f (·) in the homomorphic property of BCQR is exclusive or operation. Based on
the property, an encrypted fingerprint can be embedded in the encrypted copy, but the en-
ciphering rate is extremely small because the commitment can contain only one-bit message
in log2 n-bit ciphertext, where n is composed of two large primes such that the bit-length of n
should be more than 1024. Therefore, the enciphering rate of this method is more than 1/1024.

2.3 Unbinding Problem
It is also desirable for the fingerprinting protocol to solve the unbinding problem such that the
relation between fingerprint information and a specific transaction performed by a buyer and
a seller. In the elementary fingerprinting protocol Memon & Wong (2001), fingerprint infor-
mation to be embedded is not well considered, which is merely related to user’s information
such as name, address, phone number, e-mail address, etc.. When a seller finds an illegal copy
and detects the corresponding buyer by extracting the fingerprint, he will go to court with
the collected proofs. A malicious seller, however, frames the detected buyer by embedding
the obtained fingerprint into the other contents which are more expensive than the detected
one what he really sold to the buyer. Therefore, once a seller obtains such a fingerprint, it
is possible for him to transplant it into another much expensive contents so that he can get
compensated more.
In Lei et al. (2004), a fingerprint is binded with a common agreement (ARG) by producing the
signature of a trusted watermark certification authority (WCA), and the transaction of digital
contents is uniquely associated with a log file. For anonymity of buyers, a digital certifica-
tion authority (CA) is introduced in the fingerprinting protocol. A buyer B first randomly
selects a key pair (pkB , skB), where pkB and skB are the public and secret keys of public-key
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cryptosystem, respectively. He sends pkB , which is a pseudonym associated with B, to CA in
order to get an anonymous certificate CertCA(pkB). When B makes an order to a seller S , he
checks the validity of CertCA(pkB). Then S asks WCA to generate a unique watermark W for
the current transaction between B and S . The protocol between the buyer B and seller S is
summarized below (the detail is referred to Lei et al. (2004)).

1. B selects one-time key pair (pk�, sk�) and generates its certificate CertpkB (pk�) using the
public key pkB . After making a common agreement ARG, B calculates a digital signa-
ture Signpk� (ARG) using the one-time public key pk�. B sends pkB, pk�, CertCA(pkB),
CertpkB (pk�), ARG, and Signpk� (ARG) to S .

2. If the validity of the received items is verified, S generates a watermark V and embeds
into contents X. The watermark is reference information to retrieve this sale record
from illegally distributed copy; hence it could be omitted if the seller wants to avoid
the degradation of quality. Then, S send CertpkB (pk�), ARG, Signpk� (ARG), and X(V)

to WCA.

3. Upon receiving the items, WCA verifies the validity of the certificate and sig-
nature, and reject the transaction if any of them is invalid. Otherwise, using
X(V) it generates a unique and robust watermark W as fingerprint information
which is specific to this transaction. Then, it computes Epk� (W), EpkWCA (W), and
SignWCA(Epk� (W), pk�, Signpk� (ARG)), and sends them back to S .

4. When S receives the response, the embedding operation in encrypted domain is per-
formed by computing

Epk� (X(W,V)) = Epk� (X(V))⊕ Epk� (W), (6)

where ⊕ implies the embedding operation based on the homomorphic property. Then,
S delivers Epk� (X(W,V)) to B.

5. After decrypting the received Epk� (X(W,V)), B obtains the watermarked copy X(W,V).

Where Epk(·) is an enciphering function using a public key pk. The flow of the transaction is
summarized in Fig.2.
The signature SignWCA(Epk� (W), pk�, Signpk� (ARG)) explicitly binds W and ARG, which, in
turn, uniquely specifies a particular digital content X, so it is impossible for S to transplant
the watermark from an illegal copy to other contents.

3. Asymmetric Fingerprinting Protocol Based on Additive Homomorphism

The idea of the protocol Kuribayashi & Tanaka (2005) is to exploit the public-key cryptosys-
tem with additive homomorphic property such as the Okamoto-Uchiyama encryption scheme
Okamoto & Uchiyama (1998) and Paillier cryptosystem Paillier (1999) for anonymous finger-
printing.

3.1 Public-Key Cryptosystem with Additive Homomorphism
After Goldwasser-Micali’s scheme Goldwasser & Micali (1984) based on quadratic residuosity,
Benaloh’s homomorphic encryption function, originally designed for electronic voting and
relying on prime residuosity, prefigured the first attempt to exploit the plain resources of this
theory. Okamoto and Uchiyama significantly extended the enciphering rate by investigating
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two different approaches: residuosity of smooth degree in Z∗
pq and residuosity of prime degree

p in Z∗
p2q, respectively. Here, we review the cryptosystem and enumerate the properties of the

enciphering function.
Let p and q be two large primes (|p| = |q| = �p bits) and N = p2q. Choose g ∈R (Z/NZ)
randomly such that the order of gp = gp−1 mod p2 is p, where g.c.d.(p, q − 1) = 1 and
g.c.d.(q, p − 1) = 1. Let h = gN mod N. Here a public key pk is (N, g, h, �p) and a secret
key sk is (p, q). The cryptosystem, based on the exponentiation modN, is constructed as fol-
lows.

Encryption: Let m (0 < m < 2�p−1) be a plaintext. Selecting a random number r ∈R (Z/NZ),
a ciphertext is given by

C = gmhr (mod N). (7)

Decryption: Calculate first Cp = Cp−1 mod p2 and then

m =
L(Cp)

L(gp)
(mod p), (8)

where
L(x) =

x − 1
p

. (9)

We denote the encryption function Epk(m, r) and decryption function Dsk(C). Three impor-
tant properties of the scheme are given by the following P1, P2 and P3.

P1. It has an additive homomorphic property : if m1 + m2 < p,

Epk(m1, r1) · Epk(m2, r2) = Epk(m1 + m2, r1 + r2) (mod N). (10)

P2. It is semantically secure if the following assumption, i.e. p-subgroup assumption, is true:
Epk(0, r) = hr mod N and Epk(1, r′) = ghr′ mod N is computationally indistinguish-
able, where r and r′ are uniformly and independently selected from ∈R (Z/NZ).

P3. Anyone can change a ciphertext, C = Epk(m, r), into another ciphertext, C′ = Chr′ mod
N, while preserving the plaintext of C (i.e., C′ = Epk(m, r′′)), and the relationship be-
tween C and C′ can be concealed.
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cryptosystem, respectively. He sends pkB , which is a pseudonym associated with B, to CA in
order to get an anonymous certificate CertCA(pkB). When B makes an order to a seller S , he
checks the validity of CertCA(pkB). Then S asks WCA to generate a unique watermark W for
the current transaction between B and S . The protocol between the buyer B and seller S is
summarized below (the detail is referred to Lei et al. (2004)).

1. B selects one-time key pair (pk�, sk�) and generates its certificate CertpkB (pk�) using the
public key pkB . After making a common agreement ARG, B calculates a digital signa-
ture Signpk� (ARG) using the one-time public key pk�. B sends pkB, pk�, CertCA(pkB),
CertpkB (pk�), ARG, and Signpk� (ARG) to S .

2. If the validity of the received items is verified, S generates a watermark V and embeds
into contents X. The watermark is reference information to retrieve this sale record
from illegally distributed copy; hence it could be omitted if the seller wants to avoid
the degradation of quality. Then, S send CertpkB (pk�), ARG, Signpk� (ARG), and X(V)

to WCA.

3. Upon receiving the items, WCA verifies the validity of the certificate and sig-
nature, and reject the transaction if any of them is invalid. Otherwise, using
X(V) it generates a unique and robust watermark W as fingerprint information
which is specific to this transaction. Then, it computes Epk� (W), EpkWCA (W), and
SignWCA(Epk� (W), pk�, Signpk� (ARG)), and sends them back to S .

4. When S receives the response, the embedding operation in encrypted domain is per-
formed by computing

Epk� (X(W,V)) = Epk� (X(V))⊕ Epk� (W), (6)

where ⊕ implies the embedding operation based on the homomorphic property. Then,
S delivers Epk� (X(W,V)) to B.

5. After decrypting the received Epk� (X(W,V)), B obtains the watermarked copy X(W,V).

Where Epk(·) is an enciphering function using a public key pk. The flow of the transaction is
summarized in Fig.2.
The signature SignWCA(Epk� (W), pk�, Signpk� (ARG)) explicitly binds W and ARG, which, in
turn, uniquely specifies a particular digital content X, so it is impossible for S to transplant
the watermark from an illegal copy to other contents.

3. Asymmetric Fingerprinting Protocol Based on Additive Homomorphism

The idea of the protocol Kuribayashi & Tanaka (2005) is to exploit the public-key cryptosys-
tem with additive homomorphic property such as the Okamoto-Uchiyama encryption scheme
Okamoto & Uchiyama (1998) and Paillier cryptosystem Paillier (1999) for anonymous finger-
printing.

3.1 Public-Key Cryptosystem with Additive Homomorphism
After Goldwasser-Micali’s scheme Goldwasser & Micali (1984) based on quadratic residuosity,
Benaloh’s homomorphic encryption function, originally designed for electronic voting and
relying on prime residuosity, prefigured the first attempt to exploit the plain resources of this
theory. Okamoto and Uchiyama significantly extended the enciphering rate by investigating
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two different approaches: residuosity of smooth degree in Z∗
pq and residuosity of prime degree

p in Z∗
p2q, respectively. Here, we review the cryptosystem and enumerate the properties of the

enciphering function.
Let p and q be two large primes (|p| = |q| = �p bits) and N = p2q. Choose g ∈R (Z/NZ)
randomly such that the order of gp = gp−1 mod p2 is p, where g.c.d.(p, q − 1) = 1 and
g.c.d.(q, p − 1) = 1. Let h = gN mod N. Here a public key pk is (N, g, h, �p) and a secret
key sk is (p, q). The cryptosystem, based on the exponentiation modN, is constructed as fol-
lows.

Encryption: Let m (0 < m < 2�p−1) be a plaintext. Selecting a random number r ∈R (Z/NZ),
a ciphertext is given by

C = gmhr (mod N). (7)

Decryption: Calculate first Cp = Cp−1 mod p2 and then

m =
L(Cp)

L(gp)
(mod p), (8)

where
L(x) =

x − 1
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. (9)

We denote the encryption function Epk(m, r) and decryption function Dsk(C). Three impor-
tant properties of the scheme are given by the following P1, P2 and P3.

P1. It has an additive homomorphic property : if m1 + m2 < p,

Epk(m1, r1) · Epk(m2, r2) = Epk(m1 + m2, r1 + r2) (mod N). (10)

P2. It is semantically secure if the following assumption, i.e. p-subgroup assumption, is true:
Epk(0, r) = hr mod N and Epk(1, r′) = ghr′ mod N is computationally indistinguish-
able, where r and r′ are uniformly and independently selected from ∈R (Z/NZ).

P3. Anyone can change a ciphertext, C = Epk(m, r), into another ciphertext, C′ = Chr′ mod
N, while preserving the plaintext of C (i.e., C′ = Epk(m, r′′)), and the relationship be-
tween C and C′ can be concealed.
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Although the enciphering rate of Paillier cryptosystem Paillier (1999), which has the similar
structure to Okamoto-Uchiyama encryption scheme, is higher, it requires more computations.
So the selection of the scheme is dependent on the applied system. For convenience, the
cryptosystem in the protocol is represented by Okamoto-Uchiyama encryption scheme; the
approach can be easily translated to the Paillier cryptosystem, the readers are recommended
to check the original paper Paillier (1999).

3.2 Main Protocol
The fingerprinting protocol is executed between a buyer B and a seller S . B commits his
identity(fingerprint), id = ∑ wj2j (0 ≤ j ≤ �− 1) to S the enciphered form, comj, where the
values of wj are binary. Then, S encrypts his image Xi (0 ≤ i ≤ L) and multiplies it to the
received comj. We assume that B has already registered at a center RC, and sent S the coin
which includes a fingerprint and its signature. For simplicity, W = gid mod N is regarded as
a commitment of id. Under the assumption, the fingerprinting protocol is given as follows
(indicated in Fig.3).

[ Fingerprinting Protocol ]

Step 1. S generates a random number a(2� < a < N) and sends it to B.

Step 2. B decomposes a into � random numbers aj ∈R (Z/NZ) to satisfy the following equa-
tion.

a =
�−1

∑
j=0

aj2
j (11)

Where the values of a1 to a�−1 are selected randomly under the condition,

�−1

∑
j=1

aj2
j < a, (12)

and a0 is calculated as follows.

a0 = a −
�−1

∑
j=1

aj2
j (13)

A bit commitment of each wj is calculated as

comj = gwj haj (mod N), (14)

= Epk(wj, aj) (mod N), (15)

and sent to S .

Step 3. To verify the commitment, S calculates

V = ha (mod N), (16)

and makes sure that the following equation can be satisfied.

∏
j

comj
2j ?
= W · V (mod N) (17)

Step 4. S generates L random numbers bi ∈R (Z/NZ) and embedding intensity T of even
number. Then, in order to get the encrypted and fingerprinted image, S calculates

Yi =

{

gXi hbi · comT
j (mod N) marking position

gXi hbi (mod N) elsewhere
(18)

and sends it to B

Step 5. Since the received Yi is rewritten as

Yi =

{

g(Xi+Twj)hTaj+bi (mod N) marking position

gXi hbi (mod N) elsewhere,
(19)

B can decrypt Yi to get the plaintext.

Dsk(Yi) =

{

Xi + Twj (mod p) marking position

Xi (mod p) elsewhere
(20)

On the deciphered message, if wj = 1, then Xi has been increased, and if wj = 0, then nothing
has done to Xi.
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cryptosystem in the protocol is represented by Okamoto-Uchiyama encryption scheme; the
approach can be easily translated to the Paillier cryptosystem, the readers are recommended
to check the original paper Paillier (1999).
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identity(fingerprint), id = ∑ wj2j (0 ≤ j ≤ �− 1) to S the enciphered form, comj, where the
values of wj are binary. Then, S encrypts his image Xi (0 ≤ i ≤ L) and multiplies it to the
received comj. We assume that B has already registered at a center RC, and sent S the coin
which includes a fingerprint and its signature. For simplicity, W = gid mod N is regarded as
a commitment of id. Under the assumption, the fingerprinting protocol is given as follows
(indicated in Fig.3).
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and sent to S .

Step 3. To verify the commitment, S calculates

V = ha (mod N), (16)

and makes sure that the following equation can be satisfied.
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Step 4. S generates L random numbers bi ∈R (Z/NZ) and embedding intensity T of even
number. Then, in order to get the encrypted and fingerprinted image, S calculates
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Step 5. Since the received Yi is rewritten as
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On the deciphered message, if wj = 1, then Xi has been increased, and if wj = 0, then nothing
has done to Xi.
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Remark 1: If we regard wj as a message and aj as a random number, then comj is represented
by Epk(wj, aj) and comT

j by Epk(Twj, Taj) because

comT
j = (gwj haj )T (mod N)

= gTwj hTaj (mod N)

= Epk(Twj, Taj). (21)

In many watermarking schemes, the embedding procedure is performed by an addition of wa-
termark signal, namely a watermark is added to or subtracted from pixel values or frequency
components with a certain intensity. Therefore, the additive homomorphism is suitable for
such watermark schemes. In Eq.(18), gXi hbi = Epk(Xi, bi) is regarded as S ’s enciphered im-
age, and then from the property P1 Yi at the marking position is rewritten as

Yi = Epk(Xi, bi) · Epk(Twj, Taj)

= Epk(Xi + Twj, Taj + bi) (22)

If S uses Xi as a pixel value directly, the above operation can be applied easily. Considering
about the robustness against attack such as lossy compression and filtering operation, etc., the
transformed domain is generally more resilience for such attacks.
In the fingerprinting protocol B may be able to forge his identity as he has not proved that the
values of wj (0 ≤ j ≤ �− 1) are binary. Even if they are not binary, Eq.(17) can be satisfied
choosing them suitably. Then a malicious buyer may try to find the embedding position by
setting the values adaptively. To solve the problem, a zero-knowledge interactive protocol
has been introduced to prove that a commitment contains binary value, the procedure, called
binary proof, is clearly described in Kuribayashi & Tanaka (2005).

3.3 Modified Fingerprinting Protocol
We consider the size of the message being encrypted, where the bit length of a message is
revealed as the public key �p of Okamoto-Uchiyama encryption scheme. Since Xi and T are
much smaller than 2�p−1(< p) and the ciphertext is three times as large as p, the enciphering
rate is still low. To exploit the message space effectively, the size of message to be encrypted
should be modified as large as 2�p−1.
Let mi be

mi =

{

Xi + Twj markingposition
Xi elsewhere,

(23)

and �m be the maximum bit-length of mi. Since �m is much smaller than �p, the message can
be replaced by

Mi′ =
γ−1

∑
t=0

mi′γ+t2
�mt, 0 ≤ i′ ≤ L/γ − 1, (24)

where

γ =

⌈

�p

�m

⌉

. (25)

It is illustrated in Fig.4. If the ciphertext of the message Mi′ is calculated by S using comj and
Xi in the fingerprinting protocol, the enciphering rate becomes at most 1/3 in theory.
In order to perform the above operations, the fingerprinting protocol of Step 4 and Step 5
presented in the fingerprinting protocol is changed as follows.

bits�p

mi′γ+1

�m bits �m bits �m bits �m bits �m bits
M ′

i
mi′γ m(i′+1)γ−2 m(i′+1)γ−1mi′γ+2=

Fig. 4. Composition of the message Mi′ .

[ Modified Fingerprinting Protocol ]

Step 4. In order to get the encrypted and fingerprinted image yi, S calculates

yi =

{

gXi · comT
j (mod N) marking position

gXi (mod N) elsewhere.
(26)

To synthesize some yi in one ciphertext Yi′ , the following operation is performed using
a random number bi′ ∈R (Z/NZ).

Yi′ =
(

∏
t
(yi′γ+t)

2�mt
)

· hbi′ (mod N) (27)

Step 5. B decrypts the received Yi′ to obtain Mi′ . Since he knows the bit-length �m of mi, he
can decompose Mi′ into the pieces, and finally he can get the fingerprinted image.

Remark 3: From Eqs.(23)-(26) and the property P3, Eq.(27) is expressed by

Yi′ =
(

∏
t

gmi′γ+t2
�mt

)

· hr (mod N)

= g∑ mi′γ+t2
�mt

hr (mod N)

= gMi′ hr (mod N)

= Epk(Mi′ , r). (28)

If the Okamoto-Uchiyama encryption scheme is secure and the bit-length of Mi′ is less than
�p, B can decrypt Yi′ = E(Mi′ , r). Here, in Eqs.(27) and (28) several pieces mi′γ+t of finger-
printed image that compose Mi′ are encrypted in one ciphertext E(Mi′ , r), though each piece
is encrypted in the original scheme. Therefore, Mi′ should retain a special data structure de-
scribed by Eq.(24). If S changes the data structure, B can not decompose it into the correct
pieces mi′γ+t, and then he can claim the fact. Hence, with the knowledge of data structure B
can decompose the decrypted message Mi′ into mi′γ+t, and finally get the fingerprinted im-
age. Furthermore, as Mi′ is simply produced by composing several pieces of mi′γ+t, B can not
derive any information about original image from the decrypted message.
Assume that the size of fingerprint is � bits, and the fingerprint is embedded in the frequency
components of an image where the number of components is L and each component is ex-
pressed by �m bits. Then the total amount of plain data of digital contents is �mL. In Pfitz-
mann & Sadeghi (1999) and Pfitzmann & Sadeghi (2000), the modulus n is a composite of two
large primes. Since only one bit is encrypted when bit commitment schemes are used, each
bit of the frequency components must be encrypted, thus the total amount of encrypted data
is �mL log2 n bits. On the other hand, the modulus of the fingerprinting protocol with addi-
tive homomorphism is N(= p2q, 3�p bits). In the original scheme, the amount of encrypted
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values of wj (0 ≤ j ≤ �− 1) are binary. Even if they are not binary, Eq.(17) can be satisfied
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Step 4. In order to get the encrypted and fingerprinted image yi, S calculates

yi =
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gXi (mod N) elsewhere.
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To synthesize some yi in one ciphertext Yi′ , the following operation is performed using
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Step 5. B decrypts the received Yi′ to obtain Mi′ . Since he knows the bit-length �m of mi, he
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is encrypted in the original scheme. Therefore, Mi′ should retain a special data structure de-
scribed by Eq.(24). If S changes the data structure, B can not decompose it into the correct
pieces mi′γ+t, and then he can claim the fact. Hence, with the knowledge of data structure B
can decompose the decrypted message Mi′ into mi′γ+t, and finally get the fingerprinted im-
age. Furthermore, as Mi′ is simply produced by composing several pieces of mi′γ+t, B can not
derive any information about original image from the decrypted message.
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components of an image where the number of components is L and each component is ex-
pressed by �m bits. Then the total amount of plain data of digital contents is �mL. In Pfitz-
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is �mL log2 n bits. On the other hand, the modulus of the fingerprinting protocol with addi-
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conventional original modified
1/3�p �m/3�p 1/3

Table 1. Enciphering rate.

data is L log2 N(= 3�pL) bits as each component is encrypted. In the modified scheme, it is
(L log2 N)/γ (� 3�mL) bits, because from Eq.(25) there are at most L/γ messages Mi′ to be
encrypted, since �m � �m. Here, if log2 n � log2 N = 3�p, the enciphering rates are indicated
in Table 1. Since the enciphering rate of Paillier cryptosystem is 1/2, the protocol can achieve
the rate if the cryptosystem is applied instead of Okamoto-Uchiyama encryption scheme.

4. Collusion Resilience

In a fingerprinting scheme, each watermarked copy is slightly different, hence, malicious
users will collect their copies in order to remove/alter the watermark. For an improperly
designed fingerprint, it is possible to gather a small coalition of colluders and sufficiently at-
tenuate each of colluders’ fingerprint to produce a pirated copy with no detectable traces.
Thus, it is important to model and analyze collusion, and to design fingerprints that can resist
the collusion attack.
There are several types of collusion attacks that may be used against fingerprinting system.
One method is to average fingerprinted copies, which is an example of the linear collusion at-
tack. Another collusion attack involves users cutting out portions of each fingerprinted copy
and pasting them together to form a pirated copy. Other attacks may employ nonlinear oper-
ations, such as taking the maximum or median of signal values of individual copies. As the
countermeasure of collusion attack, a number of works on designing fingerprints have been
proposed. One approach generates mutually independent sequences, e.g. spread spectrum
sequence, for assigning users as their fingerprints, the other approach encodes fingerprint
information considering the distances among fingerprint codes.
On the former approach, spread spectrum sequences which follow a normal distribution are
assigned to users as fingerprints. The origin of the spread spectrum watermarking scheme
is Cox’s method Cox et al. (1997) that embeds the sequence into frequency components of
digital image and detects it using a correlator. Since normally distributed values allow the
theoretical and statistical analysis of the method, modeling of a variety of attacks have been
studied. Studies in Zhao et al. (2005) have shown that a number of nonlinear collusions such
as interleaving attack can be well approximated by averaging collusion plus additive noise.
So far, many variants of the spread spectrum watermarking scheme are based on the Cox’s
method.
Let W be a watermark signal composed of � elements wi ∈ N(0, 1), (0 ≤ i < �) and each
of them is embedded into selected DCT coefficient Xi, (0 ≤ i < �) based on the following
equation,

XW
i = Xi(1 + αwi), (29)

where N(0, 1) is a normal distribution with mean 0 and variance 1, and α is an embedding
strength. At the detector side, we determine which SS sequence is present in a test image by
evaluating the similarity of sequences. From the suspicious copy, a sequence W̃ is detected by
calculating the difference of the original image, and its similarity with W is obtained as fol-
lows.

sim(W, W̃) =
W · W̃√
W̃ · W̃

, (30)

If the similarity value exceeds a threshold, the embedded sequence is regarded as W.
At the detection, DCT coefficients of test image are subtracted from those of original image,
and then the correlations with every candidates of watermark signal are computed. Thus,
non-blind and informed watermarking scheme can be applied. In fingerprinting techniques,
the original content may be available at a detection because a seller is assumed as the author, or
a sales agent who knows it. A simple, yet effective collusion attack is to average some variants
of copy because when c copies are averaged, the similarity value calculated by Eq.(30) results
in shrinking by a factor of c, which will be roughly

√
�/c Cox et al. (1997). Even in this case,

we can detect the embedded watermark and identify the colluders by using an appropriately
designed threshold.
Chen et al. Chen & Wornel (2001) showed that additive spread spectrum watermarking, in
general, not good choices for embedding a bit-sequence, and, as an alternative, they intro-
duced a new class of embedding strategies, which is referred to as “quantization index mod-
ulation (QIM)”. In the study, they presented that dither modulation is a practical implemen-
tation of QIM that exhibits many of the attractive performance properties of QIM. The conve-
nient structure of dither modulation, which is easily combined with error-correction coding,
allows the system designer to achieve different rate distortion-robustness trade-offs by tuning
parameters such as the quantization step size. It is also suitable for fingerprinting system by
encoding fingerprint information by collusion-secure code. Thus, the combination of the QIM
watermarking and collusion-secure code can provide a good fingerprinting system.
Aiming at the extraction of a fingerprint bit-sequence, the QIM watermarking is implemented
in Kuribayashi & Tanaka (2005) and its variants are employed in Prins et al. (2007). In Swami-
nathan et al. (2006), the capability of the QIM based fingerprinting system is investigated,
and the results show that one variant, which is called the spread transform dither modula-
tion (STDM), retains an advantage under blind detection. Under non-blind detection, which
is a reasonable assumption in fingerprinting system, there is still a performance gap with the
spread spectrum method. It is noted that, in Yacobi (2001), the traceability is further improved
by combining a spread spectrum embedding like Cox’s method.
Assume that the bit-length of the message space is �M and that of each watermarked frequency
components is �m. Generally, �M is much larger than �m. In order to exploit the message
space effectively, dozens of watermarked frequency components are packed in one message
in Kuribayashi & Tanaka (2005), hence, the enciphering rate is almost equivalent to that of
an applied cryptosystem by suitably designing the message space of a ciphertext. From the
viewpoint of enciphering rate, the modification of QIM method implemented in Prins et al.
(2007) is not a good choice, and the improvement of the robustness against attacks is still
inferior to the spread spectrum method. The adaption of fingerprinting code further restricts
the scalability of the QIM based fingerprinting system because of the long code-length.

5. How to Implement Spread Spectrum Watermarking on Encrypted Domain

Despite the simple structure of the QIM watermarking, the exploitation of fingerprinting code
prevents the usability for various kinds of digital contents. We note that one major drawback
of the conventional methods Kuribayashi & Tanaka (2005) Prins et al. (2007) is the long code-
length of the fingerprinting code. Alternatively, the spread spectrum watermarking technique
Cox et al. (1997) is implemented on the fingerprinting protocol based on the homomorphic
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conventional original modified
1/3�p �m/3�p 1/3

Table 1. Enciphering rate.
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tack. Another collusion attack involves users cutting out portions of each fingerprinted copy
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is Cox’s method Cox et al. (1997) that embeds the sequence into frequency components of
digital image and detects it using a correlator. Since normally distributed values allow the
theoretical and statistical analysis of the method, modeling of a variety of attacks have been
studied. Studies in Zhao et al. (2005) have shown that a number of nonlinear collusions such
as interleaving attack can be well approximated by averaging collusion plus additive noise.
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of them is embedded into selected DCT coefficient Xi, (0 ≤ i < �) based on the following
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of copy because when c copies are averaged, the similarity value calculated by Eq.(30) results
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designed threshold.
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duced a new class of embedding strategies, which is referred to as “quantization index mod-
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nient structure of dither modulation, which is easily combined with error-correction coding,
allows the system designer to achieve different rate distortion-robustness trade-offs by tuning
parameters such as the quantization step size. It is also suitable for fingerprinting system by
encoding fingerprint information by collusion-secure code. Thus, the combination of the QIM
watermarking and collusion-secure code can provide a good fingerprinting system.
Aiming at the extraction of a fingerprint bit-sequence, the QIM watermarking is implemented
in Kuribayashi & Tanaka (2005) and its variants are employed in Prins et al. (2007). In Swami-
nathan et al. (2006), the capability of the QIM based fingerprinting system is investigated,
and the results show that one variant, which is called the spread transform dither modula-
tion (STDM), retains an advantage under blind detection. Under non-blind detection, which
is a reasonable assumption in fingerprinting system, there is still a performance gap with the
spread spectrum method. It is noted that, in Yacobi (2001), the traceability is further improved
by combining a spread spectrum embedding like Cox’s method.
Assume that the bit-length of the message space is �M and that of each watermarked frequency
components is �m. Generally, �M is much larger than �m. In order to exploit the message
space effectively, dozens of watermarked frequency components are packed in one message
in Kuribayashi & Tanaka (2005), hence, the enciphering rate is almost equivalent to that of
an applied cryptosystem by suitably designing the message space of a ciphertext. From the
viewpoint of enciphering rate, the modification of QIM method implemented in Prins et al.
(2007) is not a good choice, and the improvement of the robustness against attacks is still
inferior to the spread spectrum method. The adaption of fingerprinting code further restricts
the scalability of the QIM based fingerprinting system because of the long code-length.

5. How to Implement Spread Spectrum Watermarking on Encrypted Domain

Despite the simple structure of the QIM watermarking, the exploitation of fingerprinting code
prevents the usability for various kinds of digital contents. We note that one major drawback
of the conventional methods Kuribayashi & Tanaka (2005) Prins et al. (2007) is the long code-
length of the fingerprinting code. Alternatively, the spread spectrum watermarking technique
Cox et al. (1997) is implemented on the fingerprinting protocol based on the homomorphic
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property of public-key cryptosystem in this section. Hereafter, for simplicity, the embedding
of the reference information V, which is introduced in Lei et al. (2004), and a random number
used for the encryption are omitted in the protocol.
The embedding operation in Eq.(29) can be easily performed using the additive homomor-
phic property of public-key cryptosystems such as Okamoto-Uchiyama encryption scheme
Okamoto & Uchiyama (1998) and Paillier cryptosystem Paillier (1999). Remember that Eq.(22)
is composed of two operations; multiplication and addition for g(·) and f (·), respectively.
Since the multiplication is realized by the iteration of addition, the embedding operation is
represented by the multiplication and exponentiation. Suppose that an original image is com-
posed of L pixels and is represented by the DCT selected coefficients Xi, (0 ≤ i < �) and the
remain ones Xi, (� ≤ i < L), and a watermark signal is represented by wi, (0 ≤ i < �). Then,
the embedding operation of Eq.(29) is executed in the encrypted domain as follows.

Epk
(

Xi(1 + αwi)
)

= Epk(Xi) · Epk(wi)
αXi (31)

The above operation can be directly applied for the operation ⊕ in Eq.(6). Here, it is noticed
that a watermark signal and DCT coefficients are generally represented by real value and they
must be rounded to integer before the encryption. If such parameters are directly rounded to
the nearest integers, it may result in the loss of information. Hence, they should be scaled be-
fore rounding-off. In addition, a negative number should be avoided considering the property
of a cryptosystem because it is represented by much longer bit-sequence under the finite field
of applied cryptosystem, which affects the other packed ones described in Eq.(27). Hence, a
rounding operation that maps real value into positive integer is required.
At first, we show the operation concerning to a watermark signal W = {w0, w1, w2, . . . , w�−1}.
Since the ciphertext of W is computed by a watermark certification authority WCA, the en-
ciphering operation is performed previously sent to a seller S . A constant value pw is added
to each element of watermark signal wi, (0 ≤ i < �) to make the value positive. Then, it is
scaled by a factor of sw in order to keep the degree of precision, and it is quantized to wi. Such
operations are formalized by the following one equation;

wi = int
(

sw(wi + pw)
)

, 0 ≤ i < � (32)

where int(a) outputs the nearest integer from a real value a. After the operation, WCA
encrypts W = {w0, w1, w2, . . . , w�−1} using a public key pk, and the ciphertexts Epk(W) =

{Epk(w0), Epk(w1), Epk(w2), . . . , Epk(w�−1)}, pw, and sw are sent to S . It is noted that Epk(W)

corresponds to Epk� (W) in Fig.2, and the corresponding ciphertext of EpkWCA (W) is also sent
to S .
Next, S performs the rounding operation to DCT coefficients Xi, (0 ≤ i < �) as follows. A
constant value px is added to each DCT coefficient, and then scaled by swsx. By quantizing it,
the rounded DCT coefficient Xi is obtained.

Xi = int
(

swsx(Xi + px)
)

, 0 ≤ i < � (33)

For the control of rounding operation of each DCT coefficient, the watermark strength α is
modified to αi;

αi = int
(

sxα|Xi|
)

, 0 ≤ i < � (34)

Using the above items, S embeds wi into Xi for 0 ≤ i < � based on the additive homomorphic
property of public cryptosystem as follows.

Epk(Xi) · Epk(wi)
αi = Epk(Xi + αiwi) (35)

Since the plain value of the ciphertext Epk(Xi + αiwi) is

Xi + αiwi = swsx(Xi + px) + sxα|Xi|sw(wi + pw), (36)

= swsx
(

(Xi + αwi|Xi|) + (px + α|Xi|pw)
)

, (37)

the scaling factor s = swsx and the adjustment factor p = px + α|Xi|pw are necessary to calcu-
late the actual watermarked DCT coefficients Xi + αwi|Xi|. Therefore, these two parameters s
and p are sent to B as well as Epk(Xi + αiwi). It is noticed that the remained DCT coefficients
Xi, (� ≤ i < L) should be sent to B. In order to keep the secrecy of the embedding position,
they must be encrypted before delivery. Without loss of generality, the rounding operation for
those coefficients are given by

Xi = int
(

sxsw(Xi + px + α|Xi|pw)
)

, � ≤ i < L, (38)

and the ciphertexts Epk(Xi) are sent with Epk(Xi + αiwi) to B. Namely, the ciphertexts of a

watermarked image Epk(XW
), which is corresponding to Epk� (X(W,V)) in Fig.2, is composed

of those ones.

Epk(XW
) =

{

Epk(Xi + αiwi) 0 ≤ i < �

Epk(Xi) � ≤ i < L
(39)

After the decryption of the received ciphertexts Epk(XW
), B divides the results by a factor

of s, and then subtracts p as the post-processing operation. At the embedding position, the
ciphertexts are Epk(Xi + αiwi) and the post-processing operation outputs the fingerprinted
coefficients Xi + αwi|Xi| as follows;

Dsk
(

Epk(Xi + αiwi)
)

s
− p = Xi + αwi|Xi|, 0 ≤ i < �, (40)

where Dsk(·) is a deciphering function using a secret key sk. At the other position, the cipher-
texts are Epk(Xi) and B obtains Xi after the post-processing operation.

Dsk
(

Epk(Xi)
)

s
− p = Xi, � ≤ i < L. (41)

It is remarkable that the embedding position is kept secret from B, the classification of the
above operations is difficult. The diagram of the interactive protocol is shown in Fig.5.
In Eq.(22), the watermarked coefficient XW

i is composed of two terms; Xi and αwiXi. Since
wi is encrypted at the center WCA prior to the embedding operation at S , Xi and wi are
rounded separately. Considering the post-processing at B, the scaling factors sw, sx, and the
compensation factor p should be constant. Here, we assume that a constant value is uniformly
added to real values which are wi and Xi to make it positive. Then, B must subtract the
interference term related to both Xi and wi, which requires additional communication costs.
If the adjustment factor p is varied with respect to Xi, the amount of information to be sent
to B from S becomes very large. In order to avoid it, we set p a constant value by controlling
the value px. Even if p and α is known, to obtain Xi is still informationally difficult because of
three unknown parameters px, pw, and Xi for a given one equation p = px + α|Xi|pw. As the
consequence, the secrecy of the original DCT coefficients is assured.
Notice that if the size of scaling factors sw and sx is increased, the proposed scheme can simu-
late the original Cox’s method more precisely. From the viewpoint of enciphering rate, how-
ever, these factors should be small. Referring to the modified fingerprinting protocol, the
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property of public-key cryptosystem in this section. Hereafter, for simplicity, the embedding
of the reference information V, which is introduced in Lei et al. (2004), and a random number
used for the encryption are omitted in the protocol.
The embedding operation in Eq.(29) can be easily performed using the additive homomor-
phic property of public-key cryptosystems such as Okamoto-Uchiyama encryption scheme
Okamoto & Uchiyama (1998) and Paillier cryptosystem Paillier (1999). Remember that Eq.(22)
is composed of two operations; multiplication and addition for g(·) and f (·), respectively.
Since the multiplication is realized by the iteration of addition, the embedding operation is
represented by the multiplication and exponentiation. Suppose that an original image is com-
posed of L pixels and is represented by the DCT selected coefficients Xi, (0 ≤ i < �) and the
remain ones Xi, (� ≤ i < L), and a watermark signal is represented by wi, (0 ≤ i < �). Then,
the embedding operation of Eq.(29) is executed in the encrypted domain as follows.

Epk
(

Xi(1 + αwi)
)

= Epk(Xi) · Epk(wi)
αXi (31)

The above operation can be directly applied for the operation ⊕ in Eq.(6). Here, it is noticed
that a watermark signal and DCT coefficients are generally represented by real value and they
must be rounded to integer before the encryption. If such parameters are directly rounded to
the nearest integers, it may result in the loss of information. Hence, they should be scaled be-
fore rounding-off. In addition, a negative number should be avoided considering the property
of a cryptosystem because it is represented by much longer bit-sequence under the finite field
of applied cryptosystem, which affects the other packed ones described in Eq.(27). Hence, a
rounding operation that maps real value into positive integer is required.
At first, we show the operation concerning to a watermark signal W = {w0, w1, w2, . . . , w�−1}.
Since the ciphertext of W is computed by a watermark certification authority WCA, the en-
ciphering operation is performed previously sent to a seller S . A constant value pw is added
to each element of watermark signal wi, (0 ≤ i < �) to make the value positive. Then, it is
scaled by a factor of sw in order to keep the degree of precision, and it is quantized to wi. Such
operations are formalized by the following one equation;

wi = int
(

sw(wi + pw)
)

, 0 ≤ i < � (32)

where int(a) outputs the nearest integer from a real value a. After the operation, WCA
encrypts W = {w0, w1, w2, . . . , w�−1} using a public key pk, and the ciphertexts Epk(W) =

{Epk(w0), Epk(w1), Epk(w2), . . . , Epk(w�−1)}, pw, and sw are sent to S . It is noted that Epk(W)

corresponds to Epk� (W) in Fig.2, and the corresponding ciphertext of EpkWCA (W) is also sent
to S .
Next, S performs the rounding operation to DCT coefficients Xi, (0 ≤ i < �) as follows. A
constant value px is added to each DCT coefficient, and then scaled by swsx. By quantizing it,
the rounded DCT coefficient Xi is obtained.

Xi = int
(

swsx(Xi + px)
)

, 0 ≤ i < � (33)

For the control of rounding operation of each DCT coefficient, the watermark strength α is
modified to αi;

αi = int
(

sxα|Xi|
)

, 0 ≤ i < � (34)

Using the above items, S embeds wi into Xi for 0 ≤ i < � based on the additive homomorphic
property of public cryptosystem as follows.

Epk(Xi) · Epk(wi)
αi = Epk(Xi + αiwi) (35)

Since the plain value of the ciphertext Epk(Xi + αiwi) is

Xi + αiwi = swsx(Xi + px) + sxα|Xi|sw(wi + pw), (36)

= swsx
(

(Xi + αwi|Xi|) + (px + α|Xi|pw)
)

, (37)

the scaling factor s = swsx and the adjustment factor p = px + α|Xi|pw are necessary to calcu-
late the actual watermarked DCT coefficients Xi + αwi|Xi|. Therefore, these two parameters s
and p are sent to B as well as Epk(Xi + αiwi). It is noticed that the remained DCT coefficients
Xi, (� ≤ i < L) should be sent to B. In order to keep the secrecy of the embedding position,
they must be encrypted before delivery. Without loss of generality, the rounding operation for
those coefficients are given by

Xi = int
(

sxsw(Xi + px + α|Xi|pw)
)

, � ≤ i < L, (38)

and the ciphertexts Epk(Xi) are sent with Epk(Xi + αiwi) to B. Namely, the ciphertexts of a

watermarked image Epk(XW
), which is corresponding to Epk� (X(W,V)) in Fig.2, is composed

of those ones.

Epk(XW
) =

{

Epk(Xi + αiwi) 0 ≤ i < �

Epk(Xi) � ≤ i < L
(39)

After the decryption of the received ciphertexts Epk(XW
), B divides the results by a factor

of s, and then subtracts p as the post-processing operation. At the embedding position, the
ciphertexts are Epk(Xi + αiwi) and the post-processing operation outputs the fingerprinted
coefficients Xi + αwi|Xi| as follows;

Dsk
(

Epk(Xi + αiwi)
)

s
− p = Xi + αwi|Xi|, 0 ≤ i < �, (40)

where Dsk(·) is a deciphering function using a secret key sk. At the other position, the cipher-
texts are Epk(Xi) and B obtains Xi after the post-processing operation.

Dsk
(

Epk(Xi)
)

s
− p = Xi, � ≤ i < L. (41)

It is remarkable that the embedding position is kept secret from B, the classification of the
above operations is difficult. The diagram of the interactive protocol is shown in Fig.5.
In Eq.(22), the watermarked coefficient XW

i is composed of two terms; Xi and αwiXi. Since
wi is encrypted at the center WCA prior to the embedding operation at S , Xi and wi are
rounded separately. Considering the post-processing at B, the scaling factors sw, sx, and the
compensation factor p should be constant. Here, we assume that a constant value is uniformly
added to real values which are wi and Xi to make it positive. Then, B must subtract the
interference term related to both Xi and wi, which requires additional communication costs.
If the adjustment factor p is varied with respect to Xi, the amount of information to be sent
to B from S becomes very large. In order to avoid it, we set p a constant value by controlling
the value px. Even if p and α is known, to obtain Xi is still informationally difficult because of
three unknown parameters px, pw, and Xi for a given one equation p = px + α|Xi|pw. As the
consequence, the secrecy of the original DCT coefficients is assured.
Notice that if the size of scaling factors sw and sx is increased, the proposed scheme can simu-
late the original Cox’s method more precisely. From the viewpoint of enciphering rate, how-
ever, these factors should be small. Referring to the modified fingerprinting protocol, the
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Fig. 5. The procedure of fingerprinting protocol to embed the spread spectrum watermark.

bit-length of a watermarked coefficient XW
i = Xi + αiwi, which is represented by a constant

bit-length �x, is much smaller than that of message space in cryptosystems such as Okamoto-

Uchiyama encryption scheme and Paillier cryptosystem, and some of XW
i should be packed

in one message M;

M = XW
i ||XW

i+1|| · · · ||X
W
i+ξ−1, (42)

where ξ is the number of packed coefficients and is dependent on sw and sx. Such a packing

operation is easily performed by computing the �xt-th power of Epk(XW
i+t);

Epk(M) =
ξ−1

∏
t=0

(

Epk(XW
i+t)

)�xt
(43)

The appropriate size of sw and sx are explored by implementing on a computer and evalu-
ating the simulated performance. It is worth mentioning that the enciphering rate of Paillier
cryptosystem approaches asymptotically 1 using the extension of the cryptosystem Damgård
& Jurik (2001) and then more data can be packed in one ciphertext. Although the works in
Fouque et al. (2003); Orlandi et al. (2007) can encode rational numbers by a limited precision,
they are not suitable for the packing operation.

6. Simulation Results

Since the basic algorithm of our scheme is Cox’s scheme with a limited precision, we evaluate
the degradation of image quality by PSNR, and the detected correlation values compared with
the original values. If the results are similar, we regard that the performance is not degraded.
In our simulation, a standard gray-scaled image “lena” of 256× 256 pixels is used. The length
of watermark signal W is � = 1000 and the embedding intensity is α = 0.1. Even if pw and

px are added, the values of wi and xi might be negative. In such a case, the values are simply
rounded to 0.
The comparison of PSNR and correlation values for the watermarked image which is not
distorted by attacks are shown in Fig.6 and Fig.7, respectively. The PSNR of original Cox’s
scheme is 34.93 [dB] and the correlation value is 31.91, which are drawn by dot line in the
figures. From the figures, we can see that the performance is asymptotically reaching the
original value according to the increase of the scaling factors sw and sx. As the basic algorithm
is Cox’s scheme with a limited precision, we can regard that the performance is not degraded
when the detected correlation values are similar.
One of the important characteristic in the spread spectrum watermarking technique is the
orthogonality of each watermark signal because of the robustness against collusion attack. It
is well-known that the original scheme retains the robustness with a dozen of colluders. Under
averaging collusion with 5 users, the average similarity value of original scheme is 13.64, and
the proposed one is shown in Fig.8. The robustness against the combination of collusion attack
and JPEG compression are compared, which results are shown in Fig.9. From the results, the
degradation of performance from the original scheme is very slight, and it does not affect the
robustness against attacks. It is noted that the scaling factors sw and sx are closely related
to the degradation of performance. It is better to increase the value of these parameters, for
example sw ≥ 23 and sx ≥ 23, but we have to consider the communication costs because the
bit-length to represent the watermarked DCT coefficient Xi + αiwi is increased according to
the size of sw and sx, which degrades the coding rate of such information. For other images,
“aerial”, “baboon”, “barbala”, “f16”, “girl”, and “peppers”, the similar results are derived
with the above parameters as shown in Table 2 and 3. The attenuation of PSNR value from the
original one is at most 0.1%, that of the correlation value is at most 0.3%, and under averaging
collusion the attenuation is less than 1%. As the consequence, recommended parameters are
sw = 23 and sx = 23 from the simulation results.

When we use the above recommended parameters, the value of XW
i can be represented by

20 bits (the range must be within [0, 220] if sw = sx = 23). For the security reason, the bit-
length of a composite n = pq for the modulus of Paillier cryptosystem should be no less than
1024 bits. When |n| = 1024, an 1024-bit message is encrypted to an 2048-bit ciphertext. Un-
der the above condition, the number of watermarked DCT coefficients in one ciphertext is at
most 51 (= �1024/20�). Since the number of DCT coefficients are 65536 = 256 × 256, the
number of ciphertexts is 1286 (= �65536/51�) and the total size of the ciphertexts is about
2.5MB, which is about 40 times larger than the original file size 66KB. In case the packing is
not performed, the total size is more than 128MB. Therefore, we can conclude that the pro-
posed method efficiently implements the Cox’s spread spectrum watermarking scheme in the
asymmetric fingerprinting protocol.

7. Conclusion

In this chapter, we investigated an asymmetric fingerprinting protocol with additive homo-
morphism and a method for implementing watermarking technique in an encrypted domain
for assuring the asymmetric property of fingerprinting system. We developed the commit-
ment scheme utilized to achieve the asymmetric property, and enhance the enciphering rate
by applying Okamoto-Uchiyama encryption scheme for the cryptographic protocol that re-
tains additive homomorphism. In order to contain information in one ciphertext as much as
possible, the large message space is effectively partitioned by multiplexing each fingerprinted
and encrypted component of an image.
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bit-length of a watermarked coefficient XW
i = Xi + αiwi, which is represented by a constant

bit-length �x, is much smaller than that of message space in cryptosystems such as Okamoto-

Uchiyama encryption scheme and Paillier cryptosystem, and some of XW
i should be packed

in one message M;

M = XW
i ||XW

i+1|| · · · ||X
W
i+ξ−1, (42)

where ξ is the number of packed coefficients and is dependent on sw and sx. Such a packing

operation is easily performed by computing the �xt-th power of Epk(XW
i+t);

Epk(M) =
ξ−1

∏
t=0

(

Epk(XW
i+t)

)�xt
(43)

The appropriate size of sw and sx are explored by implementing on a computer and evalu-
ating the simulated performance. It is worth mentioning that the enciphering rate of Paillier
cryptosystem approaches asymptotically 1 using the extension of the cryptosystem Damgård
& Jurik (2001) and then more data can be packed in one ciphertext. Although the works in
Fouque et al. (2003); Orlandi et al. (2007) can encode rational numbers by a limited precision,
they are not suitable for the packing operation.

6. Simulation Results

Since the basic algorithm of our scheme is Cox’s scheme with a limited precision, we evaluate
the degradation of image quality by PSNR, and the detected correlation values compared with
the original values. If the results are similar, we regard that the performance is not degraded.
In our simulation, a standard gray-scaled image “lena” of 256× 256 pixels is used. The length
of watermark signal W is � = 1000 and the embedding intensity is α = 0.1. Even if pw and

px are added, the values of wi and xi might be negative. In such a case, the values are simply
rounded to 0.
The comparison of PSNR and correlation values for the watermarked image which is not
distorted by attacks are shown in Fig.6 and Fig.7, respectively. The PSNR of original Cox’s
scheme is 34.93 [dB] and the correlation value is 31.91, which are drawn by dot line in the
figures. From the figures, we can see that the performance is asymptotically reaching the
original value according to the increase of the scaling factors sw and sx. As the basic algorithm
is Cox’s scheme with a limited precision, we can regard that the performance is not degraded
when the detected correlation values are similar.
One of the important characteristic in the spread spectrum watermarking technique is the
orthogonality of each watermark signal because of the robustness against collusion attack. It
is well-known that the original scheme retains the robustness with a dozen of colluders. Under
averaging collusion with 5 users, the average similarity value of original scheme is 13.64, and
the proposed one is shown in Fig.8. The robustness against the combination of collusion attack
and JPEG compression are compared, which results are shown in Fig.9. From the results, the
degradation of performance from the original scheme is very slight, and it does not affect the
robustness against attacks. It is noted that the scaling factors sw and sx are closely related
to the degradation of performance. It is better to increase the value of these parameters, for
example sw ≥ 23 and sx ≥ 23, but we have to consider the communication costs because the
bit-length to represent the watermarked DCT coefficient Xi + αiwi is increased according to
the size of sw and sx, which degrades the coding rate of such information. For other images,
“aerial”, “baboon”, “barbala”, “f16”, “girl”, and “peppers”, the similar results are derived
with the above parameters as shown in Table 2 and 3. The attenuation of PSNR value from the
original one is at most 0.1%, that of the correlation value is at most 0.3%, and under averaging
collusion the attenuation is less than 1%. As the consequence, recommended parameters are
sw = 23 and sx = 23 from the simulation results.

When we use the above recommended parameters, the value of XW
i can be represented by

20 bits (the range must be within [0, 220] if sw = sx = 23). For the security reason, the bit-
length of a composite n = pq for the modulus of Paillier cryptosystem should be no less than
1024 bits. When |n| = 1024, an 1024-bit message is encrypted to an 2048-bit ciphertext. Un-
der the above condition, the number of watermarked DCT coefficients in one ciphertext is at
most 51 (= �1024/20�). Since the number of DCT coefficients are 65536 = 256 × 256, the
number of ciphertexts is 1286 (= �65536/51�) and the total size of the ciphertexts is about
2.5MB, which is about 40 times larger than the original file size 66KB. In case the packing is
not performed, the total size is more than 128MB. Therefore, we can conclude that the pro-
posed method efficiently implements the Cox’s spread spectrum watermarking scheme in the
asymmetric fingerprinting protocol.

7. Conclusion

In this chapter, we investigated an asymmetric fingerprinting protocol with additive homo-
morphism and a method for implementing watermarking technique in an encrypted domain
for assuring the asymmetric property of fingerprinting system. We developed the commit-
ment scheme utilized to achieve the asymmetric property, and enhance the enciphering rate
by applying Okamoto-Uchiyama encryption scheme for the cryptographic protocol that re-
tains additive homomorphism. In order to contain information in one ciphertext as much as
possible, the large message space is effectively partitioned by multiplexing each fingerprinted
and encrypted component of an image.
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Fig. 9. The average correlation value after
averaging collusion attack and JPEG com-
pression with quality 35% for the scaling
values sw and sx, where the average value
of original scheme is 10.10.

We proposed a new of approaches for collaborating the proposed asymmetric fingerprinting
protocol and watermarking technique. In the conventional implementation, the QIM water-
marking is applied to the fingerprinting protocol exploiting the quantization procedure that
truncates a real value to integer, which is unavoidable process to apply the public-key cryp-
tosystem based on the algebraic property of integer. In the method, fingerprint information
must be coded by a fingerprinting code to be robust against collusion attack. It also causes an-
other issues such that the applicable contents are limited to huge contents like movie because
of the long code-length. In this chapter, we implemented the spread spectrum watermarking
to be applicable for various kinds of contents. After exploring the fundamental properties of
signals in an encrypted domain, a fingerprint sequence is scaled up in order not to attenuate
the signal energy by quantization. Moreover, the effects of rounding operation that maps a
real value into a positive integer are formulated, and an auxiliary operation to obtain a water-
marked image is presented. From our simulation results, the identification capability of our
algorithm is quite similar to the original spread spectrum watermarking scheme, hence we
can simulate the scheme on the cryptographic protocol with a limited precision.

aerial baboon barbala f16 girl lena peppers

original 36.34 34.96 34.61 35.59 35.49 34.96 34.48
proposed 36.35 34.95 34.61 35.59 35.48 34.95 34.48

Table 2. The degradation of the image quality when sw = sx = 23.

aerial baboon barbala f16 girl lena peppers

No attack original 31.91 31.91 31.91 31.91 31.87 31.91 31.91
proposed 31.87 31.82 31.85 31.85 31.79 31.84 31.85

Collusion original 13.66 13.64 13.65 13.65 13.54 13.64 13.65
proposed 13.61 13.50 13.54 13.57 13.40 13.54 13.55

Collusion original 11.60 9.14 8.95 9.74 9.01 10.10 10.27
+ JPEG 35% proposed 11.56 9.18 8.91 9.73 9.18 10.06 10.16

Table 3. The degradation of the correlation values when sw = sx = 23.
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We proposed a new of approaches for collaborating the proposed asymmetric fingerprinting
protocol and watermarking technique. In the conventional implementation, the QIM water-
marking is applied to the fingerprinting protocol exploiting the quantization procedure that
truncates a real value to integer, which is unavoidable process to apply the public-key cryp-
tosystem based on the algebraic property of integer. In the method, fingerprint information
must be coded by a fingerprinting code to be robust against collusion attack. It also causes an-
other issues such that the applicable contents are limited to huge contents like movie because
of the long code-length. In this chapter, we implemented the spread spectrum watermarking
to be applicable for various kinds of contents. After exploring the fundamental properties of
signals in an encrypted domain, a fingerprint sequence is scaled up in order not to attenuate
the signal energy by quantization. Moreover, the effects of rounding operation that maps a
real value into a positive integer are formulated, and an auxiliary operation to obtain a water-
marked image is presented. From our simulation results, the identification capability of our
algorithm is quite similar to the original spread spectrum watermarking scheme, hence we
can simulate the scheme on the cryptographic protocol with a limited precision.
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original 36.34 34.96 34.61 35.59 35.49 34.96 34.48
proposed 36.35 34.95 34.61 35.59 35.48 34.95 34.48

Table 2. The degradation of the image quality when sw = sx = 23.
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Abstract
We address in this contribution a problem stemming from functional data analysis. Assuming
that we dispose of a large number of shifted recorded curves with identical shape, the objec-
tive is to estimate the time shifts as well as their distribution. Such an objective appears in
several biological applications, for example in ECG signal processing. We are interested in the
estimation of the distribution of elapsed durations between repetitive pulses, but wish to esti-
mate it with a possibly low signal-to-noise ratio, or without any knowledge of the pulse shape.
This problem is solved within a semiparametric framework, that is without any knowledge of
the shape. We suggest an M-estimator leading to two different algorithms whose main steps
are as follows: we split our dataset in blocks, on which the estimation of the shifts is done by
minimizing a cost criterion, based on a functional of the periodogram. The estimated shifts
are then plugged into a standard density estimator. Some theoretical insights are presented,
which show that under mild assumptions the alignment can be done efficiently. Results are
presented on simulations, as well as on real data for the alignment of ECG signals, and these
algorithms are compared to the methods used by practitioners in this framework. It is shown
in the results that the presented method outperforms the standard ones, thus leading to a
more accurate estimation of the average heart pulse and of the distribution of elapsed times
between heart pulses, even in the case of low Signal-to- Noise Ratio (SNR).

1. Introduction

1.1 Description of the problem
Due to the improvements of electronic apparatus and registration systems, it is more and more
common place to collect sets of curves or other functional observations. Such registration
is often followed by a processing operation, since they tend to represent the same repeated
phenomenon. In this contribution the problem of curve registration and alignment from a
semiparametric point of view is addressed. More specifically, we assume that we dispose of
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M registered curves, each of which being described by the model given in Equation (1.1):

ym(t) = s(t − θm) + σεm(t), m = 0 . . . M (1.1)

where s is a curve of interest, θm is an unknown shift parameter distributed according to
some probability density function fθ , σ is a real positive number and εm is a standard Gaus-
sian white noise process. We are interested in the estimation of the curve s and of the shifts
{θm, m = 0 . . . M} or, when the number of curves M is large, in the estimation of the shift
distribution fθ . Such a problem appears frequently in functional data analysis (FDA) applica-
tions, and we refer to Silveman & Ramsay (2005) and Ferraty & Vieu (2006) for examples and
case studies related to this issue. In the framework described by the latter equation, the knowl-
edge of the translation parameter θ, and more specifically of its distribution, can be used to
determine the inner variability of a given cluster of curves. Several papers (see Ramsay (1998),
Ramsay & Li (1998), Ronn (2001), Gasser & Kneip (1995),Kneip & Gasser (1992)) focus on this
specific model for many different applications in signal processing for biology. For example,
in neuroscience, neurons emit randomly electrical pulses which are recorded by an electrode.
Biologists, in many applications, are interested in the estimation of the inter-spike interval,
that is, either the estimation of the durations of elapsed time between two electrical pulses,
or the estimation of its distribution. As stated in Johnson (1996), it is interesting to model the
observed electrical signal as the sample path of a renewal process. We can find in recent con-
tributions (see Pouzat et al. (2004) and Delescluse & Pouzat (2006)) the usefulness of the ISI
for spike sorting. In those applications, it is often easy to segment roughly the signal such that
we retain only one pulse into each segment, however the realignment of the obtained curves
are mainly based in either alignment of the main structural information of the curves (e.g. the
zeros, as in Gasser & Kneip (1995); see Kneip & Gasser (1992) for a description of available
tools to characterize curves structural information), either in the knowledge of the shape of a
standard electrical pulse, as in Ramsay (1998) or Ramsay & Li (1998) (in that case, the problem
is often called template matching, see Lewicki (1998) and references therein). However, both
approaches are sensitive to the level of noise, and some recordings are sometimes too noisy
to authorize a satisfactory realignment of the curves. We are therefore interested in finding a
method of estimation robust enough in relation to the noise level.

1.2 The curve alignment and estimation from a statistical point of view
The problem of the estimation of the shift parameter θ has been investigated in numerous sta-
tistical publications, and this according to two different approaches. The main contributions
is this topic focus on the case of a finite number of curves, and provide asymptotic results
when the number of sample points tend to infinity. For example, Dalalyan et al. (2006) stud-
ied the case of two shifted curves, and proposed a penalized Maximum Likelihood Estimator
approach, whereas Gamboa et al. (2007) suggested a semiparametric joint estimation proce-
dure in the case of J curves (J being a fixed number). Some functional data analysis techniques
have also been described in Ramsay (1998) and Ramsay & Li (1998), and the authors generally
assume that the shift can be expressed as a warping function which has to be estimated. The
methods described in Gasser & Kneip (1995) and Kneip & Gasser (1992) are based on tem-
plate matching procedures; for example, the latter suggested to estimate the sets of the local
maxima of s, and to align the different curves accordingly. It shall be noticed that template
matching approaches give indeed good results when the curve s is regular enough and the
noise variance σ is small; however, they fail when the common shape s shows higher variabil-
ity or in the case of low SNR. In the case of a finite number of curves, Lavielle & Levy-Leduc

(2005) suggested a semiparametric approach for the estimation of the period of a laser signal,
thus following the lead of Ritov (1989).
Another way of looking at the same model has also been proposed: instead of fixing the
number of observed curves, it is interesting to make this number tend to infinity and to look
at the obtained asymptotics. The first paper dealing with the estimation with a large number
of curves can be found in Ritov (1989), and has received a larger attention in the last years.
For example, Castillo (2006) and Castillo & Loubes (2007) propose to relate to the nonlinear
inverse problem methods and derive estimates based on the works of Dalalyan et al. (2006),
whereas Ronn (2001) suggested a nonparametric maximum likelihood estimator approach.
More recently, Bigot et al. (2008) and Bigot & Gadat (2008) investigated the estimation of the
shape s for an identical model, and suggested a wavelet approach which leads to a near-
optimal (in the minimax sense) estimator of the shape. However, their assumption is that the
shift distribution fθ is fully known, thus enabling a deconvolution step in order to compute a
nonparametric estimator of s.

1.3 Curve alignment for ECG data
In this contribution we focus more specifically on the analysis of ECG signals. In recordings
of the heart electrical activity, at each cycle of contraction and release of the heart muscle, we
get a characteristic P-wave, which depicts the depolarization of the atria, followed by a QRS-
complex stemming from the depolarization of the ventricles and a T-wave corresponding to
the repolarization of the heart muscle. We refer to (Guyton & Hall, 1996, Chapter 12) for an
in-depth description of the heart cycle. A typical ECG signal is shown in Figure 1.
Different positions of the electrodes, transient conditions of the heart, as well as some malfunc-
tions and several perturbations (baseline wander, power-line interference, additional elec-
tromyographic signal)Fotiadis et al. (2006); Sarnmo & Laguna (2006), can alter the shape of
the signal. We aim to situations in which the heart electrical activity remains regular enough
in the sense that the shape of each cycle remains approximately repetitive, so that after prior
segmentation of our recording, the above model still holds. This preliminary segmentation
can be done, for example, by taking segments around the easily identified maxima of the QRS-
complex, as it can be found in Gasser & Kneip (1995). It is therefore of interest to estimate the
shift parameters θm in (1.1). These estimates can be used afterwards for a more accurate esti-
mation of the heart rate distribution. In normal cases, such estimation can be done accurately
by using the common FDA method (e.g. by using only the above prior segmentations). How-
ever, when the activity of the heart is more irregular, a more precise alignment can be helpful.
This happens for example in cases of cardiac arrhythmia, whose identification can be easier
if the heart cycles are accurately aligned. Among interpretations deduced from ECG data,
some are based on the so called “signal averaged ECG” (SAECG). SAECG is routinely used in
clinics for late potential detection, various heart diseases and arrhythmia detections, as men-
tioned in Cain et al. (1996), and more specifically for ventricular tachycardia and late potential
detection ( see e.g. Nava et al. (2000), Rodriguez et al. (2000)). Analysis of the SAECG sig-
nal is usually performed by using standard wavelet decomposition Englund et al. (1998). As
mentioned in the cited contributions, SAECG is simply a signal averaging technique used to
improve the signal-to-noise ratio, since clinicians assume that the ECG waveform is invariant
and that the background noise is uncorrelated. Moreover a timing reference (i.e. a landmark)
is set at the peak R of the QRS complex (since it is easily detectable) allowing averaging with-
out distortion. This method is to relate to Kneip & Gasser (1992), where the authors chose
several landmarks instead of one. We argue that this is actually a crucial point since jitter of
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M registered curves, each of which being described by the model given in Equation (1.1):

ym(t) = s(t − θm) + σεm(t), m = 0 . . . M (1.1)

where s is a curve of interest, θm is an unknown shift parameter distributed according to
some probability density function fθ , σ is a real positive number and εm is a standard Gaus-
sian white noise process. We are interested in the estimation of the curve s and of the shifts
{θm, m = 0 . . . M} or, when the number of curves M is large, in the estimation of the shift
distribution fθ . Such a problem appears frequently in functional data analysis (FDA) applica-
tions, and we refer to Silveman & Ramsay (2005) and Ferraty & Vieu (2006) for examples and
case studies related to this issue. In the framework described by the latter equation, the knowl-
edge of the translation parameter θ, and more specifically of its distribution, can be used to
determine the inner variability of a given cluster of curves. Several papers (see Ramsay (1998),
Ramsay & Li (1998), Ronn (2001), Gasser & Kneip (1995),Kneip & Gasser (1992)) focus on this
specific model for many different applications in signal processing for biology. For example,
in neuroscience, neurons emit randomly electrical pulses which are recorded by an electrode.
Biologists, in many applications, are interested in the estimation of the inter-spike interval,
that is, either the estimation of the durations of elapsed time between two electrical pulses,
or the estimation of its distribution. As stated in Johnson (1996), it is interesting to model the
observed electrical signal as the sample path of a renewal process. We can find in recent con-
tributions (see Pouzat et al. (2004) and Delescluse & Pouzat (2006)) the usefulness of the ISI
for spike sorting. In those applications, it is often easy to segment roughly the signal such that
we retain only one pulse into each segment, however the realignment of the obtained curves
are mainly based in either alignment of the main structural information of the curves (e.g. the
zeros, as in Gasser & Kneip (1995); see Kneip & Gasser (1992) for a description of available
tools to characterize curves structural information), either in the knowledge of the shape of a
standard electrical pulse, as in Ramsay (1998) or Ramsay & Li (1998) (in that case, the problem
is often called template matching, see Lewicki (1998) and references therein). However, both
approaches are sensitive to the level of noise, and some recordings are sometimes too noisy
to authorize a satisfactory realignment of the curves. We are therefore interested in finding a
method of estimation robust enough in relation to the noise level.

1.2 The curve alignment and estimation from a statistical point of view
The problem of the estimation of the shift parameter θ has been investigated in numerous sta-
tistical publications, and this according to two different approaches. The main contributions
is this topic focus on the case of a finite number of curves, and provide asymptotic results
when the number of sample points tend to infinity. For example, Dalalyan et al. (2006) stud-
ied the case of two shifted curves, and proposed a penalized Maximum Likelihood Estimator
approach, whereas Gamboa et al. (2007) suggested a semiparametric joint estimation proce-
dure in the case of J curves (J being a fixed number). Some functional data analysis techniques
have also been described in Ramsay (1998) and Ramsay & Li (1998), and the authors generally
assume that the shift can be expressed as a warping function which has to be estimated. The
methods described in Gasser & Kneip (1995) and Kneip & Gasser (1992) are based on tem-
plate matching procedures; for example, the latter suggested to estimate the sets of the local
maxima of s, and to align the different curves accordingly. It shall be noticed that template
matching approaches give indeed good results when the curve s is regular enough and the
noise variance σ is small; however, they fail when the common shape s shows higher variabil-
ity or in the case of low SNR. In the case of a finite number of curves, Lavielle & Levy-Leduc

(2005) suggested a semiparametric approach for the estimation of the period of a laser signal,
thus following the lead of Ritov (1989).
Another way of looking at the same model has also been proposed: instead of fixing the
number of observed curves, it is interesting to make this number tend to infinity and to look
at the obtained asymptotics. The first paper dealing with the estimation with a large number
of curves can be found in Ritov (1989), and has received a larger attention in the last years.
For example, Castillo (2006) and Castillo & Loubes (2007) propose to relate to the nonlinear
inverse problem methods and derive estimates based on the works of Dalalyan et al. (2006),
whereas Ronn (2001) suggested a nonparametric maximum likelihood estimator approach.
More recently, Bigot et al. (2008) and Bigot & Gadat (2008) investigated the estimation of the
shape s for an identical model, and suggested a wavelet approach which leads to a near-
optimal (in the minimax sense) estimator of the shape. However, their assumption is that the
shift distribution fθ is fully known, thus enabling a deconvolution step in order to compute a
nonparametric estimator of s.

1.3 Curve alignment for ECG data
In this contribution we focus more specifically on the analysis of ECG signals. In recordings
of the heart electrical activity, at each cycle of contraction and release of the heart muscle, we
get a characteristic P-wave, which depicts the depolarization of the atria, followed by a QRS-
complex stemming from the depolarization of the ventricles and a T-wave corresponding to
the repolarization of the heart muscle. We refer to (Guyton & Hall, 1996, Chapter 12) for an
in-depth description of the heart cycle. A typical ECG signal is shown in Figure 1.
Different positions of the electrodes, transient conditions of the heart, as well as some malfunc-
tions and several perturbations (baseline wander, power-line interference, additional elec-
tromyographic signal)Fotiadis et al. (2006); Sarnmo & Laguna (2006), can alter the shape of
the signal. We aim to situations in which the heart electrical activity remains regular enough
in the sense that the shape of each cycle remains approximately repetitive, so that after prior
segmentation of our recording, the above model still holds. This preliminary segmentation
can be done, for example, by taking segments around the easily identified maxima of the QRS-
complex, as it can be found in Gasser & Kneip (1995). It is therefore of interest to estimate the
shift parameters θm in (1.1). These estimates can be used afterwards for a more accurate esti-
mation of the heart rate distribution. In normal cases, such estimation can be done accurately
by using the common FDA method (e.g. by using only the above prior segmentations). How-
ever, when the activity of the heart is more irregular, a more precise alignment can be helpful.
This happens for example in cases of cardiac arrhythmia, whose identification can be easier
if the heart cycles are accurately aligned. Among interpretations deduced from ECG data,
some are based on the so called “signal averaged ECG” (SAECG). SAECG is routinely used in
clinics for late potential detection, various heart diseases and arrhythmia detections, as men-
tioned in Cain et al. (1996), and more specifically for ventricular tachycardia and late potential
detection ( see e.g. Nava et al. (2000), Rodriguez et al. (2000)). Analysis of the SAECG sig-
nal is usually performed by using standard wavelet decomposition Englund et al. (1998). As
mentioned in the cited contributions, SAECG is simply a signal averaging technique used to
improve the signal-to-noise ratio, since clinicians assume that the ECG waveform is invariant
and that the background noise is uncorrelated. Moreover a timing reference (i.e. a landmark)
is set at the peak R of the QRS complex (since it is easily detectable) allowing averaging with-
out distortion. This method is to relate to Kneip & Gasser (1992), where the authors chose
several landmarks instead of one. We argue that this is actually a crucial point since jitter of
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Fig. 1. Typical ECG signal of an healthy subject (arbitrary units).

this temporal reference would distort the resulting SAECG. The proposed method leads to an
estimation of the mean cycle by averaging the segments after an alignment according to an
estimated θj. Additional benefits for a more proper alignment can be found in many other
measurements done by cardiologists.

1.4 Chapter organization
This chapter is organized as followed: Section 2 describes the derivation of the shift estimators
and the density estimate. Roughly speaking, the estimation of the shifts is based on an M-
estimation procedure with a cost function connected to the spectral density of the signal, and
we suggest a plug-in estimation for the shift density; This leads to two different algorithms for
curve alignment which are described in the end of the section. Some theoretical aspects are
described in Section 3. Eventually, Section 4 is dedicated to results on simulations (in order
to compare the performances of the two shifts algorithms) and real datasets, and discusses
the influence of the standard perturbations which appear in ECG signal processing in the
described algorithms.

2. Methodology

We present in this section the main assumptions used in the rest of the chapter and the deriva-
tion of the proposed estimator.

2.1 Main assumptions
We assume that after getting an electrical signal such as the one described in Figure 1, a prelim-
inary segmentation is done so that we relate only to the model described in the introduction.
We can therefore assume that we have observed sampled noisy curves on a finite time interval
[0, T]. Each of these curves has being shifted randomly by some random variable θ. A typical
curve is expressed in 1.1 and the number of curves is denoted by M. Assuming that the pre-
liminary segmentation has been done efficiently and that each segmented curve has a whole
single repetition of the signal, the following assumptions can be done:

(H-1) The distribution of the shift θ (denoted by fθ) and the shape s both have finite sup-
port, respectively [0, Tθ ] and [0, Ts]. We also assume that s �= 0 on [0, Ts] and that the
derivative s′ is bounded.

(H-2) Tθ + Ts < T; that is, we assume that the shape is fully observed in the all the recorded
curves.

As mentioned in Ritov (1989), this is equivalent to consider observations on a circle and setting
T = 2π. Therefore, T will be chosen equal to 2π without any loss of generality. We also assume
that there is no dependency between the shifts and the additional noise, that is:

(H-3) The random variables {θl , l = 0 . . . M} are independent and identically distributed,
and are in addition independent from {ε l , l = 0 . . . M}.

2.2 Description of the shift estimation procedure
In this section, we present a method for the semiparametric curve alignment. This method
can be used as a first step for a nonparametric estimation of the shift density, by following the
methodology described in Castillo (2006): first provide an estimate for the shifts, using in their
example the methodology of Dalalyan et al. (2006), and then plug the obtained values into a
standard kernel estimate. We propose an M-estimator to retrieve the shifts, in which the shape
information is considered as a nuisance parameter and the shifts are estimated jointly. A sim-
ilar approach appeared for example in Vimond (2008) leading to another estimator with good
asymptotic properties. In another contribution, Gamboa et al. (2007) proposed a semiparamet-
ric method for the shifts, with applications to traffic forecasting. This M-estimate, based on a
criterion function related to Fourier coefficients, has been shown to be consistent and asymp-
totically normal as the number of Fourier coefficients increases. However, in this contribution,
we chose to focus on the asymptotic properties as the number of curves increases (of course,
we also assume that the number of sampling points is large enough, since the M-estimation
might lead to inconsistent results otherwise). This approach is explained by the fact that we
have in practice little control on the sampling frequency, whereas obtaining a larger dataset of
curves is easier.
Following the method of Castillo (2006), we propose to plug M estimates of shifts into a kernel
estimate. Consequently, we need to estimate the sequence {θl , l = 0 . . . M}. One important
difference, compared to the previously cited works, is that we choose to estimate blocks of
parameters jointly instead of one at a time. We therefore split our dataset of curves in N
blocks of K + 1 curves each, as indicated in Figure 2. Observe that the curve y0 is included
in each block, since we wish to align each curve accordingly to y0 ; consequently, it shall be
assumed in the rest of the chapter that θ0 = 0. The interest of splitting the dataset of curves
into blocks is double: it reduces the variance of the estimators of the shifts by estimating them
jointly, and also provides smooth cost functions for the optimization procedure detailed in this
section. Indeed, since the recorded signals are based on the same curve s, the average of the
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this temporal reference would distort the resulting SAECG. The proposed method leads to an
estimation of the mean cycle by averaging the segments after an alignment according to an
estimated θj. Additional benefits for a more proper alignment can be found in many other
measurements done by cardiologists.

1.4 Chapter organization
This chapter is organized as followed: Section 2 describes the derivation of the shift estimators
and the density estimate. Roughly speaking, the estimation of the shifts is based on an M-
estimation procedure with a cost function connected to the spectral density of the signal, and
we suggest a plug-in estimation for the shift density; This leads to two different algorithms for
curve alignment which are described in the end of the section. Some theoretical aspects are
described in Section 3. Eventually, Section 4 is dedicated to results on simulations (in order
to compare the performances of the two shifts algorithms) and real datasets, and discusses
the influence of the standard perturbations which appear in ECG signal processing in the
described algorithms.

2. Methodology

We present in this section the main assumptions used in the rest of the chapter and the deriva-
tion of the proposed estimator.

2.1 Main assumptions
We assume that after getting an electrical signal such as the one described in Figure 1, a prelim-
inary segmentation is done so that we relate only to the model described in the introduction.
We can therefore assume that we have observed sampled noisy curves on a finite time interval
[0, T]. Each of these curves has being shifted randomly by some random variable θ. A typical
curve is expressed in 1.1 and the number of curves is denoted by M. Assuming that the pre-
liminary segmentation has been done efficiently and that each segmented curve has a whole
single repetition of the signal, the following assumptions can be done:

(H-1) The distribution of the shift θ (denoted by fθ) and the shape s both have finite sup-
port, respectively [0, Tθ ] and [0, Ts]. We also assume that s �= 0 on [0, Ts] and that the
derivative s′ is bounded.

(H-2) Tθ + Ts < T; that is, we assume that the shape is fully observed in the all the recorded
curves.

As mentioned in Ritov (1989), this is equivalent to consider observations on a circle and setting
T = 2π. Therefore, T will be chosen equal to 2π without any loss of generality. We also assume
that there is no dependency between the shifts and the additional noise, that is:

(H-3) The random variables {θl , l = 0 . . . M} are independent and identically distributed,
and are in addition independent from {ε l , l = 0 . . . M}.

2.2 Description of the shift estimation procedure
In this section, we present a method for the semiparametric curve alignment. This method
can be used as a first step for a nonparametric estimation of the shift density, by following the
methodology described in Castillo (2006): first provide an estimate for the shifts, using in their
example the methodology of Dalalyan et al. (2006), and then plug the obtained values into a
standard kernel estimate. We propose an M-estimator to retrieve the shifts, in which the shape
information is considered as a nuisance parameter and the shifts are estimated jointly. A sim-
ilar approach appeared for example in Vimond (2008) leading to another estimator with good
asymptotic properties. In another contribution, Gamboa et al. (2007) proposed a semiparamet-
ric method for the shifts, with applications to traffic forecasting. This M-estimate, based on a
criterion function related to Fourier coefficients, has been shown to be consistent and asymp-
totically normal as the number of Fourier coefficients increases. However, in this contribution,
we chose to focus on the asymptotic properties as the number of curves increases (of course,
we also assume that the number of sampling points is large enough, since the M-estimation
might lead to inconsistent results otherwise). This approach is explained by the fact that we
have in practice little control on the sampling frequency, whereas obtaining a larger dataset of
curves is easier.
Following the method of Castillo (2006), we propose to plug M estimates of shifts into a kernel
estimate. Consequently, we need to estimate the sequence {θl , l = 0 . . . M}. One important
difference, compared to the previously cited works, is that we choose to estimate blocks of
parameters jointly instead of one at a time. We therefore split our dataset of curves in N
blocks of K + 1 curves each, as indicated in Figure 2. Observe that the curve y0 is included
in each block, since we wish to align each curve accordingly to y0 ; consequently, it shall be
assumed in the rest of the chapter that θ0 = 0. The interest of splitting the dataset of curves
into blocks is double: it reduces the variance of the estimators of the shifts by estimating them
jointly, and also provides smooth cost functions for the optimization procedure detailed in this
section. Indeed, since the recorded signals are based on the same curve s, the average of the



Signal	Processing222

Power Spectral Densities is close to the Power Spectral Density of the average curve provided
the shifts are known and have been corrected. This idea will be the cornerstone of the M-
estimation procedure proposed in this contribution. We thus estimate jointly the sequence of
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Fig. 2. Split of the curves dataset

vectors {θm, m = 1 . . . N}, where for all integer m

θm
∆
= (θ(m−1)K+1, . . . , θm K). (2.1)

The estimation of {θm, m = 1 . . . N} is achieved by minimizing N cost functions, which are
now detailed. Let us denote by Sy the squared modulus of the Fourier Transform of a given
continuous curve y, that is for all ω:
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This quantity is of interest, since it remains invariant by shifting. For each integer m = 1 . . . N,

we define the weighted mean of K curves translated by some correction terms ffm
∆
=

(α(m−1)K+1, . . . , αmK):

ȳm(t;αm)
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K + λ(K)



λ(K)y0(t) +
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∑
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yk(t + αk)
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where λ(K) is a positive number which depends on K, and is introduced in order to give more
importance to the reference curve y0. In the rest of the paper, we shall write λ instead of λ(K)
in order to avoid cumbersome notations . We now consider the following function:

1
M + 1

M

∑
k=0

Syk − Sȳm . (2.3)

The function described in (2.3) represents the difference between the mean of the Power Spec-
tral Densities and the Power Spectral Density of the mean curve. Observe that (2.3) tends to
a constant if the curves used in (2.2) are well aligned, that is when αm is close to θm. Since
the observed curves are sampled, we will approximate the integral of Sy by its Riemann sum,
that is we shall use
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as an estimator of Sy; that is, the Discrete Fourier Transform (DFT) of a sampled curve
{y(tm), m = 1 . . . n} will be used in practice instead of the actual Fourier transform of a
curve y. The following cost criterion is then introduced and should be minimized in order to
reshift all curves into the n-th block:

Cm(αm)
∆
=

1
M + 1

M

∑
k=0

Ŝyk − Ŝȳm(·;αm) . (2.4)

The M-estimator of θm, denoted by θ̂m, is therefore given by

θ̂m
∆
= Arg minαm∈[0;2π]K‖Cm(αm)‖2

2 (2.5)

Remark 1. It can be noticed that all blocks of K + 1 curves have one curve y0 in common. We chose
to build the blocks of curves as described in order to address the problem of identifiability. Without this
precaution, replacing the solution of (2.5) by θ̂ + c + 2kπ, k ∈ Z and s by s(· − c) would let the
cost criterion invariant. Adding curve y0 as a referential allows to estimate θ − θ0, thus avoiding the
non-identifiability of the model.

In order to define the criterion function, we chose to split the set of observed curves in N blocks
of K + 1 curves. Indeed, this is not useful if the spectral information is fully known. However,
since we observe noisy curves, and since we did not assume any knowledge on the spectral
information, the functions Sy have to be estimated. A well known nonparametric estimator is
the periodogram, which has been extensively studied (see e.g. Chonavel (2000) and references
therein). This estimator is known to be asymptotically unbiased, but its variance does not tend
to 0 in the general case; moreover, the pointwise estimation leads to uncorrelated estimated
values, therefore the periodogram provides an estimate of the power spectral density of a
process with many irregularities, regardless of the regularity of the true power spectrum. A
good way to reduce the variance of this estimator is given by the averaged periodogram (or
Bartlett’s method), based on the mean of several periodogram estimators, thus the necessity
of splitting the dataset. We refer to Chonavel (2000) for a more detailed description of this
method.
It is interesting to compare the cost function introduced in (2.5) to the estimator introduced
in Gamboa et al. (2007). In their contribution, they introduce additional weights to smooth the
constrast function, for a fixed number of curves J. More precisely, they propose to estimate
{θ̂j, j = 1 . . . J} the minimum of the following criterion function:
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where {δl , l ∈ Z} is real sequence such that ∑l δ2
l < ∞ and ∑l δ4

l < ∞, and djl is the l-th
discrete Fourier coefficient associated to the j-th curve. This is to relate to Welch’s method to
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where λ(K) is a positive number which depends on K, and is introduced in order to give more
importance to the reference curve y0. In the rest of the paper, we shall write λ instead of λ(K)
in order to avoid cumbersome notations . We now consider the following function:
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as an estimator of Sy; that is, the Discrete Fourier Transform (DFT) of a sampled curve
{y(tm), m = 1 . . . n} will be used in practice instead of the actual Fourier transform of a
curve y. The following cost criterion is then introduced and should be minimized in order to
reshift all curves into the n-th block:
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The M-estimator of θm, denoted by θ̂m, is therefore given by
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Remark 1. It can be noticed that all blocks of K + 1 curves have one curve y0 in common. We chose
to build the blocks of curves as described in order to address the problem of identifiability. Without this
precaution, replacing the solution of (2.5) by θ̂ + c + 2kπ, k ∈ Z and s by s(· − c) would let the
cost criterion invariant. Adding curve y0 as a referential allows to estimate θ − θ0, thus avoiding the
non-identifiability of the model.

In order to define the criterion function, we chose to split the set of observed curves in N blocks
of K + 1 curves. Indeed, this is not useful if the spectral information is fully known. However,
since we observe noisy curves, and since we did not assume any knowledge on the spectral
information, the functions Sy have to be estimated. A well known nonparametric estimator is
the periodogram, which has been extensively studied (see e.g. Chonavel (2000) and references
therein). This estimator is known to be asymptotically unbiased, but its variance does not tend
to 0 in the general case; moreover, the pointwise estimation leads to uncorrelated estimated
values, therefore the periodogram provides an estimate of the power spectral density of a
process with many irregularities, regardless of the regularity of the true power spectrum. A
good way to reduce the variance of this estimator is given by the averaged periodogram (or
Bartlett’s method), based on the mean of several periodogram estimators, thus the necessity
of splitting the dataset. We refer to Chonavel (2000) for a more detailed description of this
method.
It is interesting to compare the cost function introduced in (2.5) to the estimator introduced
in Gamboa et al. (2007). In their contribution, they introduce additional weights to smooth the
constrast function, for a fixed number of curves J. More precisely, they propose to estimate
{θ̂j, j = 1 . . . J} the minimum of the following criterion function:
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where {δl , l ∈ Z} is real sequence such that ∑l δ2
l < ∞ and ∑l δ4

l < ∞, and djl is the l-th
discrete Fourier coefficient associated to the j-th curve. This is to relate to Welch’s method to
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reduce the variance of the periodogram, and makes sense since the number of curves in Gam-
boa et al. (2007) is assumed to be fixed. The asymptotics is then provided as the number of
samples per curve tends to infinity. Similarly, the method proposed in Castillo (2006) leads to
similar smoothing, since the shifting step is done by re-aligning one curve at a time, without
using the fact that in the case of shift density estimation, the number of curves is assumed to
be big. We argue that the method of averaged periodogram may be preferred for simplicity to
weighted periodogram for variance reduction, since we only have one parameter to tune.

2.3 Description of the algorithmic procedures
2.3.1 Curve alignment with respect to a reference curve
Following the derivation of the M-estimator, the first algorithm for curve alignment is pretty
straightforward: the dataset is split in blocks which include the reference curve and an op-
timization procedure (e.g. a conjugate gradient descent) is then performed on each block.
The reference curve is by default the first one. The standard plug-in estimate is then used to
estimate the density. The procedure is summarized in Algorithm 1.

Algorithm 1 Alignment procedure w.r.t. a reference curve (A1)

INPUTS: input curves y0, . . . , yM where y0 is the reference curve and parameters K, λ
OUTPUTS: Shift estimators - {θ̂j, j = 1 . . . M}

Compute the average of the curves periodograms S̄ =
1

M + 1

M

∑
j=0

Ŝyj .

Split the curve dataset into N blocks of K + 1 curves, each of them including y0.
for m = 1 . . . N do

ȳm(t;αm)
∆
=

1
K + λ



λy0(t) +
mK

∑
j=(m−1)K+1

yj(t + αk)





Define Cm(αm)
∆
= S̄ − Ŝȳm(·;αm)

Compute θ̂m = Arg minα∈[0;2π]K‖Cm(αm)‖2
2, where θ̂m

∆
= {θ̂(m−1)K+1, . . . , θ̂mK}

end for
Return {θ̂j, j = 1 . . . M}

Algorithm (A1) is somehow problematic, since it involves the choice of a reference curve y0
and giving it more importance.This may lead to a bad estimation of the shifts between curves,
in the case of very noisy curves (when σ is for example of the same order of magnitude than
the signal), since the noise is also magnified in the process. In order to address this issue, it is
possible to use another algorithm described in 2.3.2.

2.3.2 A two-stage algorithm for curve alignment and shift density estimation
The two stage algorithm (denoted by (A2) in the rest of the chapter) can be described as fol-
lows: the dataset is split into N blocks of K curves, and the reference curve y0 is not included
in the blocks. The algorithm primarily performs alignment of the curves within each block.
An average of the aligned curves of each block is calculated after this first step. The set of
average curves is eventually aligned by similar means. The final shift estimator of each curve
is the sum of the shift estimator of the curve among the curves of its block and the shift of the

averaged curve of that block; thus with the two stage algorithm the reference curve is unnec-
essary. This is the main advantage of a two-stage algorithm, since choosing a reference curve
with possibly low SNR leads to significant alignment errors.
The two-stage procedure (A2) is summarized in Algorithm 2. In the first stage, estimation of
the vector of shifts as in (2.1) is done for each block separately. Since we discard the reference
curve y0, the average of curves in blocks m ∈ {1, . . . , N} translated by some correction terms

ffm
∆
= (α(m−1)K+1, . . . , αmK), is equal to

ȳm(t;αm)
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=

1
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∑
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 .

A cost function is then defined as it was for algorithm (A1):

Cm(αm)
∆
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M

∑
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Ŝyk − Ŝȳm(·;αm) , (2.7)

and the first stage ends by the computation of the M-estimator which minimizes the cost
function defined in (2.7). At this stage we obtain the shift estimates {θ̃m, m = 1 . . . N}. At the
second stage an average of the aligned curves within each block is calculated, and we align
the averaged curves. That is, the average curve is

ȳm(t)
∆
=

1
K





mK

∑
k=(m−1)K+1

yk(t + θ̃k)



 ,

and for a given correction term β
∆
= (β1, . . . , βN) the mean of translated average curves is

ȳ(t; β)
∆
=

1
N + 1

(

N

∑
k=1

ȳk(t + βk)

)

.

The second cost function for alignment between averaged curves is therefore

C(β)
∆
=

1
M + 1

M

∑
k=0

Ŝyk − Ŝȳ(·;β)

An M-estimator is now calculated for the shifts among blocks

ϑ
∆
= Arg minβ∈[0;2π]N‖C(β)‖2

2 .

Finally the estimator for the shift of yl is the sum of the estimator obtained at the first stage of
(A2) for this curve and the estimator obtained at the second stage for the averaged curve of
the block yl belongs to, that is:

(θ̂m)k = ϑm + (θ̃m)k , m = 1 . . . N, k = 1 . . . K.
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reduce the variance of the periodogram, and makes sense since the number of curves in Gam-
boa et al. (2007) is assumed to be fixed. The asymptotics is then provided as the number of
samples per curve tends to infinity. Similarly, the method proposed in Castillo (2006) leads to
similar smoothing, since the shifting step is done by re-aligning one curve at a time, without
using the fact that in the case of shift density estimation, the number of curves is assumed to
be big. We argue that the method of averaged periodogram may be preferred for simplicity to
weighted periodogram for variance reduction, since we only have one parameter to tune.

2.3 Description of the algorithmic procedures
2.3.1 Curve alignment with respect to a reference curve
Following the derivation of the M-estimator, the first algorithm for curve alignment is pretty
straightforward: the dataset is split in blocks which include the reference curve and an op-
timization procedure (e.g. a conjugate gradient descent) is then performed on each block.
The reference curve is by default the first one. The standard plug-in estimate is then used to
estimate the density. The procedure is summarized in Algorithm 1.

Algorithm 1 Alignment procedure w.r.t. a reference curve (A1)

INPUTS: input curves y0, . . . , yM where y0 is the reference curve and parameters K, λ
OUTPUTS: Shift estimators - {θ̂j, j = 1 . . . M}

Compute the average of the curves periodograms S̄ =
1

M + 1

M

∑
j=0

Ŝyj .

Split the curve dataset into N blocks of K + 1 curves, each of them including y0.
for m = 1 . . . N do

ȳm(t;αm)
∆
=

1
K + λ



λy0(t) +
mK

∑
j=(m−1)K+1

yj(t + αk)





Define Cm(αm)
∆
= S̄ − Ŝȳm(·;αm)

Compute θ̂m = Arg minα∈[0;2π]K‖Cm(αm)‖2
2, where θ̂m

∆
= {θ̂(m−1)K+1, . . . , θ̂mK}

end for
Return {θ̂j, j = 1 . . . M}

Algorithm (A1) is somehow problematic, since it involves the choice of a reference curve y0
and giving it more importance.This may lead to a bad estimation of the shifts between curves,
in the case of very noisy curves (when σ is for example of the same order of magnitude than
the signal), since the noise is also magnified in the process. In order to address this issue, it is
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2.3.2 A two-stage algorithm for curve alignment and shift density estimation
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averaged curve of that block; thus with the two stage algorithm the reference curve is unnec-
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ffm
∆
= (α(m−1)K+1, . . . , αmK), is equal to
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∆
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1
K





mK

∑
k=(m−1)K+1

yk(t + αk)
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A cost function is then defined as it was for algorithm (A1):
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∆
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M + 1

M
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k=0
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∆
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1
K





mK

∑
k=(m−1)K+1

yk(t + θ̃k)



 ,

and for a given correction term β
∆
= (β1, . . . , βN) the mean of translated average curves is

ȳ(t; β)
∆
=

1
N + 1

(

N

∑
k=1

ȳk(t + βk)

)

.
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C(β)
∆
=

1
M + 1

M

∑
k=0

Ŝyk − Ŝȳ(·;β)

An M-estimator is now calculated for the shifts among blocks

ϑ
∆
= Arg minβ∈[0;2π]N‖C(β)‖2

2 .

Finally the estimator for the shift of yl is the sum of the estimator obtained at the first stage of
(A2) for this curve and the estimator obtained at the second stage for the averaged curve of
the block yl belongs to, that is:

(θ̂m)k = ϑm + (θ̃m)k , m = 1 . . . N, k = 1 . . . K.
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Algorithm 2 Two-stage alignment procedure(A2)

INPUTS: input curves y1, . . . , yM and size of each block K
OUTPUTS: Shift estimators - {θ̂j, j = 1 . . . M}

Split the curve dataset into N blocks of K curves.

Compute the average of the curves periodograms S̄ =
1
M

M

∑
j=1

Ŝyj

for m = 1 . . . N do

Define ȳm(t;αm)
∆
=

1
K





mK

∑
j=(m−1)K+1

yj(t + αj)





Define Cm(αm)
∆
= S̄ − Ŝȳm(·;αm)

Compute θ̃m = Arg minα∈[0;2π]K‖Cm(αm)‖2
2, where θ̃m = {θ̃(m−1)K+1, . . . , θ̃mK}

Compute ȳm(t)
∆
=

1
K





mK

∑
k=(m−1)K+1

yk(t + θ̃k)





end for

Define ȳ(t; β)
∆
=

1
N + 1





N

∑
j=1

ȳj(t + βk)





Define C(β)
∆
= S̄ − Ŝȳ(·;β)

Compute ϑ̂ = Arg minα∈[0;2π]K‖C(β)‖2
2

for m = 1 . . . N do
for i = 1 . . . K do

(θ̂m)i = ϑ̂m + (θ̃m)i
end for

end for
Return θ̂1, . . . , θ̂N .

3. Theoretical properties

We provide in this section some theoretical results about the cost functions obtained in the
latter section. In order to prove the efficiency of the method, it is indeed necessary to check
that all cost functions have global minima at the actual shifts. We also have to verify that,
provided the number of curves is large enough, the cost functions are smooth enough so that
the optimization can be done efficiently. The presented results hold for the algorithm (A1),
though they can be easily extended to each stage of (A2).

3.1 Expansion of a cost function
Recall that the total number of curves is M = NK + 1, where N is the number of blocks and
K is the number of curves in each block. The first curve y0 is a common reference curve for all
blocks. We denote by cs(k) the discrete Fourier transform (DFT) of s taken at point k,

cs(k)
∆
=

1
n

n

∑
m=1

s(tm)e−
2iπmk

n ,

and by fk,l the DFT of yl taken at point k:

fk,l
∆
=

1
n

n

∑
m=1

yl(tm)e−
2iπmk

n .

Using this notation, relation (1.1) becomes in the Fourier domain for all k = − n−1
2 . . . n−1

2 and
l = 0 . . . M:

fk,l = e−ikθl
1
n

n

∑
m=1

s(tm + εl)e
− 2iπmk

n +
σ√
n
(

Vk,l + iWk,l
)

= e−ikθl cs(k) + O(‖s′‖∞n−1) +
σ√
n
(

Vk,l + iWk,l
)

, (3.1)

where in the latter equation εl a constant such that |εl | < πn−1, and s′ is the first deriva-
tive of s which we assumed to be bounded. This error term which results from the sampling
operation is purely deterministic, and is further on neglected since it is not expected to in-
duce shift estimation errors greater than the length of a single bin (i.e. n−1). The sequences
{

Vk,l , k = − n−1
2 . . . n−1

2

}

and
{

Wk,l , k = − n−1
2 . . . n−1

2

}

are independent and identically dis-

tributed with same standard multivariate normal distribution Nn(0, In). We now compute the
cost function Cm associated with block m:

‖Cm(αm)‖2
2 =

n−1

∑
k=0

(AM(k)− Bm(k,θm))2

+
n−1

∑
k=0

(Bm(k,θm)− Bm(k,αm))2

+ 2
n−1

∑
k=0

(Bm(k,θm)− Bm(k,αm)) (AM(k)− Bm(k,θm)) , (3.2)

where AM(k) is the first term of the right hand side of (2.4) and Bm(k,αm) is the second
term of the right hand side of (2.4), both taken at point k. Each term of the latter equation is
expanded separately. We get that

AM(k) = |cs(k)|2 +
σ2

(M + 1)n

M

∑
l=0

(

V2
k,l + W2

k,l

)

+
2σRe(cs(k))
(M + 1)

√
n

M

∑
l=0

(Vk,l cos(kθl)− Wk,l sin(kθl))

− 2σIm(cs(k))
(M + 1)

√
n

M

∑
l=0

(Vk,l sin(kθl) + Wk,l cos(kθl)) . (3.3)

The last two terms of (3.3) converge almost surely to 0 as M tends to infinity, according to
Assumption (H-3) and the law of large numbers. Moreover, the sum of the second term is dis-
tributed according to a χ2 distribution with M + 1 degrees of freedom. Thus, the term AM(k)
tends to |cs(k)|2 + 2n−1σ2 as M → ∞. We now focus on the expansion of the terms associated
to ‖C1(α1)‖2

2, since all other cost functions may be expanded in a similar manner up to a
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Algorithm 2 Two-stage alignment procedure(A2)

INPUTS: input curves y1, . . . , yM and size of each block K
OUTPUTS: Shift estimators - {θ̂j, j = 1 . . . M}

Split the curve dataset into N blocks of K curves.

Compute the average of the curves periodograms S̄ =
1
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∆
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Define Cm(αm)
∆
= S̄ − Ŝȳm(·;αm)

Compute θ̃m = Arg minα∈[0;2π]K‖Cm(αm)‖2
2, where θ̃m = {θ̃(m−1)K+1, . . . , θ̃mK}

Compute ȳm(t)
∆
=

1
K





mK

∑
k=(m−1)K+1

yk(t + θ̃k)





end for

Define ȳ(t; β)
∆
=

1
N + 1





N

∑
j=1

ȳj(t + βk)





Define C(β)
∆
= S̄ − Ŝȳ(·;β)

Compute ϑ̂ = Arg minα∈[0;2π]K‖C(β)‖2
2

for m = 1 . . . N do
for i = 1 . . . K do

(θ̂m)i = ϑ̂m + (θ̃m)i
end for

end for
Return θ̂1, . . . , θ̂N .

3. Theoretical properties

We provide in this section some theoretical results about the cost functions obtained in the
latter section. In order to prove the efficiency of the method, it is indeed necessary to check
that all cost functions have global minima at the actual shifts. We also have to verify that,
provided the number of curves is large enough, the cost functions are smooth enough so that
the optimization can be done efficiently. The presented results hold for the algorithm (A1),
though they can be easily extended to each stage of (A2).

3.1 Expansion of a cost function
Recall that the total number of curves is M = NK + 1, where N is the number of blocks and
K is the number of curves in each block. The first curve y0 is a common reference curve for all
blocks. We denote by cs(k) the discrete Fourier transform (DFT) of s taken at point k,

cs(k)
∆
=

1
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n

∑
m=1

s(tm)e−
2iπmk

n ,

and by fk,l the DFT of yl taken at point k:

fk,l
∆
=

1
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n

∑
m=1

yl(tm)e−
2iπmk
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Using this notation, relation (1.1) becomes in the Fourier domain for all k = − n−1
2 . . . n−1

2 and
l = 0 . . . M:

fk,l = e−ikθl
1
n

n

∑
m=1

s(tm + εl)e
− 2iπmk

n +
σ√
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(

Vk,l + iWk,l
)

= e−ikθl cs(k) + O(‖s′‖∞n−1) +
σ√
n
(

Vk,l + iWk,l
)

, (3.1)

where in the latter equation εl a constant such that |εl | < πn−1, and s′ is the first deriva-
tive of s which we assumed to be bounded. This error term which results from the sampling
operation is purely deterministic, and is further on neglected since it is not expected to in-
duce shift estimation errors greater than the length of a single bin (i.e. n−1). The sequences
{

Vk,l , k = − n−1
2 . . . n−1

2

}

and
{

Wk,l , k = − n−1
2 . . . n−1

2

}

are independent and identically dis-

tributed with same standard multivariate normal distribution Nn(0, In). We now compute the
cost function Cm associated with block m:

‖Cm(αm)‖2
2 =

n−1

∑
k=0

(AM(k)− Bm(k,θm))2

+
n−1

∑
k=0

(Bm(k,θm)− Bm(k,αm))2

+ 2
n−1

∑
k=0

(Bm(k,θm)− Bm(k,αm)) (AM(k)− Bm(k,θm)) , (3.2)

where AM(k) is the first term of the right hand side of (2.4) and Bm(k,αm) is the second
term of the right hand side of (2.4), both taken at point k. Each term of the latter equation is
expanded separately. We get that

AM(k) = |cs(k)|2 +
σ2

(M + 1)n

M

∑
l=0

(

V2
k,l + W2

k,l

)

+
2σRe(cs(k))
(M + 1)

√
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M

∑
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(Vk,l cos(kθl)− Wk,l sin(kθl))

− 2σIm(cs(k))
(M + 1)
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∑
l=0

(Vk,l sin(kθl) + Wk,l cos(kθl)) . (3.3)

The last two terms of (3.3) converge almost surely to 0 as M tends to infinity, according to
Assumption (H-3) and the law of large numbers. Moreover, the sum of the second term is dis-
tributed according to a χ2 distribution with M + 1 degrees of freedom. Thus, the term AM(k)
tends to |cs(k)|2 + 2n−1σ2 as M → ∞. We now focus on the expansion of the terms associated
to ‖C1(α1)‖2

2, since all other cost functions may be expanded in a similar manner up to a
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change of index. The first curve of each block is the reference curve, which is considered to be
invariant and thus has a known associated shift α0 = θ0 = 0. We obtain

B1(k,α1) =

∣

∣

∣

∣

1
λ + K

[

λ(cs(k) +
σ√
n
(Vk,0 + iWk,0))

+
K

∑
l=1

(

eik(αl−θl)cs(k) +
σ√
n

eikαl (Vk,l + iWk,l)

)

]∣

∣

∣

∣

∣

2

,

thus, if we define the sequence {λm, m = 0 . . . K} such that λ0
∆
= λ and λm

∆
= 1 otherwise:

B1(k,α1)

=
|cs(k)|2
(λ + K)2

K

∑
l,m=0

λlλmeik(αl−θl−αm+θm)

+
σ2

n(λ + K)2

K

∑
l,m=0

λlλm{eik(αl−αm)×

[Vk,lVk,m + Wk,lWk,m + i(Vk,lWk,m − Wk,lVk,m)]}

+
σcs(k)√

n(λ + K)2

K

∑
l,m=0

λlλmei(αl−θl−αm)(Vk,m − iWk,m)

+
σc∗s (k)√

n(λ + K)2

K

∑
l,m=0

λlλmeik(θm+αl−αm)(Vk,l + iWk,l) (3.4)

We now can study the behavior of the cost function, as the number of curves tend to infinity.
The functional ‖C1(α1)‖2

2 can be split into a noise-free part, that is a term without random
variables V or W, and a random noisy part.

3.2 Decomposition of the cost function into a noise-free part and a noisy part
Recall that the noise-free part of ‖C1(α1)‖2

2 neither depends on
{

Vk,l , k = − n−1
2 . . . n−1

2

}

nor
{

Wk,l , k = − n−1
2 . . . n−1

2

}

), and is denoted further by D1(α1). This term is equal to:

D1(α1) =
n−1

∑
k=0

|cs(k)|4
∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

1
K + λ

K

∑
m=0

λmeik(αm−θm)

∣

∣

∣

∣

∣

2

− 1

∣

∣

∣

∣

∣

∣

2

(3.5)

Details of the calculations can be seen in Trigano et al. (2009). Note that due to (3.5), D1
has a unique global minimum which is attained when αm = θm, for all m = 1 . . . K, that is
the actual shift value. We now provide two quantitative results about algorithm (A1). Their
demonstrations can be also found in Trigano et al. (2009).

Proposition 1. Let {η(K, λ), K ≥ 0} be a sequence such that η(K, λ) → 0 as K → +∞ for all λ,
and let α be a real positive number. Assume that for all k = 0 . . . n − 1:

∣

∣

∣

∣

∣

1
(K + λ)

K

∑
m=0

λl exp (ik (θm − αm))

∣

∣

∣

∣

∣

> 1 − η(K, λ) ,

then there exists two positive constants γ, and K0 such that, for K ≥ K0, there is a constant c(K, λ)
such that the number of curves whose alignment error with respect to θ − c(K, λ) is bigger than
η(K, λ)α, denoted by #{m = 1 . . . K : |αm − θm − c(K, λ)| > η(K, λ)α} is bounded as follows:

#{m : |αm − θm − c(K, λ)| > η(K, λ)α} ≤ γ(K + λ)η(K, λ)1−2α

Proposition 1 can be intuitively interpreted as follows: provided the optimization procedure
is effective enough, if the number of curves in each block is large enough, most curves will
tend to align, but not necessarily with respect to the reference curve y0. Consequently, the
weighting factor λ is introduced in order to “force” all the curves in a block to align with
respect to y0, and the following proposition holds:

Proposition 2. Assume that λ is an integer, and that

γη(K, λ)1−2α ≤ λ

K + λ
.

Then, under the assumption of Proposition 1, we get that |c(K, λ)| < η(K, λ)α

In other words, when choosing λ(K) such that

λ(K) → +∞,
λ(K)

K
→ 0 as K → ∞ ,

it is possible to obtain estimates very close to the actual shifts. In order to check that the
optimization procedure can indeed be done effectively, we need the noisy part of the cost
function to be small under the same conditions.
We now study the noisy part of ‖C1(α1)‖2

2. Recall that due to Equation (3.2), the noisy part
of ‖C1(α1)‖2

2 stems from terms of the form AM(k)− B1(k,θ1) and B1(k,θ1)− B1(k,α1). It is
then possible to show the following proposition:

Proposition 3. Assume that K → ∞, λ → ∞ and that λ/K → 0, and let ε be any positive num-
ber. Let us denote by R(k) the noisy part associated to B1(k,θ1) − B1(k,α1); we get under these
assumptions that

AM(k)− B1(k,θ1) =
2σ2

n
+ OP(n−1K−1/2)

and
R(k) = OP(n−1K−1/2+ε) + OP(n−1)

Proposition 3 is of importance, since it shows that under the assumptions that each block
contains a large number of curves, and that the weighting factor λ is important but negligible
with respect to K, the cost function ‖C1(α1)‖2 reduces to D1(α1) plus a constant term, which
means that the minimum of ‖C1(α1)‖2 is with high probability close to the minimum of
D1(α1). In practice, a typical choice of the weighting parameter would be λ = Kβ, with
0 < β < 1, and verifies all the assumptions of the previous propositions.
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∣

∣
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∆
= λ and λm
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= 1 otherwise:
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We now can study the behavior of the cost function, as the number of curves tend to infinity.
The functional ‖C1(α1)‖2

2 can be split into a noise-free part, that is a term without random
variables V or W, and a random noisy part.

3.2 Decomposition of the cost function into a noise-free part and a noisy part
Recall that the noise-free part of ‖C1(α1)‖2

2 neither depends on
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Details of the calculations can be seen in Trigano et al. (2009). Note that due to (3.5), D1
has a unique global minimum which is attained when αm = θm, for all m = 1 . . . K, that is
the actual shift value. We now provide two quantitative results about algorithm (A1). Their
demonstrations can be also found in Trigano et al. (2009).

Proposition 1. Let {η(K, λ), K ≥ 0} be a sequence such that η(K, λ) → 0 as K → +∞ for all λ,
and let α be a real positive number. Assume that for all k = 0 . . . n − 1:

∣

∣

∣

∣

∣

1
(K + λ)

K

∑
m=0

λl exp (ik (θm − αm))

∣

∣

∣

∣

∣

> 1 − η(K, λ) ,

then there exists two positive constants γ, and K0 such that, for K ≥ K0, there is a constant c(K, λ)
such that the number of curves whose alignment error with respect to θ − c(K, λ) is bigger than
η(K, λ)α, denoted by #{m = 1 . . . K : |αm − θm − c(K, λ)| > η(K, λ)α} is bounded as follows:

#{m : |αm − θm − c(K, λ)| > η(K, λ)α} ≤ γ(K + λ)η(K, λ)1−2α

Proposition 1 can be intuitively interpreted as follows: provided the optimization procedure
is effective enough, if the number of curves in each block is large enough, most curves will
tend to align, but not necessarily with respect to the reference curve y0. Consequently, the
weighting factor λ is introduced in order to “force” all the curves in a block to align with
respect to y0, and the following proposition holds:

Proposition 2. Assume that λ is an integer, and that

γη(K, λ)1−2α ≤ λ

K + λ
.

Then, under the assumption of Proposition 1, we get that |c(K, λ)| < η(K, λ)α

In other words, when choosing λ(K) such that

λ(K) → +∞,
λ(K)

K
→ 0 as K → ∞ ,

it is possible to obtain estimates very close to the actual shifts. In order to check that the
optimization procedure can indeed be done effectively, we need the noisy part of the cost
function to be small under the same conditions.
We now study the noisy part of ‖C1(α1)‖2

2. Recall that due to Equation (3.2), the noisy part
of ‖C1(α1)‖2

2 stems from terms of the form AM(k)− B1(k,θ1) and B1(k,θ1)− B1(k,α1). It is
then possible to show the following proposition:

Proposition 3. Assume that K → ∞, λ → ∞ and that λ/K → 0, and let ε be any positive num-
ber. Let us denote by R(k) the noisy part associated to B1(k,θ1) − B1(k,α1); we get under these
assumptions that

AM(k)− B1(k,θ1) =
2σ2

n
+ OP(n−1K−1/2)

and
R(k) = OP(n−1K−1/2+ε) + OP(n−1)

Proposition 3 is of importance, since it shows that under the assumptions that each block
contains a large number of curves, and that the weighting factor λ is important but negligible
with respect to K, the cost function ‖C1(α1)‖2 reduces to D1(α1) plus a constant term, which
means that the minimum of ‖C1(α1)‖2 is with high probability close to the minimum of
D1(α1). In practice, a typical choice of the weighting parameter would be λ = Kβ, with
0 < β < 1, and verifies all the assumptions of the previous propositions.
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4. Applications

We present in this section the results obtained by the presented algorithms, both for simu-
lated and real data. In our simulations, the shape s is created according to a model used in
neuroscience, namely the Hodgkin-Huxley model (see Johnson (1996) and references therein),
and measure the performances of the shift alignment procedures by using the MISE (Mean
Integrated Squared Error) criterion; more specifically, the shifts {θm, m = 0 . . . M} are drawn
accordingly to a known probability distribution, then estimated by means of the previously
described algorithms and, as a measure of performance, the MISE of the obtained plug-in
density estimates proposed in the end of Section 2 is computed.
We first investigate the choice of the tuning parameters of the algorithm (A1), that the num-
ber of curves in each block K and the weighting parameter λ, and discuss the influence of
these values in the obtained density estimator, for different choices of σ2. We then investigate
the performances of the algorithms (A1) and (A2), and how they compare to two standard
methods:

— The alignment method with respect to the local extrema, as proposed in Gasser & Kneip
(1995) (we denote this algorithm by (A3), and

— a measure of fit based on the squared distance between the average pulse and the shifted
pulses leading, which is often used by practitioners and is described in Silveman &
Ramsay (2005) (this algorithm is denoted by (A4).

It shall be seen that from the point of view of the shift density estimation, the algorithm (A1)
outperforms the others.
We then apply the presented algorithms for the computation of the SAECG ; the real ECG
data have been taken from the MIT-BIH database, and we present the obtained results for
three different types of ECG recordings:

— recordings stemming from a normal heart

— recordings from a patient suffering of cardiac arrhythmia

— recordings of noise-stress tests, that is with a lower SNR.

4.1 Results on simulated data
4.1.1 Experimental protocol
Simulated data are created accordingly to the discrete model 1.1 and we compute the estima-
tors for different values of the parameters K, λ and σ2. For each curve, we sample in order
to get 512 points equally spaced on the interval [0; 2π]. We make the experiment with s sim-
ulated according to the Hodgkin-Huxley model of a neural response. The shifts are drawn
accordingly to a normal distribution N (0, 322), and θ0 = 0.

4.1.2 Results
We study the influence of the parameter K and λ empirically by providing the MISE of the
plug-in density estimates for different values of K, λ and σ2, with N = 100. In all these
experiments, the value of the weighting parameter λ is chosen accordingly to K, that is λ =
K0.9. The numerical values of the MISE are provided for all algorithms in Table 1.
It shall be observed that the algorithm (A1) outperforms the other algorithms in most of the
cases, except the case of extremely low SNR. We now present graphical results obtained by
means of (A1), (A2), (A3) and (A4), in the case of high SNR, which can be obtained for example

K=10 K=20 K=30 K=50 K=100

σ2 = 0

(A1) 0.0305 0.0228 0.0198 0.0153 0.0106
(A2) 0.0407 0.0357 0.0372 0.0372 0.0375
(A3) 0.0306 0.0234 0.0199 0.0156 0.0109
(A4) 0.0316 0.0248 0.0227 0.0174 0.0136

σ2 = 10−4

(A1) 0.0312 0.0218 0.0183 0.0156 0.0121
(A2) 0.0399 0.0383 0.0362 0.0364 0.0364
(A3) 0.0325 0.0232 0.0212 0.0183 0.0158
(A4) 0.0322 0.0219 0.0192 0.0168 0.0126

σ2 = 10−2

(A1) 0.0296 0.0218 0.0172 0.0143 0.0120
(A2) 0.0410 0.0383 0.0384 0.0371 0.0355
(A3) 0.0306 0.0232 0.0192 0.0172 0.0143
(A4) 0.0303 0.0219 0.0182 0.0155 0.0125

σ2 = 1

(A1) 0.0326 0.0274 0.0248 0.0255 0.0288
(A2) 0.0460 0.0407 0.0374 0.0381 0.0395
(A3) 0.0547 0.0806 0.0514 0.0553 0.0741
(A4) 0.0510 0.0450 0.0414 0.0393 0.0370

Table 1. MISE of the density estimates obtained for different values of the noise variance σ2

and number of curves in each block K, for a fixed value of λ = K0.9

.

by choosing σ = 0.01, and in the case of low SNR, which can be obtained by fixing σ = 0.1.
Two typical curves are presented in both cases in figure (3).
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(a) High SNR (σ2 = 10−6)
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(b) Low SNR (σ2 = 10−2)

Fig. 3. Ten typical curves for different SNR values.

Results are presented for the four algorithms and for these specific choices of σ in figure (4)
and figure(5).
Eventually, a graphical comparison of the actual shift distribution and its plug-in density esti-
mate is presented in figure (6), and the results with a weighting parameter λ too small is given
in figure (7).
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4. Applications

We present in this section the results obtained by the presented algorithms, both for simu-
lated and real data. In our simulations, the shape s is created according to a model used in
neuroscience, namely the Hodgkin-Huxley model (see Johnson (1996) and references therein),
and measure the performances of the shift alignment procedures by using the MISE (Mean
Integrated Squared Error) criterion; more specifically, the shifts {θm, m = 0 . . . M} are drawn
accordingly to a known probability distribution, then estimated by means of the previously
described algorithms and, as a measure of performance, the MISE of the obtained plug-in
density estimates proposed in the end of Section 2 is computed.
We first investigate the choice of the tuning parameters of the algorithm (A1), that the num-
ber of curves in each block K and the weighting parameter λ, and discuss the influence of
these values in the obtained density estimator, for different choices of σ2. We then investigate
the performances of the algorithms (A1) and (A2), and how they compare to two standard
methods:

— The alignment method with respect to the local extrema, as proposed in Gasser & Kneip
(1995) (we denote this algorithm by (A3), and

— a measure of fit based on the squared distance between the average pulse and the shifted
pulses leading, which is often used by practitioners and is described in Silveman &
Ramsay (2005) (this algorithm is denoted by (A4).

It shall be seen that from the point of view of the shift density estimation, the algorithm (A1)
outperforms the others.
We then apply the presented algorithms for the computation of the SAECG ; the real ECG
data have been taken from the MIT-BIH database, and we present the obtained results for
three different types of ECG recordings:

— recordings stemming from a normal heart

— recordings from a patient suffering of cardiac arrhythmia

— recordings of noise-stress tests, that is with a lower SNR.

4.1 Results on simulated data
4.1.1 Experimental protocol
Simulated data are created accordingly to the discrete model 1.1 and we compute the estima-
tors for different values of the parameters K, λ and σ2. For each curve, we sample in order
to get 512 points equally spaced on the interval [0; 2π]. We make the experiment with s sim-
ulated according to the Hodgkin-Huxley model of a neural response. The shifts are drawn
accordingly to a normal distribution N (0, 322), and θ0 = 0.

4.1.2 Results
We study the influence of the parameter K and λ empirically by providing the MISE of the
plug-in density estimates for different values of K, λ and σ2, with N = 100. In all these
experiments, the value of the weighting parameter λ is chosen accordingly to K, that is λ =
K0.9. The numerical values of the MISE are provided for all algorithms in Table 1.
It shall be observed that the algorithm (A1) outperforms the other algorithms in most of the
cases, except the case of extremely low SNR. We now present graphical results obtained by
means of (A1), (A2), (A3) and (A4), in the case of high SNR, which can be obtained for example

K=10 K=20 K=30 K=50 K=100

σ2 = 0

(A1) 0.0305 0.0228 0.0198 0.0153 0.0106
(A2) 0.0407 0.0357 0.0372 0.0372 0.0375
(A3) 0.0306 0.0234 0.0199 0.0156 0.0109
(A4) 0.0316 0.0248 0.0227 0.0174 0.0136

σ2 = 10−4

(A1) 0.0312 0.0218 0.0183 0.0156 0.0121
(A2) 0.0399 0.0383 0.0362 0.0364 0.0364
(A3) 0.0325 0.0232 0.0212 0.0183 0.0158
(A4) 0.0322 0.0219 0.0192 0.0168 0.0126

σ2 = 10−2

(A1) 0.0296 0.0218 0.0172 0.0143 0.0120
(A2) 0.0410 0.0383 0.0384 0.0371 0.0355
(A3) 0.0306 0.0232 0.0192 0.0172 0.0143
(A4) 0.0303 0.0219 0.0182 0.0155 0.0125

σ2 = 1

(A1) 0.0326 0.0274 0.0248 0.0255 0.0288
(A2) 0.0460 0.0407 0.0374 0.0381 0.0395
(A3) 0.0547 0.0806 0.0514 0.0553 0.0741
(A4) 0.0510 0.0450 0.0414 0.0393 0.0370

Table 1. MISE of the density estimates obtained for different values of the noise variance σ2

and number of curves in each block K, for a fixed value of λ = K0.9

.

by choosing σ = 0.01, and in the case of low SNR, which can be obtained by fixing σ = 0.1.
Two typical curves are presented in both cases in figure (3).
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(a) High SNR (σ2 = 10−6)
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(b) Low SNR (σ2 = 10−2)

Fig. 3. Ten typical curves for different SNR values.

Results are presented for the four algorithms and for these specific choices of σ in figure (4)
and figure(5).
Eventually, a graphical comparison of the actual shift distribution and its plug-in density esti-
mate is presented in figure (6), and the results with a weighting parameter λ too small is given
in figure (7).
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(c) Algorithm (A3)
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(d) Algorithm (A4)

Fig. 4. Results of the curve alignment procedures for K = 30, N = 100, λ = K0.9, σ2 = 10−6.

4.1.3 Discussion
The graph obtained in figure (7) well illustrates Proposition 1. In this graph, we observe that
in each separate block the curves are well aligned, since for each block plotting the actual
values of the shifts versus their estimated values gives lines with slope 1. However, they do
not align with respect to the location of the reference curve, due to a weighting parameter λ
too small. Taking a larger λ allows to address this problem, as it can be seen in figure (4(a))
and figure (5(a)). From the obtained results of Table 1, it can be observed that the algorithm
(A1) outperforms the others, from the point of view of density estimation. This algorithm is
also robust to the noise level σ, as it can be seen from figure (4(a)), figure (5(a)) and the results
displayed in Trigano et al. (2008).
Not surprisingly, the algorithm (A2) is well suited for alignment (e.g. in order to compute
the average signal), but is less adapted for density estimation, since the curves do not align
accordingly to the reference curve, as stated in Proposition 1. This means that, provided the
expectation of fθ is known, the algorithm (A2) would give results close to (A1). The two-step
algorithm should be preferred for example in the case of very low SNR, where each curve is
very noisy so that there is no good choice available for a reference curve y0. Indeed, when
comparing the results of (A1) and (A2) for σ2 = 0.01 and σ2 = 1, we can see that the MISE
degradation is less important for (A2) than for (A1).
The method described in Gasser & Kneip (1995), from which the algorithm (A3) is derived, is
based on the features of the curves s, and is less effective when the noise level is important.
This can be observed from figure (5(d)) and the results given in Table 1 for the highest val-
ues of σ2. This is predictable, since any method which relies on a preliminary smoothing of
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(d) Algorithm (A4)

Fig. 5. Results of the curve alignment procedures for K = 30, N = 100, λ = K0.9, σ2 = 10−2.

the curves and an alignment with respect to the maxima of the curve would lead to a more
important error than a semiparametric approach if the SNR is low. However, (A3) competes
relatively well with (A1) in the case of high SNR, and may be preferred for simplicity in that
case. Nevertheless, since (A1) performs an efficient alignment both for high and low values
of σ2, since this parameter introduces only a constant term in the cost functions Cn, which can
be omitted in the optimization procedure. We may argue that the main advantage of (A1) lies
in its generality, and that it should be used for example when the SNR is unknown.
Eventually, it can be observed that (A4), which relates to FDA methods described in Silveman
& Ramsay (2005), is relatively efficient, provided the total number of curves is large enough.
The MISE results as well as figures (4(c)) and (5(c)) indicate that this method is well fitted for
curve alignment. However, a degradation of the performances can be noticed for the lowest
values of K. This makes intuitively sense, since a small value of K indicates that only a few
curves are used to compute the average signal at each iteration of (A4). Therefore, the align-
ment w.r.t. the average signal yields a larger MISE. This appears e.g. in figure (4(c)), where a
slight bias between the actual shifts and their estimators can be observed. Consequently, the
algorithm (A4) gives results quite similar to (A1), but requires one block of N × K curves to
compare well to (A1), which leads to significantly longer computational times.
From the theoretical point of view, the good performances of (A1-2) with respect to (A3-4) can
be explained by the study of another M-estimate proposed in Gamboa et al. (2007) for curve
alignment, which gives further insight in the comparison with the state-of-the-art method.
Indeed, (Gamboa et al., 2007, Theorem 2.1) shows that a statistically consistent alignment
can be obtained only when filtering the curves and aligning the low-frequency information.
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Fig. 4. Results of the curve alignment procedures for K = 30, N = 100, λ = K0.9, σ2 = 10−6.

4.1.3 Discussion
The graph obtained in figure (7) well illustrates Proposition 1. In this graph, we observe that
in each separate block the curves are well aligned, since for each block plotting the actual
values of the shifts versus their estimated values gives lines with slope 1. However, they do
not align with respect to the location of the reference curve, due to a weighting parameter λ
too small. Taking a larger λ allows to address this problem, as it can be seen in figure (4(a))
and figure (5(a)). From the obtained results of Table 1, it can be observed that the algorithm
(A1) outperforms the others, from the point of view of density estimation. This algorithm is
also robust to the noise level σ, as it can be seen from figure (4(a)), figure (5(a)) and the results
displayed in Trigano et al. (2008).
Not surprisingly, the algorithm (A2) is well suited for alignment (e.g. in order to compute
the average signal), but is less adapted for density estimation, since the curves do not align
accordingly to the reference curve, as stated in Proposition 1. This means that, provided the
expectation of fθ is known, the algorithm (A2) would give results close to (A1). The two-step
algorithm should be preferred for example in the case of very low SNR, where each curve is
very noisy so that there is no good choice available for a reference curve y0. Indeed, when
comparing the results of (A1) and (A2) for σ2 = 0.01 and σ2 = 1, we can see that the MISE
degradation is less important for (A2) than for (A1).
The method described in Gasser & Kneip (1995), from which the algorithm (A3) is derived, is
based on the features of the curves s, and is less effective when the noise level is important.
This can be observed from figure (5(d)) and the results given in Table 1 for the highest val-
ues of σ2. This is predictable, since any method which relies on a preliminary smoothing of
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Fig. 5. Results of the curve alignment procedures for K = 30, N = 100, λ = K0.9, σ2 = 10−2.

the curves and an alignment with respect to the maxima of the curve would lead to a more
important error than a semiparametric approach if the SNR is low. However, (A3) competes
relatively well with (A1) in the case of high SNR, and may be preferred for simplicity in that
case. Nevertheless, since (A1) performs an efficient alignment both for high and low values
of σ2, since this parameter introduces only a constant term in the cost functions Cn, which can
be omitted in the optimization procedure. We may argue that the main advantage of (A1) lies
in its generality, and that it should be used for example when the SNR is unknown.
Eventually, it can be observed that (A4), which relates to FDA methods described in Silveman
& Ramsay (2005), is relatively efficient, provided the total number of curves is large enough.
The MISE results as well as figures (4(c)) and (5(c)) indicate that this method is well fitted for
curve alignment. However, a degradation of the performances can be noticed for the lowest
values of K. This makes intuitively sense, since a small value of K indicates that only a few
curves are used to compute the average signal at each iteration of (A4). Therefore, the align-
ment w.r.t. the average signal yields a larger MISE. This appears e.g. in figure (4(c)), where a
slight bias between the actual shifts and their estimators can be observed. Consequently, the
algorithm (A4) gives results quite similar to (A1), but requires one block of N × K curves to
compare well to (A1), which leads to significantly longer computational times.
From the theoretical point of view, the good performances of (A1-2) with respect to (A3-4) can
be explained by the study of another M-estimate proposed in Gamboa et al. (2007) for curve
alignment, which gives further insight in the comparison with the state-of-the-art method.
Indeed, (Gamboa et al., 2007, Theorem 2.1) shows that a statistically consistent alignment
can be obtained only when filtering the curves and aligning the low-frequency information.
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Fig. 6. Comparison between the true shift density (dotted red) and its plug-in estimate (blue).

Therefore, an approach based on the spectral information is more susceptible to achieve good
alignment by comparison to the method of Silveman & Ramsay (2005).

4.2 Results on real ECG data
We now wish to compare our method to the state-of-the-art for the alignment of heart cycles, in
order to estimate the average signal. We provide the study of the signal presented in figure (1),
which was obtained from the MIT-BIH database, and is a recorded signal stemming from both
a healthy (figure (8) and (10)) and arrhythmic heart (figure (12)).

4.2.1 Experimental protocol
In order to obtain a series of heart cycles, we first make a preliminary segmentation using
the method of Gasser & Kneip (1995), namely alignment according to the local maxima of
the heart cycle. We then apply our method, and compare it to the alignment obtained by
comparing the mean curve to a shifted curve one at a time. We took in this example K = 30
and λ = 10 for 3 iterations.

4.2.2 Results
We present on the following figures results obtained by algorithms (A1-4) on three different
data sets from the MIT-BIH database. Figure (8) show results obtained on (very) noisy ECG. At
first sight, all four methods seem to perform equally well regarding P and T waves. However,
zoomed QRS patterns on figure (9) show that alignment procedures (A1) and (A2) give better
results. Indeed, the black mean curve is smoother (jitter is reduced) than the one obtained
with the two other methods, reflecting that alignment is achieved in a better way. On the
contrary, mean curves obtained by algorithms (A3) and (A4) are less satisfactory since they
are less temporally concentrated ; Moreover, the average curves obtained in that case show
several local maxima, which is far from the standard shape of the QRS complex (indeed, we
are expecting to find one single mode in this part of the signal, as given by the algorithms (A1)
and (A2).
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Figure (10) show results obtained with actual power-line interference and baseline shifting.
On this data set, algorithm (A2) is outperformed by the 3 others as revealed by figure (11(b)).
In this case, (A3) and (A4) perform well since maxima are. Note that (A1) mean curve is
slightly smoother than (A3) and (A4) ones.
Figure (12) and (13) show alignment of an arrhythmic data set. These data are typically en-
countered in routine clinical use and contain ECG with very various waveforms and artifacts.
(A3-A4) clearly achieve alignment according to maxima. Jitter is high in this case, since the
shape of the curve can significantly vary from one pulse to another. Consequently, the mean
curve does not reflect this variability. Such behavior from (A3-A4) could be expected, since
one underlying assumption is that the curve shape s is made of peaked common noise-free
patterns. By contrast, (A1-A2) achieve better alignment since the resulting jitter is compara-
tively reduced and the corresponding mean curve smoother. The shape variability is intrinsi-
cally taken into account by the way of periodogram coefficients.

4.3 Discussion
Results presented in the previous paragraph show clearly different behaviors of alignment
procedure. Algorithms (A1) and (A2) fully take into account all frequencies composing curves
including the different noise contributions, such as low frequencies representing baseline vari-
ations or more localized ones such as power-line interference. By contrast, (A3) and (A4) are
based on curve maxima meaning only high frequencies. When these maxima are perturbed
by noise or distorted by intrinsic curve change (such as arrhythmic ECG), the corresponding
mean curve does not reflects such perturbations. We believe that it makes our periodogram-
based alignment methods more robust to the classical ECG perturbations.

5. Conclusion

In this contribution several methods of curve alignment for repeated events were introduced
and investigated; this led to plug-in estimate of the density of elapsed times between events.
Their performances were presented both on simulations and real ECG, and compared to the
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Therefore, an approach based on the spectral information is more susceptible to achieve good
alignment by comparison to the method of Silveman & Ramsay (2005).

4.2 Results on real ECG data
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order to estimate the average signal. We provide the study of the signal presented in figure (1),
which was obtained from the MIT-BIH database, and is a recorded signal stemming from both
a healthy (figure (8) and (10)) and arrhythmic heart (figure (12)).

4.2.1 Experimental protocol
In order to obtain a series of heart cycles, we first make a preliminary segmentation using
the method of Gasser & Kneip (1995), namely alignment according to the local maxima of
the heart cycle. We then apply our method, and compare it to the alignment obtained by
comparing the mean curve to a shifted curve one at a time. We took in this example K = 30
and λ = 10 for 3 iterations.

4.2.2 Results
We present on the following figures results obtained by algorithms (A1-4) on three different
data sets from the MIT-BIH database. Figure (8) show results obtained on (very) noisy ECG. At
first sight, all four methods seem to perform equally well regarding P and T waves. However,
zoomed QRS patterns on figure (9) show that alignment procedures (A1) and (A2) give better
results. Indeed, the black mean curve is smoother (jitter is reduced) than the one obtained
with the two other methods, reflecting that alignment is achieved in a better way. On the
contrary, mean curves obtained by algorithms (A3) and (A4) are less satisfactory since they
are less temporally concentrated ; Moreover, the average curves obtained in that case show
several local maxima, which is far from the standard shape of the QRS complex (indeed, we
are expecting to find one single mode in this part of the signal, as given by the algorithms (A1)
and (A2).
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Figure (10) show results obtained with actual power-line interference and baseline shifting.
On this data set, algorithm (A2) is outperformed by the 3 others as revealed by figure (11(b)).
In this case, (A3) and (A4) perform well since maxima are. Note that (A1) mean curve is
slightly smoother than (A3) and (A4) ones.
Figure (12) and (13) show alignment of an arrhythmic data set. These data are typically en-
countered in routine clinical use and contain ECG with very various waveforms and artifacts.
(A3-A4) clearly achieve alignment according to maxima. Jitter is high in this case, since the
shape of the curve can significantly vary from one pulse to another. Consequently, the mean
curve does not reflect this variability. Such behavior from (A3-A4) could be expected, since
one underlying assumption is that the curve shape s is made of peaked common noise-free
patterns. By contrast, (A1-A2) achieve better alignment since the resulting jitter is compara-
tively reduced and the corresponding mean curve smoother. The shape variability is intrinsi-
cally taken into account by the way of periodogram coefficients.

4.3 Discussion
Results presented in the previous paragraph show clearly different behaviors of alignment
procedure. Algorithms (A1) and (A2) fully take into account all frequencies composing curves
including the different noise contributions, such as low frequencies representing baseline vari-
ations or more localized ones such as power-line interference. By contrast, (A3) and (A4) are
based on curve maxima meaning only high frequencies. When these maxima are perturbed
by noise or distorted by intrinsic curve change (such as arrhythmic ECG), the corresponding
mean curve does not reflects such perturbations. We believe that it makes our periodogram-
based alignment methods more robust to the classical ECG perturbations.

5. Conclusion

In this contribution several methods of curve alignment for repeated events were introduced
and investigated; this led to plug-in estimate of the density of elapsed times between events.
Their performances were presented both on simulations and real ECG, and compared to the
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Fig. 8. Results of the curve alignment procedures on real ECG for K = 30, N = 10, λ = K0.9.

well-known shift correction methods based on the alignment with respect to the local extrema
(which is the standard method used in the ECG signal processing framework). It is shown
that the algorithms which are based on a semiparametric approach outperform the methods
based on an FDA approach. The suggested algorithms provides excellent results, whether
the SNR is high or low. On real ECG data, the proposed algorithms gives good results for
the computations of the SAECG, and seem according to the experiments extremely robust to
distortions such as power-line interference, baseline wander or variability of the pulse shapes.
Further results on the rates of convergences of the density estimator and the applicability of
the method for the detection of heart diseases should appear in future contributions.
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Fig. 9. Zoom on figure (8) on each aligned QRS region.
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Fig. 10. Results of the curve alignment procedures on real ECG for K = 30, N = 10, λ = K0.9.
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that the algorithms which are based on a semiparametric approach outperform the methods
based on an FDA approach. The suggested algorithms provides excellent results, whether
the SNR is high or low. On real ECG data, the proposed algorithms gives good results for
the computations of the SAECG, and seem according to the experiments extremely robust to
distortions such as power-line interference, baseline wander or variability of the pulse shapes.
Further results on the rates of convergences of the density estimator and the applicability of
the method for the detection of heart diseases should appear in future contributions.
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Fig. 11. Zoom of figure (10) on each aligned QRS region.
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Fig. 12. Results of the curve alignment procedures on real arrhythmic ECG for K = 30, N = 10,
λ = K0.9.
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Fig. 13. Zoom on figure (12) on each aligned QRS region.
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1. Introduction

Intra-only video coding is a widely used coding method in professional and surveillance video
applications. This fact is partly due to its ease of editing and partly due to the significant
amount of computational complexity required by motion estimation, which results hard to
adopt in real-time video systems. In the H.264/AVC standardization process (Richardson,
2003) the compression performance of Intra coding was significantly improved by the adop-
tion of spatial prediction in Intra frames, which have permitted the H.264/AVC coder to ob-
tain a higher compression gain with respect to the previous coding standards, like JPEG2000
(Cho et al., 2007). The pixels of the current block are predicted using the reconstructed pixels
of neighboring blocks interpolated along different orientations, which result closely related
to the characteristics of the image correlation (Cappellari and Mian, 2004). In the first ver-
sion of the H.264/AVC standard (Joint Video Team, 2002), the spatial prediction is limited to
either blocks of 4 × 4 pixels or whole macroblocks (MBs) of 16 × 16 pixels. In the FRExt ex-
tension of the standard (Joint Video Team, 2004), blocks of 8 × 8 pixels are considered too. As
a consequence, the computational complexity of an exhaustive rate-distortion optimization
significantly increases because of the number of different partitioning modes and prediction
directions. In order to overcome this problem, a wide variety of complexity reduction strate-
gies, together with the introduction of novel hardware accelerators, have been proposed in
literature.
Pan et al. (2005) propose a fast Intra prediction algorithm that extracts the image features using
Sobel edge operators and chooses the predictor according to their statistics. In a similar way,
the approaches by Pan et al. (2004) and by Ryu and Kim (2007) extract the directional features
of each frame and use them to estimate the most probable prediction modes. The solutions
proposed by Xin et al. (2004) and by Jeong and Kwon (2007) evaluate the distortion produced
by prediction in the transform domain, while (Kim et al., 2006a) suggest extracting jointly
the features of each block from both pixels and transform coefficients. In addition, temporal
correlation existing between adjacent frames can be used too, as it is shown by Xin and Vetro
(2006).
Many approaches employ early-termination decision in order to reduce the amount of compu-
tation (Lorás and Amiel, 2005). This makes the computational complexity significantly vary
according to the processed video sequence (see the strategy proposed by Yong-dong et al.
(2004) as an example where the relative reduction of coding time varies from 40% to 70%),
and therefore, an a priori estimation of the resulting cost is not possible. At the same time, the
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performance of the algorithm varies according to the coded sequence like in the case of the
approach by Kalva and Christodoulou (2007) where a machine learning algorithm is used to
select the best prediction mode among a reduced set of candidates.
With respect to these methods, the design of a complexity reduction strategy that permits
controlling the amount of required computation provides several advantages, such as

• the possibility of adapting the algorithm to devices with different computational capa-
bilities and power supply;

• an accurate estimation of the autonomy of battery-powered coding devices;

• the possibility of enabling power saving configurations that gradually reduce the com-
putational complexity (at the cost of a worse rate-distortion optimization) according to
the remaining battery charge.

The solution presented in the following computes for each 4 × 4 prediction mode the prob-
ability that it minimizes the cost function with respect to the other ones. According to this
probability distribution, the algorithm elects a limited set of modes (the most probable ones)
as possible “best-mode” candidates and computes the cost function for each of them. The prob-
ability estimation is performed using a low-cost Belief-Propagation (BP) strategy that exploits
the statistical dependence among adjacent blocks. In the end, the algorithm checks whether it
is worth merging the blocks together or not.
In the following, Section 2 will describe the Intra prediction process in the H.264/AVC FRExt
coder and the related complexity problems. Section 3 presents how different solutions try to
cope with the computational issue by designing appropriate low-complexity Intra prediction
strategies. Then, Section 4 will present the proposed algorithm that estimates the best-mode
probability for each prediction orientation from the previous coding results. The estimated
probability distribution permits computing a reduced set of candidate modes. In second step,
the algorithm chooses whether it is worth merging blocks together or not. Experimental re-
sults, presented in Section 5, will show that the performance of the algorithm compares well
with other solutions, and in addition, that the computational complexity can be controlled by
increasing or decreasing the number of candidate modes. Final conclusions will be drawn in
Section 6.

2. The Intra coding mode in the H.264/AVC FRExt standard

Like many of the previously-proposed video coders (ISO/IEC JTC1, 2001; ITU-T, 1995; ITU-
T and ISO/IEC JTC1, 1994), the H.264/AVC standard adopts a hybrid coding scheme that
combines traditional transform coding with a predictive coding approach (see Fig. 1). The
adoption of low-complexity integer transform decreases the compression efficiency of the
transformation procedure for the sake of a lower computational complexity; it is possible
to compensate this decrement in the coding gain by predicting the input signal from pixels
belonging to the previous frames or to the previously-coded blocks.
The input video frames captured by the camera are partitioned into macroblocks of 16 × 16
pixels, and each macroblock can be divided into blocks of 4 × 4 or 8 × 8 pixels which can be
predicted according to the chosen coding mode. For Inter macroblocks (i.e. temporally pre-
dicted macroblocks), from the previously-coded frames the coder selects a predictor block that
approximates well the current one and identifies it using a motion vector (MV). This selection
is performed via a motion search process, which considers all the blocks whose coordinates
lie within a given search window and chooses the one that minimizes a given distortion met-
ric. As for Intra macroblocks, the current block is predicted using the neighboring pixels

Fig. 1. Block diagram of the H.264/AVC coder.

belonging to previously-coded blocks and interpolating their values according to a set of lin-
ear equations. The residual signal after prediction is then transformed and quantized into a
set of integer coefficients whose values are converted into a binary bit stream. The size of the
adopted integer transform can be either 4 × 4 or 8 × 8 depending on the chosen macroblock
partitioning. Since the adopted transforms are not orthonormal, the quantization unit needs
to compensate this fact by rescaling the quantization steps for the different coefficients de-
pending on the spatial frequencies. As a consequence, the set of quantization steps associated
to a given distortion level is referenced using the Quantization Parameter QP, which assumes
integer values in the range [0 51] and is exponentially proportional to the quantization step
according to the equation

∆ = Ki,j 2QP/6 (1)

where Ki,j is a rescaling factor that depends on the spatial frequencies (i, j) and on the adopted
quantization matrix. Then the block of coefficients is dequantized, inversely- transformed,
and summed to the corresponding predictor block in order to reconstruct the coded signal. In
the following, the chapter will be focused on the spatial Intra prediction.
Since the earliest stages of its standardization process, the Intra coding mode of the
H.264/AVC codec has been characterized by block-based spatial prediction. The pixels in
the current block are predicted from the neighboring ones according to a spatial predictor
which is chosen among a set of possible standardized candidates (see Fig. 2 as an example for
the Intra4x4 mode).
More precisely, each candidate predictor is computed from the neighboring pixels of the upper
and the left macroblocks interpolated along an assigned spatial directions. The H.264/AVC
standard defines a finite set of directions whose number can vary from 4 up to 9 accord-
ing to the coding mode of the block. At first, two Intra coding modes were defined, named
Intra4x4 and Intra16x16 respectively. The first one performs spatial prediction on blocks
of 4 × 4 pixels and has a set of 9 candidate predictors (reported in Fig. 2), while the second
one predicts a whole macroblock of 16 × 16 pixels choosing one predictor among a set of 4
(see Fig. 3). As for the Chroma component, only 4 modes were standardized defining an Intra
prediction on 8 × 8 blocks. With the extension of the coding standard (H.264/AVC FRExt), a
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performance of the algorithm varies according to the coded sequence like in the case of the
approach by Kalva and Christodoulou (2007) where a machine learning algorithm is used to
select the best prediction mode among a reduced set of candidates.
With respect to these methods, the design of a complexity reduction strategy that permits
controlling the amount of required computation provides several advantages, such as

• the possibility of adapting the algorithm to devices with different computational capa-
bilities and power supply;

• an accurate estimation of the autonomy of battery-powered coding devices;

• the possibility of enabling power saving configurations that gradually reduce the com-
putational complexity (at the cost of a worse rate-distortion optimization) according to
the remaining battery charge.

The solution presented in the following computes for each 4 × 4 prediction mode the prob-
ability that it minimizes the cost function with respect to the other ones. According to this
probability distribution, the algorithm elects a limited set of modes (the most probable ones)
as possible “best-mode” candidates and computes the cost function for each of them. The prob-
ability estimation is performed using a low-cost Belief-Propagation (BP) strategy that exploits
the statistical dependence among adjacent blocks. In the end, the algorithm checks whether it
is worth merging the blocks together or not.
In the following, Section 2 will describe the Intra prediction process in the H.264/AVC FRExt
coder and the related complexity problems. Section 3 presents how different solutions try to
cope with the computational issue by designing appropriate low-complexity Intra prediction
strategies. Then, Section 4 will present the proposed algorithm that estimates the best-mode
probability for each prediction orientation from the previous coding results. The estimated
probability distribution permits computing a reduced set of candidate modes. In second step,
the algorithm chooses whether it is worth merging blocks together or not. Experimental re-
sults, presented in Section 5, will show that the performance of the algorithm compares well
with other solutions, and in addition, that the computational complexity can be controlled by
increasing or decreasing the number of candidate modes. Final conclusions will be drawn in
Section 6.

2. The Intra coding mode in the H.264/AVC FRExt standard

Like many of the previously-proposed video coders (ISO/IEC JTC1, 2001; ITU-T, 1995; ITU-
T and ISO/IEC JTC1, 1994), the H.264/AVC standard adopts a hybrid coding scheme that
combines traditional transform coding with a predictive coding approach (see Fig. 1). The
adoption of low-complexity integer transform decreases the compression efficiency of the
transformation procedure for the sake of a lower computational complexity; it is possible
to compensate this decrement in the coding gain by predicting the input signal from pixels
belonging to the previous frames or to the previously-coded blocks.
The input video frames captured by the camera are partitioned into macroblocks of 16 × 16
pixels, and each macroblock can be divided into blocks of 4 × 4 or 8 × 8 pixels which can be
predicted according to the chosen coding mode. For Inter macroblocks (i.e. temporally pre-
dicted macroblocks), from the previously-coded frames the coder selects a predictor block that
approximates well the current one and identifies it using a motion vector (MV). This selection
is performed via a motion search process, which considers all the blocks whose coordinates
lie within a given search window and chooses the one that minimizes a given distortion met-
ric. As for Intra macroblocks, the current block is predicted using the neighboring pixels
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belonging to previously-coded blocks and interpolating their values according to a set of lin-
ear equations. The residual signal after prediction is then transformed and quantized into a
set of integer coefficients whose values are converted into a binary bit stream. The size of the
adopted integer transform can be either 4 × 4 or 8 × 8 depending on the chosen macroblock
partitioning. Since the adopted transforms are not orthonormal, the quantization unit needs
to compensate this fact by rescaling the quantization steps for the different coefficients de-
pending on the spatial frequencies. As a consequence, the set of quantization steps associated
to a given distortion level is referenced using the Quantization Parameter QP, which assumes
integer values in the range [0 51] and is exponentially proportional to the quantization step
according to the equation

∆ = Ki,j 2QP/6 (1)

where Ki,j is a rescaling factor that depends on the spatial frequencies (i, j) and on the adopted
quantization matrix. Then the block of coefficients is dequantized, inversely- transformed,
and summed to the corresponding predictor block in order to reconstruct the coded signal. In
the following, the chapter will be focused on the spatial Intra prediction.
Since the earliest stages of its standardization process, the Intra coding mode of the
H.264/AVC codec has been characterized by block-based spatial prediction. The pixels in
the current block are predicted from the neighboring ones according to a spatial predictor
which is chosen among a set of possible standardized candidates (see Fig. 2 as an example for
the Intra4x4 mode).
More precisely, each candidate predictor is computed from the neighboring pixels of the upper
and the left macroblocks interpolated along an assigned spatial directions. The H.264/AVC
standard defines a finite set of directions whose number can vary from 4 up to 9 accord-
ing to the coding mode of the block. At first, two Intra coding modes were defined, named
Intra4x4 and Intra16x16 respectively. The first one performs spatial prediction on blocks
of 4 × 4 pixels and has a set of 9 candidate predictors (reported in Fig. 2), while the second
one predicts a whole macroblock of 16 × 16 pixels choosing one predictor among a set of 4
(see Fig. 3). As for the Chroma component, only 4 modes were standardized defining an Intra
prediction on 8 × 8 blocks. With the extension of the coding standard (H.264/AVC FRExt), a
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novel Intra8x8 mode was introduced using 9 possible candidates on Luma blocks of 8 × 8
pixels (Joint Video Team, 2004). Experimental results (Cappellari and Mian, 2004) have shown
that the performance of spatial prediction coding in the H.264/AVC coder depends on the
efficiency of the chosen directional predictor in modelling the characteristics of the signal.
Given the Intra macroblock coding mode M (M = Intra4x4,Intra8x8,Intra16x16), the
default Intra coding strategy implemented in the reference H.264/AVC coder tests for the cur-
rent block all the possible predictor blocks associated to the set of available prediction modes
and chooses the mode m that minimizes the Lagrangian cost function

L(m) = D(m) + λ R(m). (2)

The value R(m) is the bit rate needed to code the current mode m in the bit stream, D(m) is the
distortion metric, and λ is a Lagrange multiplier that weights the influence of both distortion
and bit rate in the cost function (Sullivan and Wiegand, 1998). In finding the best prediction
mode, the distortion D(m) is measured using the Sum of Absolute Differences (SAD) between
the predicted block and the original one in order to limit the required computational complex-
ity. Since the best prediction mode m for the current 4× 4 block is strongly correlated with the
modes chosen for the spatially-neighboring blocks, in the H.264/AVC standard the bit rate
R(m) is coded after estimating the most probable prediction mode according to the modes
of the upper and left blocks (Joint Video Team, 2004). The same rate distortion strategy is
adopted to find the best Intra macroblock coding mode M, where the distortion metric D(M)
is the Sum of the Squared Differences (SSD) between the original macroblock and the recon-
structed one in place of the SAD. Depending on the adopted distortion metric (SAD or SSD),
the value of the parameter λ is linearly or quadratically proportional to the adopted quanti-
zation step. The derivation process of the parameter λ for the reference H.264/AVC coder is
reported in a work by Wiegand and Girod (2001), where λ is set to

λ = 0.85 2QP/6 when using SAD and λ = 0.85 2QP/3 when using SSD. (3)

The distortion metric in eq (2) permits choosing the coding mode that could be slightly sub-
optimal in terms of distortion but requires a lower amount of bits.
In the following, the chapter will give a more detailed description about each prediction mode,
how it is chosen, and how it is coded in the bit stream.

2.1 Spatial prediction on 4 × 4 blocks
The baseline Intra coding mode defined within the H.264/AVC standard is the Intra4x4
mode, which partitions the macroblock into 4 × 4-pixels blocks and chooses for each block
a spatial predictor out from a set of 9 possible standardized candidates. In Figure 2 all the
9 possible modes are reported (for a detailed description including the formulas to estimate
the pixel values of each predictor see the standard release by Joint Video Team 2004). Note
that each mode is associated to an identification number that is closely related to its average
best-mode probability, i.e. the probability of being chosen as best prediction mode for the cur-
rent block. As a consequence, vertical and horizontal modes, which are the most frequently
adopted prediction orientations, are assigned to the numbers 0 and 1. Since the best predic-
tion mode m for the current 4 × 4 block is strongly correlated with the modes chosen for the
spatially-neighboring blocks, in the H.264/AVC standard the bit rate R(m) is coded after esti-
mating the most probable prediction mode according to the modes of the upper and left blocks
(see Joint Video Team (2004)). The variable most_probable_mode is defined as the mini-
mum between the modes of the neighboring upper and the left blocks. Whenever estimating
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Fig. 2. Possible predictors for Intra4x4 macroblock coding mode of H.264/AVC standard.

the best prediction mode m for the current block, the parameter R(m) is equal to 1 or 4 since the
coder at first signals with one bit whether the chosen mode equals most_probable_mode
or not. In case m and most_probable_mode differs, the coder requires 3 additional bits to
signal the correct predictors.

2.2 Spatial prediction on 16 × 16 blocks
The adoption of spatial predictions on 4× 4 blocks imply that the video coder has to specify 16
prediction modes for each Intra4x4 macroblocks with a consequent waste of coded bits. In
addition, during the standardization process of the H.264/AVC architecture, preliminary ex-
perimental results had shown that spatial orientation of neighboring blocks does not change
wherever the image is highly stationary (uniform regions). In these situations, the same re-
sults had also shown that performing spatial prediction on wider blocks proved to be more
effective since a reduced number of prediction modes need to be specified. As a consequence,
the H.264/AVC video coding standard was enabled with the additional Intra16x16 coding
mode, which predicts the whole macroblock using the pixels of the upper and the left mac-
roblocks lying along the borders. In this case, 4 possible orientations were defined and, after
performing the 4 × 4 integer transform on each residual block within the macroblock, an ad-
ditional 4× 4 Hadamard transform is applied on the DC coefficients (Joint Video Team, 2004).
Figure 3 reports a graphic representation of the possible Intra prediction modes. Anyway,
the extension of the H.264/AVC standard to other applications and video formats brought
the need of defining an additional Intra prediction mode operating on the intermediate 8 × 8
blocks.

2.3 Spatial prediction on 8 × 8 blocks
Initially conceived for video communication and video streaming applications on low band-
width channels, the standard H.264/AVC was successively extended to the transmission and
storage of high definition video. As a drawback, the 4 × 4 integer transform was no more
suitable for wider video formats, and therefore, an additional 8 × 8 integer transform was in-
cluded in the standard. In addition, experimental results showed that performing the block-
based spatial prediction on 8 × 8 blocks proved to be effective for a wide number of mac-
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novel Intra8x8 mode was introduced using 9 possible candidates on Luma blocks of 8 × 8
pixels (Joint Video Team, 2004). Experimental results (Cappellari and Mian, 2004) have shown
that the performance of spatial prediction coding in the H.264/AVC coder depends on the
efficiency of the chosen directional predictor in modelling the characteristics of the signal.
Given the Intra macroblock coding mode M (M = Intra4x4,Intra8x8,Intra16x16), the
default Intra coding strategy implemented in the reference H.264/AVC coder tests for the cur-
rent block all the possible predictor blocks associated to the set of available prediction modes
and chooses the mode m that minimizes the Lagrangian cost function

L(m) = D(m) + λ R(m). (2)

The value R(m) is the bit rate needed to code the current mode m in the bit stream, D(m) is the
distortion metric, and λ is a Lagrange multiplier that weights the influence of both distortion
and bit rate in the cost function (Sullivan and Wiegand, 1998). In finding the best prediction
mode, the distortion D(m) is measured using the Sum of Absolute Differences (SAD) between
the predicted block and the original one in order to limit the required computational complex-
ity. Since the best prediction mode m for the current 4× 4 block is strongly correlated with the
modes chosen for the spatially-neighboring blocks, in the H.264/AVC standard the bit rate
R(m) is coded after estimating the most probable prediction mode according to the modes
of the upper and left blocks (Joint Video Team, 2004). The same rate distortion strategy is
adopted to find the best Intra macroblock coding mode M, where the distortion metric D(M)
is the Sum of the Squared Differences (SSD) between the original macroblock and the recon-
structed one in place of the SAD. Depending on the adopted distortion metric (SAD or SSD),
the value of the parameter λ is linearly or quadratically proportional to the adopted quanti-
zation step. The derivation process of the parameter λ for the reference H.264/AVC coder is
reported in a work by Wiegand and Girod (2001), where λ is set to

λ = 0.85 2QP/6 when using SAD and λ = 0.85 2QP/3 when using SSD. (3)

The distortion metric in eq (2) permits choosing the coding mode that could be slightly sub-
optimal in terms of distortion but requires a lower amount of bits.
In the following, the chapter will give a more detailed description about each prediction mode,
how it is chosen, and how it is coded in the bit stream.

2.1 Spatial prediction on 4 × 4 blocks
The baseline Intra coding mode defined within the H.264/AVC standard is the Intra4x4
mode, which partitions the macroblock into 4 × 4-pixels blocks and chooses for each block
a spatial predictor out from a set of 9 possible standardized candidates. In Figure 2 all the
9 possible modes are reported (for a detailed description including the formulas to estimate
the pixel values of each predictor see the standard release by Joint Video Team 2004). Note
that each mode is associated to an identification number that is closely related to its average
best-mode probability, i.e. the probability of being chosen as best prediction mode for the cur-
rent block. As a consequence, vertical and horizontal modes, which are the most frequently
adopted prediction orientations, are assigned to the numbers 0 and 1. Since the best predic-
tion mode m for the current 4 × 4 block is strongly correlated with the modes chosen for the
spatially-neighboring blocks, in the H.264/AVC standard the bit rate R(m) is coded after esti-
mating the most probable prediction mode according to the modes of the upper and left blocks
(see Joint Video Team (2004)). The variable most_probable_mode is defined as the mini-
mum between the modes of the neighboring upper and the left blocks. Whenever estimating
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the best prediction mode m for the current block, the parameter R(m) is equal to 1 or 4 since the
coder at first signals with one bit whether the chosen mode equals most_probable_mode
or not. In case m and most_probable_mode differs, the coder requires 3 additional bits to
signal the correct predictors.

2.2 Spatial prediction on 16 × 16 blocks
The adoption of spatial predictions on 4× 4 blocks imply that the video coder has to specify 16
prediction modes for each Intra4x4 macroblocks with a consequent waste of coded bits. In
addition, during the standardization process of the H.264/AVC architecture, preliminary ex-
perimental results had shown that spatial orientation of neighboring blocks does not change
wherever the image is highly stationary (uniform regions). In these situations, the same re-
sults had also shown that performing spatial prediction on wider blocks proved to be more
effective since a reduced number of prediction modes need to be specified. As a consequence,
the H.264/AVC video coding standard was enabled with the additional Intra16x16 coding
mode, which predicts the whole macroblock using the pixels of the upper and the left mac-
roblocks lying along the borders. In this case, 4 possible orientations were defined and, after
performing the 4 × 4 integer transform on each residual block within the macroblock, an ad-
ditional 4× 4 Hadamard transform is applied on the DC coefficients (Joint Video Team, 2004).
Figure 3 reports a graphic representation of the possible Intra prediction modes. Anyway,
the extension of the H.264/AVC standard to other applications and video formats brought
the need of defining an additional Intra prediction mode operating on the intermediate 8 × 8
blocks.

2.3 Spatial prediction on 8 × 8 blocks
Initially conceived for video communication and video streaming applications on low band-
width channels, the standard H.264/AVC was successively extended to the transmission and
storage of high definition video. As a drawback, the 4 × 4 integer transform was no more
suitable for wider video formats, and therefore, an additional 8 × 8 integer transform was in-
cluded in the standard. In addition, experimental results showed that performing the block-
based spatial prediction on 8 × 8 blocks proved to be effective for a wide number of mac-
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Fig. 3. Possible predictors for Intra16x16macroblock coding mode of H.264/AVC standard.

roblocks. As a result, the Intra8x8 coding mode was introduced within the standard as an
additional feature which has to be included in all the decoders implementing the highest pro-
files (Joint Video Team, 2004). The Intra prediction on 8 × 8 blocks has 9 different prediction
orientations similar to those defined for the 4 × 4 blocks. In this case, the neighboring pixels
are initially smoothed by a low-pass Finite Impulse Response (FIR) filter and then used to
generate the predictor blocks. The coding strategy for the prediction mode is the same for the
mode Intra4x4 (see Fig. 4). In this case, the variable most_probable_mode can be com-
puted from neighboring 4 × 4 blocks too (see the standard draft by Joint Video Team, 2004 for
more details).

2.4 Spatial prediction on chrominance blocks
For input video signals in the YUV 4:2:0 format, which is the main format supported by the
standard H.264/AVC (however, other formats are supported), every macroblock of luminance
pixel is associated to two 8 × 8 pixel blocks in the U and V components respectively. Spatial
prediction is also performed on these blocks considering neighboring pixels from the upper
and the left macroblock. In this case, the characteristics of the chrominance signals do not
require a wide range of possible predictor modes to perform an effective spatial prediction,
and therefore, only 4 modes are defined within the standard similar to those defined for the
Intra16x16 mode despite the fact that the indexing is changed (see Fig. 3).
The default Intra coding algorithm tests all these possible choice and chooses the one that
provides the best rate-distortion performance in terms of the metric of eq. (2). In the following
we will present some solutions that permit obtaining a coding efficiency comparable to that
of the extensive method and require a limited computational complexity.
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Fig. 4. Possible predictors for Intra8x8 macroblock coding mode of H.264/AVC FRExt stan-
dard.

3. Overview of the existing Fast Intra Prediction methods

Most of the fast Intra coding algorithms reduce the computational complexity by identify-
ing the spatial orientation of the current block and selecting an appropriate set of candidate
modes without performing a complete testing of all the possible predictors (Pan et al., 2005).
At the same time, these algorithms select the MB partitioning (Intra4x4 or Intra16x16)
that suits better to the current macroblock. Many methods rely on early termination solution,
where the best predictor search is terminated before testing all the available modes whenever
the resulting distortion is lower than a given threshold. Other solutions analyze the charac-
teristics of the block to be coded in order to identify the most suitable prediction mode. These
methods test the different predictors according to a hierarchical order or process the input
block using some edge detection operators to create a set of possible candidate modes. The
outcomes of these operations are used to infer the spatial orientations of the block to be coded
and identify, as a consequence, the associated prediction mode. In most of the solutions pre-
sented in literature, the number of tested modes or operations depend on the characteristics
of the input video signal, and as a consequence, the required computational complexity varies
without permitting an a priori estimation. In the following some of these methods are shortly
presented.

3.1 Fast Intra Prediction using edge detection operators
Since the efficiency of the spatial prediction relies on identifying accurately the orientation
of the spatial correlation, many approaches try to infer this feature from the coded video
signal using some edge detection operators. One of the first approaches that perform fast
Intra prediction estimation was proposed by Pan et al. (2005). When evaluating the Intra4x4
mode, the input 4 × 4 block is processed using vertical and horizontal Sobel operators, and
the outcoming values are stored in a histogram with 9 bins associated to the different modes.
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roblocks. As a result, the Intra8x8 coding mode was introduced within the standard as an
additional feature which has to be included in all the decoders implementing the highest pro-
files (Joint Video Team, 2004). The Intra prediction on 8 × 8 blocks has 9 different prediction
orientations similar to those defined for the 4 × 4 blocks. In this case, the neighboring pixels
are initially smoothed by a low-pass Finite Impulse Response (FIR) filter and then used to
generate the predictor blocks. The coding strategy for the prediction mode is the same for the
mode Intra4x4 (see Fig. 4). In this case, the variable most_probable_mode can be com-
puted from neighboring 4 × 4 blocks too (see the standard draft by Joint Video Team, 2004 for
more details).

2.4 Spatial prediction on chrominance blocks
For input video signals in the YUV 4:2:0 format, which is the main format supported by the
standard H.264/AVC (however, other formats are supported), every macroblock of luminance
pixel is associated to two 8 × 8 pixel blocks in the U and V components respectively. Spatial
prediction is also performed on these blocks considering neighboring pixels from the upper
and the left macroblock. In this case, the characteristics of the chrominance signals do not
require a wide range of possible predictor modes to perform an effective spatial prediction,
and therefore, only 4 modes are defined within the standard similar to those defined for the
Intra16x16 mode despite the fact that the indexing is changed (see Fig. 3).
The default Intra coding algorithm tests all these possible choice and chooses the one that
provides the best rate-distortion performance in terms of the metric of eq. (2). In the following
we will present some solutions that permit obtaining a coding efficiency comparable to that
of the extensive method and require a limited computational complexity.
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Fig. 4. Possible predictors for Intra8x8 macroblock coding mode of H.264/AVC FRExt stan-
dard.

3. Overview of the existing Fast Intra Prediction methods

Most of the fast Intra coding algorithms reduce the computational complexity by identify-
ing the spatial orientation of the current block and selecting an appropriate set of candidate
modes without performing a complete testing of all the possible predictors (Pan et al., 2005).
At the same time, these algorithms select the MB partitioning (Intra4x4 or Intra16x16)
that suits better to the current macroblock. Many methods rely on early termination solution,
where the best predictor search is terminated before testing all the available modes whenever
the resulting distortion is lower than a given threshold. Other solutions analyze the charac-
teristics of the block to be coded in order to identify the most suitable prediction mode. These
methods test the different predictors according to a hierarchical order or process the input
block using some edge detection operators to create a set of possible candidate modes. The
outcomes of these operations are used to infer the spatial orientations of the block to be coded
and identify, as a consequence, the associated prediction mode. In most of the solutions pre-
sented in literature, the number of tested modes or operations depend on the characteristics
of the input video signal, and as a consequence, the required computational complexity varies
without permitting an a priori estimation. In the following some of these methods are shortly
presented.

3.1 Fast Intra Prediction using edge detection operators
Since the efficiency of the spatial prediction relies on identifying accurately the orientation
of the spatial correlation, many approaches try to infer this feature from the coded video
signal using some edge detection operators. One of the first approaches that perform fast
Intra prediction estimation was proposed by Pan et al. (2005). When evaluating the Intra4x4
mode, the input 4 × 4 block is processed using vertical and horizontal Sobel operators, and
the outcoming values are stored in a histogram with 9 bins associated to the different modes.
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These values are used to estimate a set M of possible candidate modes. The mode with
the highest probability, together with the two modes that result the closest to it and the DC
prediction mode, is included in M. Then, the algorithm chooses the predictor that obtains
the lowest value in the cost function. As for the Intra16x16 mode, only the most probable
mode and the DC mode are considered reducing the number of tested modes from 4 to 2.
When coding the 8 × 8 chrominance blocks, the most probable modes are estimated for both
the U and V components from the orientation histograms and included in M, together with
the DC mode.
A similar approach is adopted in another work by the same authors (Pan et al., 2004), where
an average edge directional field is computed for each 4 × 4 block in order to identify the
dominant spatial orientation. The quadratic values of the Sobel operators are averaged within
the current block in order to estimate the dominant spatial direction and the related coherence
value.
A different approach is proposed by Yong-dong et al. (2004), which generates a subsampled
version of the current 4 × 4 block and computes vertical and horizontal edge detection op-
erators. According to the absolute values and the signs of these, different sets of candidate
predictors (with different numbers of modes included) are generated and tested. In this way
it is possible to save about 60 % of the computational complexity on average, but the actual
saving depends on the chosen quantization parameter QP.
Other approaches approximate the distortion measure using alternative metrics, which either
requires a lower complexity or proves to be more effective in identifying the orientation of the
current block. The approach proposed by Kim et al. (2006b) evaluates a group of SAD metrics
on a reduced set of pixels which are located close to the borders of each block. A possible
alternative is presented by Jeong and Kwon (2007) where the orientation of the block is found
computing a distortion metric on the relevant transform coefficients of the current block.

3.2 Fast Intra Prediction using hierarchical search
Another set of solution proposed in literature rely on the possibility that a tested prediction
mode is very likely to be the best one whenever the associated distortion value is lower than
a discriminating threshold. As a consequence, these solutions aim at finding the mode order
that places the most probable best candidates first.
The approach by Lu and Yin (2005) tests the available prediction modes and coding options
according to a predefined order. More precisely, the Intra16x16 mode is considered at first,
and the coding strategy tests the DC mode checking whether the associated cost function has
a lower value with respect to fixed discriminating threshold. In case the cost is higher, vertical
and horizontal modes are tested as well; otherwise, the Intra16x16 coding process is fin-
ished (early termination). The Intra4x4 is then tested considering DC, vertical, and horizontal
modes at the beginning. In case the cost function for the Intra16x16 mode is lower than a
given threshold no additional Intra4x4 prediction modes are considered.1 Otherwise, the
algorithm tests the remaining prediction orientations that are closer to the best mode between
the vertical and the horizontal ones. The presence of early termination decision does not allow
an accurate a priori estimation of the required computational cost.
In a similar way, the solution designed by Lorás and Amiel (2005) tests the vertical and the
horizontal directions first, and according to whether the vertical or the horizontal orientation
is better, it chooses the following set of modes to test. The same policy is applied to the new

1 Early termination for the DC mode is evaluated also in this case.

candidate modes following a tree-ordered refinement policy of the Intra prediction for the
current block.
Another hierarchical solution was proposed by Kalva and Christodoulou (2007), where the
modes are tested following an adaptive tree structure that is modified using a machine learn-
ing algorithm.

3.3 Fast Intra Prediction using parametric models
Among the strategies that reduce the required computational complexity, a separate mention
has to be done for those strategies that aim at achieving a lower computational cost the cod-
ing performance of the rate-distortion optimization algorithm proposed within the standard
(Wiegand and Girod, 2001). The rate and the distortion of the final coded block are estimated
using some parametric models. This class of algorithms compute some low-complexity met-
rics that characterize the features of the original signal, and use them to estimate the final
coded bit rate and the associated distortion, whose calculation requires a significant amount
of operations.
The approach proposed by Kim et al. (2006a) estimates the possible results of the rate-
distortion optimization algorithm from the SAD metric computed on the pixel blocks and
on the blocks obtained after a Hadamard transform (in this case the SAD is called SATD). The
SAD and the SATD values permit identifying the prediction mode that is the most likely to be
the best one. In a similar way, the strategy by Kim et al. (2003) infers a statistical model for the
current block from the SATD values.
Unfortunately, many of these solutions adopt early termination strategies that make the re-
quired computational complexity vary. In the following we will present an optimization ap-
proach that permits controlling the amount of calculation with deterministic accuracy. In this
way, it is possible to configure the algorithm in a flexible way according to the desired com-
putational complexity.

4. A low-complexity Belief Propagation based Intra prediction strategy

The approach proposed by Milani (2008) reduces the set of tested candidate modes according
to a probability estimation strategy, which is based on a Belief Propagation algorithm. This
solution can be divided into three parts. At first, the algorithm estimates the most probable
orientations for the current block. The estimated probabilities are used to generate a set of
candidate predictors, and the best prediction mode is found by coding the current MB using
the Intra4x4 mode. In the following, the 4 × 4 blocks are fused into either 8 × 8 blocks or a
whole 16 × 16-pixels macroblock according to their orientations. The following sections will
present the three phases in detail.

4.1 Probability estimation for the best candidate modes
4.1.1 Estimation of orientations for 4 × 4 blocks
Assuming that the M0 × 1 array p(x, y) = [pm(x, y)] (m = 0, . . . , M0 − 1) groups the probabil-
ities pm(x, y) that the mode m is the best mode for the block at coordinates (x, y) (with M0 the
total number of candidate modes), it is possible to write the elements of p(x, y) as follows

pm(x, y) = pT(x, y − 1) Qm(x, y) p(x − 1, y), (4)

where Qm(x, y) = [qm
i,j(x, y)] is an M0 × M0 matrix. The value qm

i,j(x, y) represents the condi-
tional probability that mode m is the best mode for the current block at (x, y) given that i and
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These values are used to estimate a set M of possible candidate modes. The mode with
the highest probability, together with the two modes that result the closest to it and the DC
prediction mode, is included in M. Then, the algorithm chooses the predictor that obtains
the lowest value in the cost function. As for the Intra16x16 mode, only the most probable
mode and the DC mode are considered reducing the number of tested modes from 4 to 2.
When coding the 8 × 8 chrominance blocks, the most probable modes are estimated for both
the U and V components from the orientation histograms and included in M, together with
the DC mode.
A similar approach is adopted in another work by the same authors (Pan et al., 2004), where
an average edge directional field is computed for each 4 × 4 block in order to identify the
dominant spatial orientation. The quadratic values of the Sobel operators are averaged within
the current block in order to estimate the dominant spatial direction and the related coherence
value.
A different approach is proposed by Yong-dong et al. (2004), which generates a subsampled
version of the current 4 × 4 block and computes vertical and horizontal edge detection op-
erators. According to the absolute values and the signs of these, different sets of candidate
predictors (with different numbers of modes included) are generated and tested. In this way
it is possible to save about 60 % of the computational complexity on average, but the actual
saving depends on the chosen quantization parameter QP.
Other approaches approximate the distortion measure using alternative metrics, which either
requires a lower complexity or proves to be more effective in identifying the orientation of the
current block. The approach proposed by Kim et al. (2006b) evaluates a group of SAD metrics
on a reduced set of pixels which are located close to the borders of each block. A possible
alternative is presented by Jeong and Kwon (2007) where the orientation of the block is found
computing a distortion metric on the relevant transform coefficients of the current block.

3.2 Fast Intra Prediction using hierarchical search
Another set of solution proposed in literature rely on the possibility that a tested prediction
mode is very likely to be the best one whenever the associated distortion value is lower than
a discriminating threshold. As a consequence, these solutions aim at finding the mode order
that places the most probable best candidates first.
The approach by Lu and Yin (2005) tests the available prediction modes and coding options
according to a predefined order. More precisely, the Intra16x16 mode is considered at first,
and the coding strategy tests the DC mode checking whether the associated cost function has
a lower value with respect to fixed discriminating threshold. In case the cost is higher, vertical
and horizontal modes are tested as well; otherwise, the Intra16x16 coding process is fin-
ished (early termination). The Intra4x4 is then tested considering DC, vertical, and horizontal
modes at the beginning. In case the cost function for the Intra16x16 mode is lower than a
given threshold no additional Intra4x4 prediction modes are considered.1 Otherwise, the
algorithm tests the remaining prediction orientations that are closer to the best mode between
the vertical and the horizontal ones. The presence of early termination decision does not allow
an accurate a priori estimation of the required computational cost.
In a similar way, the solution designed by Lorás and Amiel (2005) tests the vertical and the
horizontal directions first, and according to whether the vertical or the horizontal orientation
is better, it chooses the following set of modes to test. The same policy is applied to the new

1 Early termination for the DC mode is evaluated also in this case.

candidate modes following a tree-ordered refinement policy of the Intra prediction for the
current block.
Another hierarchical solution was proposed by Kalva and Christodoulou (2007), where the
modes are tested following an adaptive tree structure that is modified using a machine learn-
ing algorithm.

3.3 Fast Intra Prediction using parametric models
Among the strategies that reduce the required computational complexity, a separate mention
has to be done for those strategies that aim at achieving a lower computational cost the cod-
ing performance of the rate-distortion optimization algorithm proposed within the standard
(Wiegand and Girod, 2001). The rate and the distortion of the final coded block are estimated
using some parametric models. This class of algorithms compute some low-complexity met-
rics that characterize the features of the original signal, and use them to estimate the final
coded bit rate and the associated distortion, whose calculation requires a significant amount
of operations.
The approach proposed by Kim et al. (2006a) estimates the possible results of the rate-
distortion optimization algorithm from the SAD metric computed on the pixel blocks and
on the blocks obtained after a Hadamard transform (in this case the SAD is called SATD). The
SAD and the SATD values permit identifying the prediction mode that is the most likely to be
the best one. In a similar way, the strategy by Kim et al. (2003) infers a statistical model for the
current block from the SATD values.
Unfortunately, many of these solutions adopt early termination strategies that make the re-
quired computational complexity vary. In the following we will present an optimization ap-
proach that permits controlling the amount of calculation with deterministic accuracy. In this
way, it is possible to configure the algorithm in a flexible way according to the desired com-
putational complexity.

4. A low-complexity Belief Propagation based Intra prediction strategy

The approach proposed by Milani (2008) reduces the set of tested candidate modes according
to a probability estimation strategy, which is based on a Belief Propagation algorithm. This
solution can be divided into three parts. At first, the algorithm estimates the most probable
orientations for the current block. The estimated probabilities are used to generate a set of
candidate predictors, and the best prediction mode is found by coding the current MB using
the Intra4x4 mode. In the following, the 4 × 4 blocks are fused into either 8 × 8 blocks or a
whole 16 × 16-pixels macroblock according to their orientations. The following sections will
present the three phases in detail.

4.1 Probability estimation for the best candidate modes
4.1.1 Estimation of orientations for 4 × 4 blocks
Assuming that the M0 × 1 array p(x, y) = [pm(x, y)] (m = 0, . . . , M0 − 1) groups the probabil-
ities pm(x, y) that the mode m is the best mode for the block at coordinates (x, y) (with M0 the
total number of candidate modes), it is possible to write the elements of p(x, y) as follows

pm(x, y) = pT(x, y − 1) Qm(x, y) p(x − 1, y), (4)

where Qm(x, y) = [qm
i,j(x, y)] is an M0 × M0 matrix. The value qm

i,j(x, y) represents the condi-
tional probability that mode m is the best mode for the current block at (x, y) given that i and
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j are the best modes for blocks at coordinates (x, y − 1) and (x − 1, y) respectively. However,
it may happen that only a smaller set M of M candidate modes (M < M0) are available for
the block at (x, y), and therefore, the probabilities pm′ (x, y) are 0 for m′ /∈ M. This is the
case of blocks placed at positions where some reference pixels are not available because of
the frame boundaries or the block coding order (e.g. upper-right pixels can not be used since
the corresponding neighboring block has not been coded yet). The same candidate modes
reduction is found for all the blocks whenever the H.264/AVC coder adopts a fast intra pre-
diction algorithm that tests only a selected set of candidates to constrain the computational
complexity. This candidate modes reduction affects the best-mode probability array, which
can be replaced with the relation

p̃(x, y) = PM(x − 1, y) p(x, y) (5)

where PM(x, y) is a singular projection matrix that sets to 0 some elements of p(x, y) according
to which candidate modes are available.
As a consequence, the best-mode statistics for the current block at position (x, y) can be esti-
mated propagating the best-mode probability of previous blocks via the equation

p̃m(x, y) = pT(x, y − 1) PT
M(x, y − 1) Qm(x, y) PM(x − 1, y) p(x − 1, y)

= p̃T(x, y − 1) Qm(x, y) p̃(x − 1, y)
(6)

(which is a modified version of eq. (4)), and projecting the array p(x, y) onto the subspace
of allowed modes using equation (5). The resulting array p̃(x, y) differs from the original
estimate p(x, y) of eq. (4) because of the approximation introduced by the projection and leads
to a different set M̃ �= M of candidate modes. As a possible drawback, the chosen predictor
could not match accurately the orientation of the local correlation either because the optimal
mode is not included in the set M̃ or because all the required neighboring pixels are not
available and the most appropriate predictor can not be adopted. The finally chosen mode m̃
could result sub-optimal for the current block and is going to affect the accuracy of probability
estimation for the following adjacent blocks. It is possible to mitigate this effect by adopting a
Belief-Propagation (BP) strategy that refines the statistics for each block.

4.1.2 The Belief-Propagation procedure for spatial orientations of 4 × 4 blocks
Before coding the block at the coordinates (x, y), the mode estimation routine propagates
through a BP procedure the information about the best modes for the upper and left blocks
found during the coding operations (see Figure 5 for a graphic example). These modes are
denoted here with m̃(x, y − 1) and m̃(x − 1, y) respectively. According to this, the coding rou-
tine estimates a probability mass function (pmf) p̃(x, y) for the current block via equation (6),
where

p̃m(x − 1, y) =
{

0 m �= m̃(x − 1, y)
1 m = m̃(x − 1, y)

p̃m(x, y − 1) =
{

0 m �= m̃(x, y − 1)
1 m = m̃(x, y − 1).

(7)

According to the values of p̃(x, y), all the possible prediction modes are sorted in decreasing
probability order, and the most probable ones are included in the set M according to the
criteria that will be described in Section 4.2.
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Fig. 5. Probability propagation according to the implemented Belief Propagation approach.
Some message passing propagates hard information (solid arrows) regarding the chosen pre-
diction modes, while others communicates likelihoods associated to the prediction mode of
4 × 4 blocks (dashed arrows).

After finding the mode that minimizes the cost function among the candidates in M, the BP
approach propagates this result to the previously coded blocks in order to refine the accu-
racy of the estimated mode probability (i.e. p̃(x, y − 1) and p̃(x − 1, y)). The array p̃(x, y),
whose elements are reported in eq. (7), is replaced by a “soft” best mode estimation p̂(x, y) (a
likelihood) computed using a reversed version of equation (4)

p̂(x, y) = p̃T(x, y − 1) Qm,r(x, y) p̃(x + 1, y). (8)

The new arrays p̂(x, y) affect the estimated mode probability distribution for the following
blocks and improve the compression performance of the fast Intra coding algorithm. As an
example, the elements for the probability array p̃(x, y + 1) of block 9 in Fig. 5 are obtained via
eq. (6) replacing the array p̃(x, y − 1) with p̂(x, y − 1).
Experimental results have proved that the refinement step performed using equation (8) does
not change the arrays p̃(x, y) in such a way that the order of candidate modes is altered.
However, the likelihood estimate for the prediction mode m̃(x, y) proves to be significant in
the computation of the number of candidate modes as it will be explained in Subsection 4.2.1.
Moreover, the best prediction modes found for Intra4x4 coding are used to characterize
the best-mode probability of prediction modes for bigger blocks in case the rate-distortion
algorithm has chosen to merge the 4 × 4 blocks together, as it will be described in Section 4.4.
In the estimation routine, the arrays p̃(x, y) and p̂(x, y) are approximated using a finite set
P of 100 pmfs, which has been obtained from an extensive set of training sequences via an
LBG iterative classification (Gersho and Gray, 1991). In this procedure the distortion metric to
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j are the best modes for blocks at coordinates (x, y − 1) and (x − 1, y) respectively. However,
it may happen that only a smaller set M of M candidate modes (M < M0) are available for
the block at (x, y), and therefore, the probabilities pm′ (x, y) are 0 for m′ /∈ M. This is the
case of blocks placed at positions where some reference pixels are not available because of
the frame boundaries or the block coding order (e.g. upper-right pixels can not be used since
the corresponding neighboring block has not been coded yet). The same candidate modes
reduction is found for all the blocks whenever the H.264/AVC coder adopts a fast intra pre-
diction algorithm that tests only a selected set of candidates to constrain the computational
complexity. This candidate modes reduction affects the best-mode probability array, which
can be replaced with the relation

p̃(x, y) = PM(x − 1, y) p(x, y) (5)

where PM(x, y) is a singular projection matrix that sets to 0 some elements of p(x, y) according
to which candidate modes are available.
As a consequence, the best-mode statistics for the current block at position (x, y) can be esti-
mated propagating the best-mode probability of previous blocks via the equation

p̃m(x, y) = pT(x, y − 1) PT
M(x, y − 1) Qm(x, y) PM(x − 1, y) p(x − 1, y)

= p̃T(x, y − 1) Qm(x, y) p̃(x − 1, y)
(6)

(which is a modified version of eq. (4)), and projecting the array p(x, y) onto the subspace
of allowed modes using equation (5). The resulting array p̃(x, y) differs from the original
estimate p(x, y) of eq. (4) because of the approximation introduced by the projection and leads
to a different set M̃ �= M of candidate modes. As a possible drawback, the chosen predictor
could not match accurately the orientation of the local correlation either because the optimal
mode is not included in the set M̃ or because all the required neighboring pixels are not
available and the most appropriate predictor can not be adopted. The finally chosen mode m̃
could result sub-optimal for the current block and is going to affect the accuracy of probability
estimation for the following adjacent blocks. It is possible to mitigate this effect by adopting a
Belief-Propagation (BP) strategy that refines the statistics for each block.

4.1.2 The Belief-Propagation procedure for spatial orientations of 4 × 4 blocks
Before coding the block at the coordinates (x, y), the mode estimation routine propagates
through a BP procedure the information about the best modes for the upper and left blocks
found during the coding operations (see Figure 5 for a graphic example). These modes are
denoted here with m̃(x, y − 1) and m̃(x − 1, y) respectively. According to this, the coding rou-
tine estimates a probability mass function (pmf) p̃(x, y) for the current block via equation (6),
where

p̃m(x − 1, y) =
{

0 m �= m̃(x − 1, y)
1 m = m̃(x − 1, y)

p̃m(x, y − 1) =
{

0 m �= m̃(x, y − 1)
1 m = m̃(x, y − 1).

(7)

According to the values of p̃(x, y), all the possible prediction modes are sorted in decreasing
probability order, and the most probable ones are included in the set M according to the
criteria that will be described in Section 4.2.

~ (x,y−1)m

~ (x+1,y)m~ (x,y)m~ (x−1,y)m

~ (x’,y’+1)m

~ (x’−1,y’)m ~ (x’,y’)m

~ (x’,y’−1)m

m~ (x,y)

p (x,y+1)~ p (x’,y’+1)~

~ (x’+1,y’−1)m

p(x,y)^

p̂

p̂

likelihood

best modeMB

~ (x−1,y+1)m

(x,y)

(x’,y’)

1

32

0

6 7

8 9 12 13

15

2

8

.

Fig. 5. Probability propagation according to the implemented Belief Propagation approach.
Some message passing propagates hard information (solid arrows) regarding the chosen pre-
diction modes, while others communicates likelihoods associated to the prediction mode of
4 × 4 blocks (dashed arrows).

After finding the mode that minimizes the cost function among the candidates in M, the BP
approach propagates this result to the previously coded blocks in order to refine the accu-
racy of the estimated mode probability (i.e. p̃(x, y − 1) and p̃(x − 1, y)). The array p̃(x, y),
whose elements are reported in eq. (7), is replaced by a “soft” best mode estimation p̂(x, y) (a
likelihood) computed using a reversed version of equation (4)

p̂(x, y) = p̃T(x, y − 1) Qm,r(x, y) p̃(x + 1, y). (8)

The new arrays p̂(x, y) affect the estimated mode probability distribution for the following
blocks and improve the compression performance of the fast Intra coding algorithm. As an
example, the elements for the probability array p̃(x, y + 1) of block 9 in Fig. 5 are obtained via
eq. (6) replacing the array p̃(x, y − 1) with p̂(x, y − 1).
Experimental results have proved that the refinement step performed using equation (8) does
not change the arrays p̃(x, y) in such a way that the order of candidate modes is altered.
However, the likelihood estimate for the prediction mode m̃(x, y) proves to be significant in
the computation of the number of candidate modes as it will be explained in Subsection 4.2.1.
Moreover, the best prediction modes found for Intra4x4 coding are used to characterize
the best-mode probability of prediction modes for bigger blocks in case the rate-distortion
algorithm has chosen to merge the 4 × 4 blocks together, as it will be described in Section 4.4.
In the estimation routine, the arrays p̃(x, y) and p̂(x, y) are approximated using a finite set
P of 100 pmfs, which has been obtained from an extensive set of training sequences via an
LBG iterative classification (Gersho and Gray, 1991). In this procedure the distortion metric to
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minimize is the Jensen-Shannon divergence between p̃(x, y) and p̂ ∈ P

JSD (p̃(x, y)‖p̂) =
1
2

D (p̃(x, y)‖p̂) +
1
2

D (p̂‖p̃(x, y)) (9)

where D (p̃(x, y)‖p̂) is the Kullback-Leibler divergence

D (p̃(x, y)‖p̂) =
8

∑
m=0

p̃m(x, y) log
(

p̃m(x, y)
p̂m

)

. (10)

The conditional probability matrix Qm(x, y) is a linear combination of arrays p̂ ∈ P , and the
probability array p̃(x, y) at position (x, y) is updated after each iteration of the BP procedure
using a Finite State Machine (FSM), where each state is related to an element of P . In this way,
it is possible to obtain an adaptive estimation of the probability for each prediction mode with
limited computational complexity and memory area.

4.1.3 Estimation of probable spatial orientations for 8 × 8 blocks
After the optimization algorithm has chosen to merge together 4 × 4 blocks into 8 × 8 blocks,
the coder estimates an Intra8x8 best-mode probability distribution p8×8 according to the
previously found Intra4x4 modes. The adopted approach estimates three different mode
probability distribution p8 × 8, i, i = v, h, d, which are dependent on the best Intra prediction
modes of vertical, horizontal and diagonal couples of 4 × 4 blocks respectively (see Figure 6).
Using the same notation of equation (4), it is possible to write p8×8,i = [p8×8,i

m ], i = v, h, d and
m = 0, . . . , 8, as

p8×8,v
m = p̃T(x, y) F8×8,v

m p̃(x, y + 1)

p8×8,h
m = p̃T(x, y) F8×8,h

m p̃(x + 1, y)

p8×8,d
m = p̃T(x, y) F8×8,d

m p̃(x + 1, y + 1)
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where p̃(x, y) represents the chosen prediction mode (as defined in equation (7)) and F8×8,i
m ,

i = v, h, d, is the conditional probability matrix of 8 × 8 Intra prediction mode m given the
vertical, horizontal, and diagonal couples of 4 × 4 modes. In this way, Intra8x8 best-mode
probability estimation relies on the results of Intra4x4 coding which has already been per-
formed on the current macroblock.

4.2 Estimation of the set of candidates
4.2.1 Computation of the most probable prediction modes
After estimating the probability array p̃(x, y), the coding routine has to identify those modes
that are more likely to be the best prediction mode for the current 4 × 4 block. The num-
ber of candidate modes M is usually set to the average value M, but can vary according to
the characteristics of the probability distribution identified by p̃(x, y). In fact, experimental
data show that the entropies of distributions p̃(x, y) vary, and therefore, the mode probability
distributions with a lower entropy only needs a reduced number of candidates.

Named ß = [ßm] the average mode probability array, M is chosen in such a way that

M−1

∑
m=0

Sm(p̃(x, y)) ≤
M−1

∑
m=0

Sm (ß(x, y))

M

∑
m=0

Sm(p̃(x, y)) >
M−1

∑
m=0

Sm (ß(x, y))

(12)

where Sm(·) : [0, 1]9 → [0, 1] is an ordering function that returns the m-th value of the input
array in decreasing order. The value M reports the average number of modes to be tested
for each block and permits controlling the computational complexity. In this way it is pos-
sible to provide the same probability of finding the best prediction mode with a limited sets
of candidates to all the 4 × 4 blocks of the image. This equalization permits saving some
computational complexity without affecting the coding performance of the algorithm.
As it was mentioned in Subsection 4.1.2, the refinement provided by either p̃(x, y + 1) or
p̃(x + 1, y) permits a better estimate of the probabilities related to the candidate modes of the
current block. This improvement does not lead to a change in the order of modes but could
modify the number of candidates that is considered for the current 4 × 4 block since it affects
equation (12). Experimental results have shown that the refinement brought by the Belief-
Propagation strategy leads to a reduction of the coding time with respect to the case when
forward message passing is allowed only (see the solid-line arrows in Fig. 5). The same ap-
proach is adopted to estimate the set of candidate modes for Intra8x8 as it will be described
in Subsection 4.3.

4.2.2 Further reduction of the possible candidates (DD algorithm)
According to the probability values of p̃(x, y), the M most probable modes are included in
the set M of candidates. Whenever the entropy associated with p̃(x, y) is high, it is possible
that the set M includes modes with orthogonal spatial orientations. This fact is mainly due to
the transient period in the probability estimation process, which may require several iteration
before converging to an accurate estimate of mode statistics. Therefore, a further reduction
of the candidate modes can be obtained by estimating whether horizontal or vertical modes
are dominant in the distribution p̃(x, y) and eliminating the dominated modes (Dominated
Deletion - DD). The number of orientations in the set M which are close to the vertical one is
compared with the number of candidate modes which have a spatial orientation close to the
horizontal one. In case one of them prevails, the modes of the other type are deleted from the
set M.
This additional improvement proves to be quite effective whenever the image orientation
statistics has changed, and the array p̃(x, y) estimated by the algorithm does not provide a
sufficiently-accurate approximation of the real pmf yet. Therefore, the estimated set M could
include some candidate modes which are orthogonal to the other ones since they could be
probable candidates in the neighboring region. The DD elimination algorithm prevents this
transient phase from reducing the effectiveness of the algorithm and speeds up the best intra-
prediction estimation process.
However, this elimination procedure has to be constrained in order to avoid an excessive
reduction of the candidate sets whenever the statistics of prediction orientations is not clearly
biased on either vertical or horizontal directions. In order to avoid the deletion of probable
candidate modes, the DD algorithm is performed only for modes greater than 4 whenever
the number of dominated modes is greater than a certain threshold value T. In the setting
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minimize is the Jensen-Shannon divergence between p̃(x, y) and p̂ ∈ P
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The conditional probability matrix Qm(x, y) is a linear combination of arrays p̂ ∈ P , and the
probability array p̃(x, y) at position (x, y) is updated after each iteration of the BP procedure
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the coder estimates an Intra8x8 best-mode probability distribution p8×8 according to the
previously found Intra4x4 modes. The adopted approach estimates three different mode
probability distribution p8 × 8, i, i = v, h, d, which are dependent on the best Intra prediction
modes of vertical, horizontal and diagonal couples of 4 × 4 blocks respectively (see Figure 6).
Using the same notation of equation (4), it is possible to write p8×8,i = [p8×8,i

m ], i = v, h, d and
m = 0, . . . , 8, as
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where p̃(x, y) represents the chosen prediction mode (as defined in equation (7)) and F8×8,i
m ,

i = v, h, d, is the conditional probability matrix of 8 × 8 Intra prediction mode m given the
vertical, horizontal, and diagonal couples of 4 × 4 modes. In this way, Intra8x8 best-mode
probability estimation relies on the results of Intra4x4 coding which has already been per-
formed on the current macroblock.

4.2 Estimation of the set of candidates
4.2.1 Computation of the most probable prediction modes
After estimating the probability array p̃(x, y), the coding routine has to identify those modes
that are more likely to be the best prediction mode for the current 4 × 4 block. The num-
ber of candidate modes M is usually set to the average value M, but can vary according to
the characteristics of the probability distribution identified by p̃(x, y). In fact, experimental
data show that the entropies of distributions p̃(x, y) vary, and therefore, the mode probability
distributions with a lower entropy only needs a reduced number of candidates.

Named ß = [ßm] the average mode probability array, M is chosen in such a way that
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where Sm(·) : [0, 1]9 → [0, 1] is an ordering function that returns the m-th value of the input
array in decreasing order. The value M reports the average number of modes to be tested
for each block and permits controlling the computational complexity. In this way it is pos-
sible to provide the same probability of finding the best prediction mode with a limited sets
of candidates to all the 4 × 4 blocks of the image. This equalization permits saving some
computational complexity without affecting the coding performance of the algorithm.
As it was mentioned in Subsection 4.1.2, the refinement provided by either p̃(x, y + 1) or
p̃(x + 1, y) permits a better estimate of the probabilities related to the candidate modes of the
current block. This improvement does not lead to a change in the order of modes but could
modify the number of candidates that is considered for the current 4 × 4 block since it affects
equation (12). Experimental results have shown that the refinement brought by the Belief-
Propagation strategy leads to a reduction of the coding time with respect to the case when
forward message passing is allowed only (see the solid-line arrows in Fig. 5). The same ap-
proach is adopted to estimate the set of candidate modes for Intra8x8 as it will be described
in Subsection 4.3.

4.2.2 Further reduction of the possible candidates (DD algorithm)
According to the probability values of p̃(x, y), the M most probable modes are included in
the set M of candidates. Whenever the entropy associated with p̃(x, y) is high, it is possible
that the set M includes modes with orthogonal spatial orientations. This fact is mainly due to
the transient period in the probability estimation process, which may require several iteration
before converging to an accurate estimate of mode statistics. Therefore, a further reduction
of the candidate modes can be obtained by estimating whether horizontal or vertical modes
are dominant in the distribution p̃(x, y) and eliminating the dominated modes (Dominated
Deletion - DD). The number of orientations in the set M which are close to the vertical one is
compared with the number of candidate modes which have a spatial orientation close to the
horizontal one. In case one of them prevails, the modes of the other type are deleted from the
set M.
This additional improvement proves to be quite effective whenever the image orientation
statistics has changed, and the array p̃(x, y) estimated by the algorithm does not provide a
sufficiently-accurate approximation of the real pmf yet. Therefore, the estimated set M could
include some candidate modes which are orthogonal to the other ones since they could be
probable candidates in the neighboring region. The DD elimination algorithm prevents this
transient phase from reducing the effectiveness of the algorithm and speeds up the best intra-
prediction estimation process.
However, this elimination procedure has to be constrained in order to avoid an excessive
reduction of the candidate sets whenever the statistics of prediction orientations is not clearly
biased on either vertical or horizontal directions. In order to avoid the deletion of probable
candidate modes, the DD algorithm is performed only for modes greater than 4 whenever
the number of dominated modes is greater than a certain threshold value T. In the setting
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operation of the fast intra algorithm, the parameter T can be varied in order to increase or
decrease the cardinality of M according to the desired computational complexity.
Experimental results reported in Section 5 will underline its contribution in the overall perfor-
mance of the fast intra prediction procedure.

4.3 Computation of the candidates for 8 × 8 blocks
In case the coding mode Intra8x8 is enabled, the fast intra prediction algorithm has to es-
timate the most appropriate prediction modes for the current 8 × 8 block from the results of
Intra4x4 mode. The transcoding algorithm reported by Bialkowski et al. (2004) chooses the
most frequently used prediction direction, but in case the estimated 4 × 4 orientations prove
to be nonuniform within the same 8 × 8 block, a better performance can be obtained testing a
set M8×8 of different candidates. A procedure similar to that of Subsection 4.2.1 is adopted in
order to estimate the sets of candidate M8×8 for the current 8× 8 block from p8×8,i, i = v, h, d.
Each mode probability distribution p8×8,i infers a different set M8×8,i, i = v, h, d, of candi-
date modes which is obtained in the same way of the set of M possible candidate modes for
Intra4x4 blocks. In case the set M8×8 obtained from the intersection of the sets

M8×8 = M8×8,v ∩M8×8,h ∩M8×8,d (13)

is not empty, the coding algorithm merges the 4 × 4 blocks into a 8 × 8 block and tests the
predictors included in the set M8×8 looking for the one that minimizes the cost function.
As for the Intra16x16 coding, all the four possible predictions are tested since the estimation
of the best mode probability for the 16× 16 block from the best Intra4x4modes is not trivial.
The same choice is adopted to spatially predict the chrominance components U and V.

4.4 Estimation of best macroblock partitioning for Intra prediction
After finding the best mode for each 4 × 4 block in the current MB, the coding routine tests
whether it is better to use bigger blocks. In a first step the algorithm checks whether it is
possible to merge together the 4 × 4 blocks into blocks of 8 × 8 pixels. In case the orientations
of each 4 × 4 block are the same or close, the merging of separate blocks results convenient
with respect to the Intra4x4 block partitioning since a reduced number of predictors needs
to be coded in the transmitted bit stream.
In order to detect these configurations, the encoder estimates the orientation differences
d(m̃(x, y), m̃(x + i, y + j)) (i, j = 0, 1) between vertical, horizontal and diagonal couples of
4 × 4 blocks (see Figure 6) within the current 8 × 8 block. The metric d(m̃(x, y), m̃(x′, y′)) is
computed as follows

d(m̃(x, y), m̃(x′, y′)) =
∣

∣∠m̃(x, y)−∠m̃(x′, y′)
∣

∣ (14)
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where ∠m denotes the angle associated to the spatial orientation of mode m. If the average
difference

d =
d(m̃(x, y), m̃(x + 1, y))

3
+

d(m̃(x, y), m̃(x, y + 1))
3

+
d(m̃(x, y), m̃(x + 1, y + 1))

3
(15)

is lower than 40◦, the 4 × 4 blocks at (x, y), (x + 1, y), (x, y + 1), and (x + 1, y + 1) could be
merged into one block of 8 × 8 pixels. In case the condition on d is verified for all the 8 × 8,
the Intra8x8 coding mode is enabled. Moreover, the encoding routine tests whether it is
worth merging the 8 × 8 blocks into one common 16 × 16 prediction block considering the
Intra4x4 modes for the blocks at the border of 8 × 8 blocks. In case the average absolute
difference between the orientations of 4× 4 blocks lying at the borders of 8× 8 blocks is lower
than 40◦, the Intra16x16 prediction mode is chosen for the current macroblock. In this way,
the wider block partitioning modes are tested only in case the orientations for the 4× 4 blocks
are approximately uniform, otherwise either 4 × 4 or 8 × 8 partitioning is preferred.
The whole fast Intra coding procedure is depicted in the block diagram of Fig. 7 and can be
summarized by the following pseudo-code:

1: Test Intra4x4 coding mode
2: for each 4 × 4 block in the current macroblock do
3: compute p̃(x, y)
4: compute M and create the set M
5: test all the modes in M an
6: end for
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operation of the fast intra algorithm, the parameter T can be varied in order to increase or
decrease the cardinality of M according to the desired computational complexity.
Experimental results reported in Section 5 will underline its contribution in the overall perfor-
mance of the fast intra prediction procedure.

4.3 Computation of the candidates for 8 × 8 blocks
In case the coding mode Intra8x8 is enabled, the fast intra prediction algorithm has to es-
timate the most appropriate prediction modes for the current 8 × 8 block from the results of
Intra4x4 mode. The transcoding algorithm reported by Bialkowski et al. (2004) chooses the
most frequently used prediction direction, but in case the estimated 4 × 4 orientations prove
to be nonuniform within the same 8 × 8 block, a better performance can be obtained testing a
set M8×8 of different candidates. A procedure similar to that of Subsection 4.2.1 is adopted in
order to estimate the sets of candidate M8×8 for the current 8× 8 block from p8×8,i, i = v, h, d.
Each mode probability distribution p8×8,i infers a different set M8×8,i, i = v, h, d, of candi-
date modes which is obtained in the same way of the set of M possible candidate modes for
Intra4x4 blocks. In case the set M8×8 obtained from the intersection of the sets

M8×8 = M8×8,v ∩M8×8,h ∩M8×8,d (13)

is not empty, the coding algorithm merges the 4 × 4 blocks into a 8 × 8 block and tests the
predictors included in the set M8×8 looking for the one that minimizes the cost function.
As for the Intra16x16 coding, all the four possible predictions are tested since the estimation
of the best mode probability for the 16× 16 block from the best Intra4x4modes is not trivial.
The same choice is adopted to spatially predict the chrominance components U and V.

4.4 Estimation of best macroblock partitioning for Intra prediction
After finding the best mode for each 4 × 4 block in the current MB, the coding routine tests
whether it is better to use bigger blocks. In a first step the algorithm checks whether it is
possible to merge together the 4 × 4 blocks into blocks of 8 × 8 pixels. In case the orientations
of each 4 × 4 block are the same or close, the merging of separate blocks results convenient
with respect to the Intra4x4 block partitioning since a reduced number of predictors needs
to be coded in the transmitted bit stream.
In order to detect these configurations, the encoder estimates the orientation differences
d(m̃(x, y), m̃(x + i, y + j)) (i, j = 0, 1) between vertical, horizontal and diagonal couples of
4 × 4 blocks (see Figure 6) within the current 8 × 8 block. The metric d(m̃(x, y), m̃(x′, y′)) is
computed as follows

d(m̃(x, y), m̃(x′, y′)) =
∣
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where ∠m denotes the angle associated to the spatial orientation of mode m. If the average
difference
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d(m̃(x, y), m̃(x + 1, y))
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is lower than 40◦, the 4 × 4 blocks at (x, y), (x + 1, y), (x, y + 1), and (x + 1, y + 1) could be
merged into one block of 8 × 8 pixels. In case the condition on d is verified for all the 8 × 8,
the Intra8x8 coding mode is enabled. Moreover, the encoding routine tests whether it is
worth merging the 8 × 8 blocks into one common 16 × 16 prediction block considering the
Intra4x4 modes for the blocks at the border of 8 × 8 blocks. In case the average absolute
difference between the orientations of 4× 4 blocks lying at the borders of 8× 8 blocks is lower
than 40◦, the Intra16x16 prediction mode is chosen for the current macroblock. In this way,
the wider block partitioning modes are tested only in case the orientations for the 4× 4 blocks
are approximately uniform, otherwise either 4 × 4 or 8 × 8 partitioning is preferred.
The whole fast Intra coding procedure is depicted in the block diagram of Fig. 7 and can be
summarized by the following pseudo-code:

1: Test Intra4x4 coding mode
2: for each 4 × 4 block in the current macroblock do
3: compute p̃(x, y)
4: compute M and create the set M
5: test all the modes in M an
6: end for



Signal	Processing256

7: check if it is worth merging the 4 × 4 blocks into bigger blocks as described in the current
Section

8: if Intra8x8 is to be enabled then
9: for each 8 × 8 block in the current macroblock do

10: compute p̃8×8,i, i = v, h, d
11: compute M8×8 and find the best mode
12: end for
13: end if
14: if Intra16x16 mode is to be enabled then
15: find the best prediction mode
16: end if
17: choose the MB Intra coding mode that minimize the total cost function.

Experimental results will show that this choice leads to good performance with respect to
other proposed solutions.

5. Experimental results

In order to test the efficiency of the presented algorithm, different sequences were coded
with different quantization parameter values and enabling different Intra coding modes. The
proposed Intra coding strategy was implemented into the JM10.1 software. In the tests the
adopted parameter setting is the same of the paper by Pan et al. (2005), coding different
sequences with only Intra frames and QP = 28, 32, 36, 40. At first the performance of
Intra4x4 and Intra16x16 modes only was evaluated, comparing the computational com-
plexity, the PSNR value, and the coded bit rate of the presented solution with those provided
by the full-complexity rate-distortion optimization algorithm implemented in the reference
software. Experimental data show that the PSNR vs. rate curves of the two methods are quite
close (see Figure 8). It is possible to notice that coding performance in terms of rate-distortion
optimization is related to the target number M of candidate modes, which can vary according
to the available computational resources or the remaining power supply.
Table 1 reports the PSNR loss, together with the rate increment and the complexity reduction,
for the proposed approach with respect to the reference software (with Intra8x8 mode dis-
abled). The presented algorithm is able to reduce the coding time of approximately 63% with
respect to the JM exhaustive approach with an average rate increment lower than 5% and a
PSNR loss of 0.16 dB (M = 6 and T = 2). The DD algorithm described in Subsection 4.2.2
makes possible to improve the relative coding time reduction of an additional 13% (compare
results for M = 6 and T = 2 with results for M = 6 without DD).
The reported data also show that the rate-distortion performance is slightly better than that of
the approaches by Pan et al. (2005) and by Yong-dong et al. (2004). The bottom part of Table 1
reports the results for the algorithm proposed by Pan et al. (2005). Equalizing the rate incre-
ment, the performance of the proposed algorithm with M = 7 and T = 2 permits reducing
the PSNR loss of 0.04 dB and improving the coding time saving of approximately 2%. Despite
this slight improvement, the real advantage of the proposed approach relies on the possibility
of forecasting the computational complexity required by coding operations. Table 2 reports
the range of variation for the saved coding time of different fast Intra coding algorithms and
different configurations. It is possible to notice that the computational complexity does not
significantly vary according to the input sequence, since the maximum deviation of time sav-

(

M, T
)

Sequence ∆ Bits (%) ∆ PSNR ∆ Time (%)

(5, 2)

container (qcif) 10.42 −0.18 −72.24
news (qcif) 9.42 −0.23 −72.44

coastguard (qcif) 8.04 −0.18 −71.55
bus (cif) 6.22 −0.21 −70.50

tempete (cif) 4.55 −0.30 −69.42
average 7.73 −0.22 −71.23

(6, 2)

container (qcif) 5.35 −0.14 −62.56
news (qcif) 5.79 −0.16 −62.46

coastguard (qcif) 3.55 −0.14 −62.64
bus (cif) 2.15 −0.16 −63.64

tempete (cif) 4.95 −0.22 −63.00
average 4.36 −0.16 −62.86

(6, 3)

container (qcif) 5.32 −0.14 −59.95
news (qcif) 5.68 −0.15 −60.43

coastguard (qcif) 3.67 −0.14 −60.48
bus (cif) 2.15 −0.16 −63.64

tempete (cif) 4.95 −0.22 −63.00
average 4.35 −0.16 −61.50

(7, 2)

container (qcif) 3.77 −0.13 −58.98
news (qcif) 4.55 −0.16 −57.85

coastguard (qcif) 2.14 −0.13 −59.21
bus (cif) 2.11 −0.14 −58.19

tempete (cif) 4.61 −0.19 −57.88
average 3.44 −0.15 −58.42

(7, 3)

container (qcif) 3.60 −0.12 −55.18
news (qcif) 4.50 −0.14 −54.14

coastguard (qcif) 2.19 −0.12 −55.25
bus (cif) 2.13 −0.13 −54.83

tempete (cif) 4.57 −0.18 −54.36
average 3.40 −0.14 −54.75

6 without DD

container (qcif) 5.64 −0.08 −50.43
news (qcif) 4.96 −0.09 −47.79

coastguard (qcif) 3.64 −0.09 −51.10
bus (cif) 2.73 −0.10 −49.41

tempete (cif) 5.05 −0.13 −50.07
average 4.40 −0.10 −49.76

Pan et al.

container (qcif) 3.69 −0.23 −56.36
news (qcif) 3.90 −0.29 −55.34

coastguard (qcif) 2.36 −0.11 −55.03
bus (cif) 3.85 −0.10 −58.12

tempete (cif) 3.51 −0.23 −57.70
average 3.46 −0.19 −56.51

Table 1. Experimental results with Intra8x8 disabled and only Intra frames.
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7: check if it is worth merging the 4 × 4 blocks into bigger blocks as described in the current
Section

8: if Intra8x8 is to be enabled then
9: for each 8 × 8 block in the current macroblock do

10: compute p̃8×8,i, i = v, h, d
11: compute M8×8 and find the best mode
12: end for
13: end if
14: if Intra16x16 mode is to be enabled then
15: find the best prediction mode
16: end if
17: choose the MB Intra coding mode that minimize the total cost function.

Experimental results will show that this choice leads to good performance with respect to
other proposed solutions.

5. Experimental results

In order to test the efficiency of the presented algorithm, different sequences were coded
with different quantization parameter values and enabling different Intra coding modes. The
proposed Intra coding strategy was implemented into the JM10.1 software. In the tests the
adopted parameter setting is the same of the paper by Pan et al. (2005), coding different
sequences with only Intra frames and QP = 28, 32, 36, 40. At first the performance of
Intra4x4 and Intra16x16 modes only was evaluated, comparing the computational com-
plexity, the PSNR value, and the coded bit rate of the presented solution with those provided
by the full-complexity rate-distortion optimization algorithm implemented in the reference
software. Experimental data show that the PSNR vs. rate curves of the two methods are quite
close (see Figure 8). It is possible to notice that coding performance in terms of rate-distortion
optimization is related to the target number M of candidate modes, which can vary according
to the available computational resources or the remaining power supply.
Table 1 reports the PSNR loss, together with the rate increment and the complexity reduction,
for the proposed approach with respect to the reference software (with Intra8x8 mode dis-
abled). The presented algorithm is able to reduce the coding time of approximately 63% with
respect to the JM exhaustive approach with an average rate increment lower than 5% and a
PSNR loss of 0.16 dB (M = 6 and T = 2). The DD algorithm described in Subsection 4.2.2
makes possible to improve the relative coding time reduction of an additional 13% (compare
results for M = 6 and T = 2 with results for M = 6 without DD).
The reported data also show that the rate-distortion performance is slightly better than that of
the approaches by Pan et al. (2005) and by Yong-dong et al. (2004). The bottom part of Table 1
reports the results for the algorithm proposed by Pan et al. (2005). Equalizing the rate incre-
ment, the performance of the proposed algorithm with M = 7 and T = 2 permits reducing
the PSNR loss of 0.04 dB and improving the coding time saving of approximately 2%. Despite
this slight improvement, the real advantage of the proposed approach relies on the possibility
of forecasting the computational complexity required by coding operations. Table 2 reports
the range of variation for the saved coding time of different fast Intra coding algorithms and
different configurations. It is possible to notice that the computational complexity does not
significantly vary according to the input sequence, since the maximum deviation of time sav-

(

M, T
)

Sequence ∆ Bits (%) ∆ PSNR ∆ Time (%)

(5, 2)

container (qcif) 10.42 −0.18 −72.24
news (qcif) 9.42 −0.23 −72.44

coastguard (qcif) 8.04 −0.18 −71.55
bus (cif) 6.22 −0.21 −70.50

tempete (cif) 4.55 −0.30 −69.42
average 7.73 −0.22 −71.23

(6, 2)

container (qcif) 5.35 −0.14 −62.56
news (qcif) 5.79 −0.16 −62.46

coastguard (qcif) 3.55 −0.14 −62.64
bus (cif) 2.15 −0.16 −63.64

tempete (cif) 4.95 −0.22 −63.00
average 4.36 −0.16 −62.86

(6, 3)

container (qcif) 5.32 −0.14 −59.95
news (qcif) 5.68 −0.15 −60.43

coastguard (qcif) 3.67 −0.14 −60.48
bus (cif) 2.15 −0.16 −63.64

tempete (cif) 4.95 −0.22 −63.00
average 4.35 −0.16 −61.50

(7, 2)

container (qcif) 3.77 −0.13 −58.98
news (qcif) 4.55 −0.16 −57.85

coastguard (qcif) 2.14 −0.13 −59.21
bus (cif) 2.11 −0.14 −58.19

tempete (cif) 4.61 −0.19 −57.88
average 3.44 −0.15 −58.42

(7, 3)

container (qcif) 3.60 −0.12 −55.18
news (qcif) 4.50 −0.14 −54.14

coastguard (qcif) 2.19 −0.12 −55.25
bus (cif) 2.13 −0.13 −54.83

tempete (cif) 4.57 −0.18 −54.36
average 3.40 −0.14 −54.75

6 without DD

container (qcif) 5.64 −0.08 −50.43
news (qcif) 4.96 −0.09 −47.79

coastguard (qcif) 3.64 −0.09 −51.10
bus (cif) 2.73 −0.10 −49.41

tempete (cif) 5.05 −0.13 −50.07
average 4.40 −0.10 −49.76

Pan et al.

container (qcif) 3.69 −0.23 −56.36
news (qcif) 3.90 −0.29 −55.34

coastguard (qcif) 2.36 −0.11 −55.03
bus (cif) 3.85 −0.10 −58.12

tempete (cif) 3.51 −0.23 −57.70
average 3.46 −0.19 −56.51

Table 1. Experimental results with Intra8x8 disabled and only Intra frames.
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Fig. 8. PSNR vs. rate for only Intra coded sequences with different target number M of candi-
dates (Intra4x4 mode only).

ing from its average with M = 7 and T = 2 is 0.79% while it is equal to 5.81% for the algorithm
of Pan et al. and 30.38% for the solution proposed by Yong-dong et al. (2004).
Moreover, it is possible to tune the parameters of the fast estimation algorithm in order to
vary the required computational complexity and the rate-distortion performance. The results
reported in Table 1 show that reducing the parameter M by 1 permits a decrement of the
computational complexity between 4.44% and 8.37%.
In addition, Table 3 reports some experimental results obtained enabling the Intra8x8 cod-
ing mode too. In this case the average performance does not significantly change, but the
complexity reduction results slightly more variable because of the increased number of cod-
ing modes. Note also that the computational saving increases since the rate-distortion opti-
mization process becomes more complex as the mode Intra8x8 is added, and therefore, the
adoption of fast method for Intra prediction proves to be an effective strategy in the coding
process.

Algorithm E [∆Time (%)] range for ∆Time (%)
BP M = 5 T = 2 −71.23 [−72.44,−69.42]
BP M = 6 T = 3 −61.50 [−63.64,−59.95]
BP M = 7 T = 2 −58.42 [−59.21,−57.85]
Pan et al. Pan et al. (2005) −59.57 [−65.38,−55.03]
Yong-dong et al. Yong-dong et al. (2004) −60.38 [−68.70,−40.30]

Table 2. Experimental results of different algorithms for only Intra mode.

(

M, T
)

Sequence ∆ Bits (%) ∆ PSNR ∆ Time (%)

(6, 3)

container (qcif) 5.93 −0.14 −66.97
news (qcif) 6.40 −0.19 −64.63

coastguard (qcif) 5.09 −0.18 −66.51
bus (cif) 3.42 −0.20 −63.69

tempete (cif) 5.66 −0.22 −61.78
average 5.30 −0.18 −64.72

(7, 2)

container (qcif) 4.27 −0.13 −62.76
news (qcif) 5.34 −0.17 −59.49

coastguard (qcif) 3.40 −0.16 −62.37
bus (cif) 3.12 −0.17 −59.73

tempete (cif) 4.99 −0.20 −58.02
average 4.23 −0.17 −60.47

Table 3. Experimental results with Intra8x8 enabled and only Intra frames.

Final tests were devoted to evaluate the impact of the BP-based fast Intra prediction on the
complexity of the overall coding process. To this purpose, the performance of the proposed
fast intra algorithm was evaluated enabling Inter coding modes. In this case, the Intra cod-
ing is applied while coding Intra frames in order to find which is the best coding mode
for the current macroblock (see the rate-distortion optimization routine of H.264/AVC by
Joint Video Team (2004)). Table 4 reports the coding results for GOP of 100 frames with struc-
ture IP. . .P. It is possible to notice that the proposed method improves the results of the al-
gorithm by Pan et al. both in terms of rate-distortion performance (we obtained lower rate
increment and quality decrement for M = 6) and of complexity reduction (the proposed ap-
proach permits an average 25.88% reduction in the coding time with respect to the 23.57%
reduction of the algorithm by Pan et al. (2005)). For the sake of completeness, Table 5 reports
the results for GOP IP. . .P and Intra8x8 mode enabled. In this case the reduction of com-
putational time saving approximately varies from 6.25% to 7.4% with respect to the approach
with Intra8x8 disabled (see Table 4) since the proposed algorithm significantly mitigates the
computational load of the rate-distortion optimization routine (compare the results for M = 6
and T = 3).

6. Conclusions

The chapter has described the block-based spatial prediction strategy adopted within the
H.2634/AVC FRExt standard and stated the problem of enabling a low-complexity Intra cod-
ing on mobile devices. An overview of different techniques has been presented underlying
the characteristics of each solution and the required complexity. Since most of the proposed
solutions permit obtaining a varying computational savings which depends on the charac-
teristics of the coded signal, the focus is centered on finding a fast Intra coding strategy that
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Fig. 8. PSNR vs. rate for only Intra coded sequences with different target number M of candi-
dates (Intra4x4 mode only).

ing from its average with M = 7 and T = 2 is 0.79% while it is equal to 5.81% for the algorithm
of Pan et al. and 30.38% for the solution proposed by Yong-dong et al. (2004).
Moreover, it is possible to tune the parameters of the fast estimation algorithm in order to
vary the required computational complexity and the rate-distortion performance. The results
reported in Table 1 show that reducing the parameter M by 1 permits a decrement of the
computational complexity between 4.44% and 8.37%.
In addition, Table 3 reports some experimental results obtained enabling the Intra8x8 cod-
ing mode too. In this case the average performance does not significantly change, but the
complexity reduction results slightly more variable because of the increased number of cod-
ing modes. Note also that the computational saving increases since the rate-distortion opti-
mization process becomes more complex as the mode Intra8x8 is added, and therefore, the
adoption of fast method for Intra prediction proves to be an effective strategy in the coding
process.

Algorithm E [∆Time (%)] range for ∆Time (%)
BP M = 5 T = 2 −71.23 [−72.44,−69.42]
BP M = 6 T = 3 −61.50 [−63.64,−59.95]
BP M = 7 T = 2 −58.42 [−59.21,−57.85]
Pan et al. Pan et al. (2005) −59.57 [−65.38,−55.03]
Yong-dong et al. Yong-dong et al. (2004) −60.38 [−68.70,−40.30]

Table 2. Experimental results of different algorithms for only Intra mode.

(

M, T
)

Sequence ∆ Bits (%) ∆ PSNR ∆ Time (%)

(6, 3)

container (qcif) 5.93 −0.14 −66.97
news (qcif) 6.40 −0.19 −64.63

coastguard (qcif) 5.09 −0.18 −66.51
bus (cif) 3.42 −0.20 −63.69

tempete (cif) 5.66 −0.22 −61.78
average 5.30 −0.18 −64.72

(7, 2)

container (qcif) 4.27 −0.13 −62.76
news (qcif) 5.34 −0.17 −59.49

coastguard (qcif) 3.40 −0.16 −62.37
bus (cif) 3.12 −0.17 −59.73

tempete (cif) 4.99 −0.20 −58.02
average 4.23 −0.17 −60.47

Table 3. Experimental results with Intra8x8 enabled and only Intra frames.

Final tests were devoted to evaluate the impact of the BP-based fast Intra prediction on the
complexity of the overall coding process. To this purpose, the performance of the proposed
fast intra algorithm was evaluated enabling Inter coding modes. In this case, the Intra cod-
ing is applied while coding Intra frames in order to find which is the best coding mode
for the current macroblock (see the rate-distortion optimization routine of H.264/AVC by
Joint Video Team (2004)). Table 4 reports the coding results for GOP of 100 frames with struc-
ture IP. . .P. It is possible to notice that the proposed method improves the results of the al-
gorithm by Pan et al. both in terms of rate-distortion performance (we obtained lower rate
increment and quality decrement for M = 6) and of complexity reduction (the proposed ap-
proach permits an average 25.88% reduction in the coding time with respect to the 23.57%
reduction of the algorithm by Pan et al. (2005)). For the sake of completeness, Table 5 reports
the results for GOP IP. . .P and Intra8x8 mode enabled. In this case the reduction of com-
putational time saving approximately varies from 6.25% to 7.4% with respect to the approach
with Intra8x8 disabled (see Table 4) since the proposed algorithm significantly mitigates the
computational load of the rate-distortion optimization routine (compare the results for M = 6
and T = 3).

6. Conclusions

The chapter has described the block-based spatial prediction strategy adopted within the
H.2634/AVC FRExt standard and stated the problem of enabling a low-complexity Intra cod-
ing on mobile devices. An overview of different techniques has been presented underlying
the characteristics of each solution and the required complexity. Since most of the proposed
solutions permit obtaining a varying computational savings which depends on the charac-
teristics of the coded signal, the focus is centered on finding a fast Intra coding strategy that
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(

M, T
)

Sequence ∆ Bits (%) ∆ PSNR ∆ Time (%)

(6, 3)

container (qcif) 1.19 −0.04 −25.00
news (qcif) 1.00 −0.05 −25.70

coastguard (qcif) 0.03 −0.01 −27.00
bus (cif) 0.23 −0.01 −26.88

tempete (cif) 0.44 −0.01 −23.82
average 0.58 −0.02 −25.68

(7, 2)

container (qcif) 0.74 −0.02 −18.67
news (qcif) 0.79 −0.06 −19.14

coastguard (qcif) 0.03 −0.01 −20.26
bus (cif) 0.11 −0.00 −23.16

tempete (cif) 0.38 −0.01 −22.20
average 0.41 −0.02 −20.69

Pan et al.

container (qcif) 1.80 −0.08 −20.78
news (qcif) 1.23 −0.07 −23.11

coastguard (qcif) 0.50 −0.02 −21.20
bus (cif) 0.32 −0.01 −26.05

tempete (cif) 0.81 −0.03 −26.72
average 0.93 −0.04 −23.57

Table 4. Experimental results with Intra8x8 disabled GOP IP. . .P.

permits controlling the amount of tested modes (and, as a consequence, the required amount
of calculation). The chapter presents a coding strategy that identifies a set of probable can-
didates calculating their best-mode probability. The probability estimates are obtained via
Belief Propagation strategy that relies on the statistical dependence existing between spatially
neighboring blocks. At the same time, the presented algorithm tries to identify the macroblock
partitioning mode that better suits the current macroblock according to the coding results of
the Intra4x4 mode. Experimental results compare different algorithms and show that the
Belief Propagation based strategy obtains a significant saving in terms of coding time (approx-
imately 62%) with a negligible decrement of the PSNR value and a small average increment
(less than 5.14%) in the bit rate. Moreover, the presented strategy permits an accurate con-
trol on the encoding complexity, which does not significantly vary depending on the input

(

M, T
)

Sequence ∆ Bits (%) ∆ PSNR ∆ Time (%)

(6, 3)

container (qcif) 1.25 −0.04 −31.59
news (qcif) 1.05 −0.07 −30.78

coastguard (qcif) 0.22 −0.01 −32.10
bus (cif) 0.25 −0.01 −33.70

container (qcif) 1.25 −0.04 −31.59
average 0.80 −0.03 −31.95

(7, 2)

container (qcif) 0.72 −0.04 −27.64
news (qcif) 0.97 −0.07 −27.32

coastguard (qcif) 0.15 −0.01 −27.95
bus (cif) 0.17 −0.01 −30.02

container (qcif) 0.72 −0.04 −27.64
average 0.55 −0.04 −28.11

Table 5. Experimental results with Intra8x8 enabled GOP IP. . .P.

video sequence and can be tuned according to the power supply level and to the available
computational resources.
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1. Introduction

Needless to say, the signal detection is one of the most important problems in the signal pro-
cessing area for a long time, and a great deal of investigations has been done up to the present
time. Most of the conventional approaches are based on the (binary) hypothesis-testing, and
treat the corrupting (additive) noise as a stationary random process because stationary process
is rather easy to handle and moreover its (invariant) statistical parameters can be readily calcu-
lated under the ergodic hypothesis. However, it will be no doubt that the actual random noise
such as environmental noise is considered to be nonstationary because its statistical properties
are not always unchanged but vary according to underlying physical circumstances.
Thus the problem of detecting signals in nonstationary random noise is the more important.
For such problem, several interesting methods have been proposed. For example, Haykin
(1996) and Haykin & Bhattacharya (1997) treat this problem and proposed a method named
the modular learning strategy which incorporates such three fundamental blocks as time-
frequency analysis, feature extraction and pattern classification. Also, Haykin & Thomson
(1998) proposed an adaptive detector based on learning for the detection of the target signal
buried in nonstationary background noises.
Philosophically different from their method, the authors have proposed an approach to the
signal detection in nonstationary random noise, a new method of stationarization of the ob-
servation noise. The key of the approach is to convert the nonstationary random noise to a
stationary one, and this procedure was named as stationarization of the observation data.
In Ijima, Okui & Ohsumi (2005) and Ijima, Ohsumi & Okui (2006), the signal detection is per-
formed by testing the stationarized observation data whether there is some non-stationarized
portion or not, based on the KM2O-Langevin equation (which is the AR model with time-
varying coefficients). If there exists such a portion in the data, the existence of a signal is
decided. Related to the signal detection, the stationarization approach is also used in Ijima,
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Ohsumi & Yamaguchi (2006) to estimate the time-delay of signals in nonstationary random
noise, incorporated with the Wigner distribution-based maximum likelihood estimation.
In this paper the signal detection problem is investigated using the stationarization approach
to nonstationary data. The model of the corrupting noise is given by an ARMA(p, q) model
with unknown time-varying coefficients. These coefficient parameters are estimated from the
(original) observation data by the Kalman filter.

2. Problem Statement

Let {y(k)} be the (scalar) observation data taken at sampling time instant tk (k = 1, 2, · · · ),
and assume that it can be expressed as

y(k) = s(k) + n(k) (k = 1, 2, · · · ), (1)

where s(·) is a signal to be detected, whose form is surely known, and is assumed to exist
in a brief interval if it exists; and n(·) is the nonstationary random noise. In consequence,
the observation data {y(k)} becomes nonstationary, but its trend time series is assumed to be
removed by the process

y(k) = ∆dY(k), (2)

where Y(k) is the original data received by the receiver; ∆Y(k) = Y(k) − Y(k − 1); and d
indicates the order.
In this paper the random noise n(k) is assumed to be given as the output of ARMA(p, q)
model with time-varying coefficient parameters:

n(k) +
p

∑
i=1

αi(k)n(k − i) =
q

∑
j=1

β j(k)w(k − j) + w(k), (3)

where w(·) is the white Gaussian noise with zero-mean and variance parameter σ2; {αi(·)}
and {β j(·)} are slowly and smoothly varying parameters to be specified.
Then our purpose is to propose a method of detecting the signal s(k) from the noisy observa-
tion data {y(k)}.
The procedure taken in this paper is as follows:
(i) First, based on the noise model (3), coefficient functions {αi(·)} and {β j(·)} are estimated
using Kalman filter from the observation data {y(k)}.
(ii) Using the estimates {α̂i(·)} and {β̂ j(·)} obtained in (i), the observation data y(k) is modi-
fied to become stationary. This procedure is called the stationarization of observation data.
(iii) Using the stationarized observation data ŷ(k), the signal detection is based on the model

ŷ(k) = ŝ(k) + w(k), (4)

where ŝ(k) is the modified signal. Equation (4) is familiar in the conventional signal detection
problem where the noise is stationary.

3. Stationarization of Observation Data

Recalling the assumption that the duration of the signal s(k) is short, neglect the signal in the
observation data and consider the signal-free case, i.e., y(k) = n(k), then the observation data
y(k) is expressed by (1) and (3) as follows:

y(k) = −
p

∑
i=1

αi(k)y(k − i) +
q

∑
j=1

β j(k)w(k − j) + w(k). (5)

In order to estimate the time-varying parameters {αi(k)} and {β j(k)} in (5), suppose that they
change from step k − 1 to k under random effects {e·(k)}. Define vectors

x(k) =



















−α1(k)
...

−αp(k)
β1(k)

...
βq(k)



















, v(k) =



















−e1(k)
...

−ep(k)
ep+1(k)

...
ep+q(k)



















. (6)

Then, {αi(k)} and {β j(k)} are subject to the dynamics,

x(k + 1) = x(k) + v(k), (7)

where {e·(k)} are assumed to be Gaussian with zero-means and variances τ2
1 , · · · , τ2

p+q.
Then, Eq. (5) is expressed formally as

y(k) = H(k)x(k) + w(k) (8)

in which H(k) is given by

H(k) = [ y(k − 1), · · · , y(k − p), w(k − 1), · · · , w(k − q)] . (9)

At this stage it should be noted that the matrix H(k) consists of the (unmeasurable) past noise
sequence {w(·)}. To remedy this inadequate situation, we resort to replace it by

Ĥ(k) = [ y(k − 1), · · · , y(k − p), νm(k − 1), · · · , νm(k − q)] (10)

in which {νm(·)} is the sequence modified from the innovation sequence ν(·) as

νm(�) = c(�) ν(�) (� = k − q, k − q + 1, · · ·, k − 1) , (11)

where
ν(�) = y(�)− Ĥ(�)x̂(�|�− 1) (12)

and

c(�) =
[

1 +
1

σ2 Ĥ(�)P(�|�− 1)ĤT(�)

]− 1
2

. (13)

Here, x̂(�|�− 1) and P(�|�− 1) are the one-step prediction and its covariance matrix computed
by Kalman filter for the past interval.
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(iii) Using the stationarized observation data ŷ(k), the signal detection is based on the model
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Then, {αi(k)} and {β j(k)} are subject to the dynamics,

x(k + 1) = x(k) + v(k), (7)

where {e·(k)} are assumed to be Gaussian with zero-means and variances τ2
1 , · · · , τ2

p+q.
Then, Eq. (5) is expressed formally as

y(k) = H(k)x(k) + w(k) (8)

in which H(k) is given by

H(k) = [ y(k − 1), · · · , y(k − p), w(k − 1), · · · , w(k − q)] . (9)

At this stage it should be noted that the matrix H(k) consists of the (unmeasurable) past noise
sequence {w(·)}. To remedy this inadequate situation, we resort to replace it by

Ĥ(k) = [ y(k − 1), · · · , y(k − p), νm(k − 1), · · · , νm(k − q)] (10)

in which {νm(·)} is the sequence modified from the innovation sequence ν(·) as

νm(�) = c(�) ν(�) (� = k − q, k − q + 1, · · ·, k − 1) , (11)

where
ν(�) = y(�)− Ĥ(�)x̂(�|�− 1) (12)

and
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2
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Here, x̂(�|�− 1) and P(�|�− 1) are the one-step prediction and its covariance matrix computed
by Kalman filter for the past interval.
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It is a simple exercise to show that the statistical properties of νm(·) is the same as that of w(·),
i.e., E{νm(k)} = 0 and E{|νm(k)|2} = σ2 (for proof, see Appendix). Then, instead of (8) we
have the expression,

y(k) = Ĥ(k)x(k) + w(k) . (14)

The procedure for computing Ĥ(k) is stated as follows:
(i) Preliminaries: Assume for the past k(< 0) that {νm(−1), νm(−2), · · ·, νm(−q)} are set appro-
priately (may be set all zero), and preassign x̂(0| − 1), P̂(0| − 1) and Ĥ(0) as initial values.
Then, at time k (k = 0, 1, 2, · · · )
(ii) Computation of ν(�) and c(�): Compute the innovation ν(�) and coefficient c(�) by (12) and
(13) using Ĥ(�) = [ y(�− 1), · · ·, y(�− p), νm(�− 1), · · ·, νm(�− q)].
(iii) Computation of νm(�): Compute νm(�) by (11) using ν(�) and c(�) obtained in the previous
step.
Repeat Steps (ii) and (iii) for � = k − q, k − q + 1, · · ·, k − 1 to obtain Ĥ(k). In computing (12)
and (13), x̂(�|�− 1) and P(�|�− 1) are computed by the Kalman filter (e.g., Jazwinski, 1970):

x̂(�+ 1|�) = x̂(�|�) (15)

x̂(�|�) = x̂(�|�− 1) + K(�)ν(�), (16)

K(�) =
1

Ĥ(�)P(�|�− 1)ĤT(�) + σ2
P(�|�− 1)ĤT(�) (17)

P(�+ 1|�) = P(�|�) + Q (18)

P(�|�) = P(�|�− 1)− K(�)Ĥ(�)P(�|�− 1), (19)

where Q = diag {τ2
1 , · · · , τ2

p+q}.
Thus, the estimates of the coefficient parameters {αi(k)} and {β j(k)} are obtained by the
Kalman filter constructed for (7) and (14) (whose form is the same as (15)-(19) replacing �
by the present k). Under the basic assumption that the coefficient parameters vary slowly and
smoothly, they can be treated like constants in an interval Ik around the current time k. Write
them as α̂ik and β̂ jk in Ik. Replacing the past {w(k − j)} in (5) by the statistically equivalent
sequence {νm(k − j)}, define the sequence ŷ(k) by

ŷ(k) := y(k) +
p

∑
i=1

α̂iky(k − i)−
q

∑
j=1

β̂ jkνm(k − j). (20)

Then, we have the following adequate approximation for (5),

ŷ(k) = w(k) (21)

which implies that the sequence {ŷ(k)} is stationary because w(k) is the stationary white
noise.

4. Signal Detection

After obtained the estimates of coefficient parameters, the observation process (14) may be
written using estimates as

y(k) = Ĥ(k)x̂(k|k) + w(k) (22)

or

y(k) +
p

∑
i=1

α̂iky(k − i) =
q

∑
j=1

β̂ jkνm(k − j) + w(k). (23)

Now, let us revive the signal s(k) in the observation data. To do this, replace {y(k)} formally
by {y(k)− s(k)} in (23) to obtain

y(k) +
p

∑
i=1

α̂iky(k − i) =

[

s(k) +
p

∑
i=1

α̂iks(k − i)

]

+
q

∑
j=1

β̂ jkνm(k − j) + w(k) (24)

or
ŷ(k) = ŝ(k) + w(k), (4)bis

where ŷ(k) has the same form as (20) and

ŝ(k) = s(k) +
p

∑
i=1

α̂iks(k − i). (25)

Note that (4)bis is familiar to us as the mathematical model for the detection problem of signals
in stationary noise (e.g., Van Trees, 1968).
Now, consider the binary hypotheses: H1: ŷ(k) = ŝ(k) +w(k), and H0: ŷ(k) = w(k), and let Ŷk
be the stationarized observation data taken up to k, Ŷk = {ŷ(�), � = 1, 2, · · · , k}. Since the ad-
ditive noise w(k) is white Gaussian sequence with zero-mean and variance σ2, the likelihood-
ratio function Λ(k) = p{Ŷk|H1}/Ŷk|H0} is evaluated as follows:

Λ(k) =

k

∏
�=1

(2π)−
1
2 exp

{

−{ŷ(�)− ŝ(�)}2

2σ2

}

k

∏
�=1

(2π)−
1
2 exp

{

− ŷ2(�)

2σ2

}

. (26)

We use rather its logarithmic form,

L(k) := ln Λ(k)

=
1

σ2

k

∑
�=1

ŝ(�)ŷ(�)− 1
2σ2

k

∑
�=1

ŝ2(�) (27)

as the signal detector.

5. Simulation Studies

In this section, we provide a typical set of several simulation results to demonstrate the pro-
posed method.

(i) Experiment 1.
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ŷ(k) := y(k) +
p

∑
i=1

α̂iky(k − i)−
q

∑
j=1

β̂ jkνm(k − j). (20)

Then, we have the following adequate approximation for (5),
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The top of Fig.1 depicts a sample path of the observation data {Y(k)} generated by calculating
the output of the ARMA(4, 1)-model:

n(k) = −
4

∑
i=1

αi(k)n(k − i) + β(k)w(k − 1) + w(k) .

Time-varying coefficients {αi(k)} and β(k) are set as

α1(k) = −1.24 sin(0.002k − 0.95), α2(k) = 0.38 − 2 cos(0.004k − 1.89)

α3(k) = α1(k), α4(k) = 1, β(k) = 1.5.

The bottom of Fig.1 shows a signal embedded in the observation data around k = 300 given
by

s(�) = 12 e−2.78�2
sin(1.26�),

where � = k − 300. Figure 2 depicts trend-removed data and stationarized data ŷ(k). The
trend was removed by setting d = 1. For the Kalman filter (15)∼(19), the parameters are set
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Fig. 1. A sample path of the observation data Y(k) (top) and the embedded signal s(k) (bot-
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The top of Fig.1 depicts a sample path of the observation data {Y(k)} generated by calculating
the output of the ARMA(4, 1)-model:

n(k) = −
4

∑
i=1

αi(k)n(k − i) + β(k)w(k − 1) + w(k) .

Time-varying coefficients {αi(k)} and β(k) are set as

α1(k) = −1.24 sin(0.002k − 0.95), α2(k) = 0.38 − 2 cos(0.004k − 1.89)

α3(k) = α1(k), α4(k) = 1, β(k) = 1.5.

The bottom of Fig.1 shows a signal embedded in the observation data around k = 300 given
by

s(�) = 12 e−2.78�2
sin(1.26�),

where � = k − 300. Figure 2 depicts trend-removed data and stationarized data ŷ(k). The
trend was removed by setting d = 1. For the Kalman filter (15)∼(19), the parameters are set
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Fig. 3. Log-likelihood function L(k).

as Q = diag {0.05, 0.05, 0.05, 0.05, 0.05} and σ2 = 40. It should be noted that from Fig. 2 the
observation data is well stationarized and that even in this figure the signal emerges from the
background noise.
Figure 3 shows the result of signal detection by the current log-likelihood ratio function L(k).
Clearly, it exhibits a salient peak around the true time instant k = 300 and this shows the
existence of the signal.

(ii) Experiment 2.

Efficacy of the signal detector proposed in this paper is also tested for the pulse signal.
Figure 4 depicts observation data and embedded three pulses. Random noise n(k) is gener-
ated by the same manner of previous simulation with same coefficients αi(k) and β(k). As a
signals s(k), a train of pulses with same magnitude is considered:

s(k) =







20 for Di ≤ k < Di + 5 (i = 1, 2, 3)

0 otherwise,

where D1 = 200, D2 = 500, D3 = 800.

Figure 5 depicts trend-removed data and stationarized data ŷ(k). The trend was also removed
by setting d = 1. The parameters of Kalman filter are set as the same of previous experiment.
Figure 6 shows the result of signal detection. Clearly, log-likelihood ratio function L(k)
has large value around each time when each pulse exists. Thus the signal detection is well
succeeded.
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Fig. 4. A sample path of the observation data Y(k) (top) and the pulse signal s(k) (bottom).



Detection	of	Signals	in	Nonstationary	Noise	via	Kalman	Filter-Based	Stationarization	Approach 271

0 100 200 300 400 500 600 700 800 900 1000
-1000

-500

0

500

1000

1500

k�step

L
o
g
-l
ik
e
li
h
o
o
d
�r
a
ti
o
�L
(k
)

Fig. 3. Log-likelihood function L(k).

as Q = diag {0.05, 0.05, 0.05, 0.05, 0.05} and σ2 = 40. It should be noted that from Fig. 2 the
observation data is well stationarized and that even in this figure the signal emerges from the
background noise.
Figure 3 shows the result of signal detection by the current log-likelihood ratio function L(k).
Clearly, it exhibits a salient peak around the true time instant k = 300 and this shows the
existence of the signal.

(ii) Experiment 2.

Efficacy of the signal detector proposed in this paper is also tested for the pulse signal.
Figure 4 depicts observation data and embedded three pulses. Random noise n(k) is gener-
ated by the same manner of previous simulation with same coefficients αi(k) and β(k). As a
signals s(k), a train of pulses with same magnitude is considered:
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by setting d = 1. The parameters of Kalman filter are set as the same of previous experiment.
Figure 6 shows the result of signal detection. Clearly, log-likelihood ratio function L(k)
has large value around each time when each pulse exists. Thus the signal detection is well
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Fig. 5. The trend-removed data (top) and the stationarized observation data ŷ(k) (bottom).
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Fig. 6. Log-likelihood function L(k).

6. Conclusion

The efficacy of the proposed signal detection method based on the stationarization of
nonstationary observation data has been confirmed by simulation studies. The key to use the
Kalman filter to estimate the coefficient parameters of the ARMA noise model is laid on the
replacement of the unobservable past noise sequence by the equivalent (modified) innovation
sequence which is observation data-measurable. The stationarization of a nonstationary data
as introduced in this paper will have potential ability to treat the nonstationary noise or
observation data in the signal processing.

Appendix. Proof of Statistical Equivalence Between {w(k)} and {νm(k)}
The mean of the modified innovation sequence νm(k) is clearly zero. Indeed,

E{νm(k)} = c(k)E{ν(k)}

= c(k)E{y(k)− Ĥ(k)x̂(k|k − 1)}.
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6. Conclusion

The efficacy of the proposed signal detection method based on the stationarization of
nonstationary observation data has been confirmed by simulation studies. The key to use the
Kalman filter to estimate the coefficient parameters of the ARMA noise model is laid on the
replacement of the unobservable past noise sequence by the equivalent (modified) innovation
sequence which is observation data-measurable. The stationarization of a nonstationary data
as introduced in this paper will have potential ability to treat the nonstationary noise or
observation data in the signal processing.

Appendix. Proof of Statistical Equivalence Between {w(k)} and {νm(k)}
The mean of the modified innovation sequence νm(k) is clearly zero. Indeed,

E{νm(k)} = c(k)E{ν(k)}

= c(k)E{y(k)− Ĥ(k)x̂(k|k − 1)}.
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Here, recalling that y(k) is given by the form (14), we have

= c(k)[Ĥ(k)E{x(k)− x̂(k|k − 1)}+ E{w(k)}]

= c(k)Ĥ(k)E{E{x(k)− x̂(k|k − 1)|Yk−1}}

= c(k)Ĥ(k)E{E{x(k)|Yk−1} − x̂(k|k − 1)}

= 0,

where Yk−1 = {y(�), 0 ≤ � ≤ k − 1}.
Next, the variance of νm(k) is evaluated as follows:

E{ν2
m(k)} = c2(k)E{ν2(k)}

= c2(k)E{[Ĥ(k)[x(k)− x̂(k|k − 1)] + w(k)]2}

= c2(k)[Ĥ(k)E{[x(k)− x̂(k|k − 1)][x(k)− x̂(k|k − 1)]T}ĤT(k) + E{w2(k)}]

= c2(k)[Ĥ(k)P(k|k − 1)ĤT(k) + σ2].

If we select c(k) as (13), the variance of νm(k)-sequence becomes σ2 which is just the variance
of {w(k)}.
(Q.E.D.)
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This chapter presents a new framework to design different types of IIR filters based on the
general technique for maximally flat allpole filter design. The resulting allpole filters have
some desired characteristics, i.e., desired degree of flatness and group delay, and the desired
phase response at any prescribed set of frequency points. Those characteristics are important
to define the corresponding IIR filters. The design includes both real and complex cases.
In that way we develop a direct design method for linear-phase Butterworth-like filters, using
the same specification as in traditional analog-based IIR filter design. The design includes the
design of lowpass filters as well as highpass filters. The designed filters can be either real or
complex. The design of liner-phase two-band filter banks is also discussed.
Additionally, we discussed the designs of some special filters such as Butterworth-like filters
with improved group delay, complex wavelet filters, and fractional Hilbert transformers.
Finally, we addressed a new design of IIR filters based on three allpass filters. As a result we
propose a new design of lowpass filters with a desired characteristic based on the complex
allpole filters.
Closed form equations for the computation of the filter coefficients are provided. All design
techniques are illustrated with examples.

1. Introduction

The design of allpole filters has been attractive in the last years due to some promising appli-
cations, like the design of allpass filters (Chan et al., 2005; Lang, 1998; Pun & Chan, 2003; Se-
lesnick, 1999; Zhang & Iwakura, 1999), the design of orthogonal and biorthogonal IIR wavelet
filters (Selesnick, 1998; Zhang et al., 2001; 2000; 2006), the design of complex wavelets (Fernan-
des et al., 2003), the design of half band filters (Zhang & Amaratunga, 2002), the filter bank
design (Kim & Yoo, 2003; Lee & Yang, 2004; Saramaki & Bregovic, 2002), the fractional delay
filter design (Laakso et al., 1996), the fractional Hilbert transform (Pei & Wang, 2002), notch
filters (Joshi & Roy, 1999; Pei & Tseng, 1997; Tseng & Pei, 1998), among others. The majority
of the methods use some approximation of the desired phase in the least square sense and
minimax sense.
The allpole filters with maximally flat phase response characteristic have been specially attrac-
tive due to promising applications, like the design of IIR filters (Selesnick, 1999), the design

14
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of orthogonal and biorthogonal IIR wavelet filters (Selesnick, 1998; Zhang et al., 2001; 2000;
2006), the design of complex wavelets (Fernandes et al., 2003), the design of half band filters
(Zhang & Amaratunga, 2002), the fractional delay filter design (Laakso et al., 1996) and the
fractional Hilbert transform design (Pei & Wang, 2002).
This chapter presents a new design of real and complex allpole filters with the given phase,
group delay, and degree of flatness, at any desired set of frequency points. The main moti-
vation of this work is to get some new promising cases related with the applications of max-
imally flat allpole filters. In that way, using the proposed extended allpole filter design, we
introduced some new special cases.
The rest of the chapter is organized as follows. Section 2 establishes the general equations for
maximally flat real and complex allpole filters. The discussion of the proposed design is given
in Section 3 for both, real and complex cases. Different special cases of the general allpole
filter design is discussed in Section 4. Finally, Section 5 presents some applications of the
proposed allpole filter design, i.e., linear-phase Butterworth-like filter, Butterworth-like filters
with improved group delay, complex wavelet filters, fractional Hilbert transformers, and new
IIR filters based on three allpass filters.

2. Equations for Maximally Flat Allpole Filter

We derive here equations for real and complex allpole filters both of order N, delay τ, and
degree of flatness K, at a given set of frequency points.
We consider that an allpole filter of order N is given by,

D(z) =
α

F(z)
, (1)

where α is a complex constant with unit magnitude, z is the complex variable, and F(z) is a
polynomial of degree N,

F(z) = 1 +
N

∑
n=1

fnz−n. (2)

In general, the filter coefficients fn , n = 1, . . . , N, are complex, i.e., fn = fRn + j fIn where fRn

and fIn are the real and imaginary parts of fn, respectively. Obviously, if fIn = 0, we obtain
real coefficients.
The phase responses of D(z) and F(z) are related by

φD(ω) = φα − φF(ω), (3)

where φα is the phase of α, and φD(ω) and φF(ω) are the phases of D(z) and F(z), respectively.
The corresponding group delay is the negative derivative of the phase, as shown in (4).

G(ω) = −dφD(ω)

dω
=

dφF(ω)

dω
. (4)

The conditions for the maximally flat group delay at the desired frequency point ω are

G(ω) = τ (5a)

G(p)(ω) = 0, p = 1, . . . , K, (5b)

where τ is the desired group delay, K is the degree of flatness, and G(p)(ω) indicates the pth
derivative of G(ω).

By performing the Fourier transform, equation (2) can be written as

F(e jω) =
[

F(e jω)F∗(e jω)
]1/2

e jφF(ω), (6)

where F∗(e jω), is the complex conjugate of F(e jω).
Using (4) and (6) the corresponding group delay G(ω) can be expressed as

G(ω) =
dφF(ω)

dω
= ℑ

{
F(1)(e jω)

F(e jω)

}
, (7)

where F(1)(e jω) is the first derivative of F(e jω) and ℑ{⋅} indicates the imaginary part of {⋅}.
Combining (5) and (7), we arrive at

ℑ
{

F(1)(e jω)

F(e jω)

}
= τ, (8a)

ℑ
{

dk

dωk

{
F(1)(e jω)

F(e jω)

}}
= 0, l = 1, . . . , K. (8b)

The Fourier transform (6) can be rewritten as,

F(e jω) =
N

∑
n=0

(
fRn cos(ωn) + fIn sin(ωn)

)
+ j

N

∑
n=1

(
fIn cos(ωn)− fRn sin(ωn)

)
. (9)

Substituting (9) into (8), we find that that the conditions given in (8) result in the following set
of linear equations:

N

∑
n=1

(n + τ)k cos(ωn + φα − φD(ω)) fRn

+
N

∑
n=1

(n + τ)k sin(ωn + φα − φD(ω)) fIn = −τk cos(φD(ω)− φα), k odd, (10a)

N

∑
n=1

(n + τ)k sin(ωn + φα − φD(ω)) fRn

−
N

∑
n=1

(n + τ)k cos(ωn + φα − φD(ω)) fIn = τk sin(φD(ω)− φα), k even. (10b)

Equations (10a) and (10b) are the general set of equations, which includes desired phases,
group delays and degrees of flatness at given frequency points for both real and complex
cases.
Notice that for each frequency point ωl, we have Kl + 2 equations (see (10)) and 2N unknown
coefficients. A consistent set of linear equations (10) is obtained if the following condition is
satisfied,

N =

(
K1

2
+ 1

)
+

(
K2

2
+ 1

)
+ ⋅ ⋅ ⋅+

(
KL

2
+ 1

)
, (11)

where L is the number of frequency points.
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K2

2
+ 1

)
+ ⋅ ⋅ ⋅+

(
KL

2
+ 1

)
, (11)

where L is the number of frequency points.
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3. Description and discussion of the proposed allpole filter design

We describe the design procedure based on general equations for the allpole filter proposed
in Section 2
The parameters of the design are the constant α, the number L, the corresponding frequency
values ωl, l = 1, . . . , L, phase values φD(ωl), l = 1, . . . , L, group delays τ(ωl), l = 1, . . . , L,
and degrees of flatness Kl, l = 1, . . . , L.
For the real case, i.e., fIn = 0 and α is a real constant, the relations (10a) and (10b) become

N

∑
n=1

(n + τ)k cos(ωn − φD(ω)) fn = −τk cos(φD(ω)), k odd, (12a)

N

∑
n=1

(n + τ)k sin(ωn − φD(ω)) fn = τk sin(φD(ω)), k even. (12b)

Similarly, the condition (11), for the real case becomes

N = (K1 + 2) + (K2 + 2) + ⋅ ⋅ ⋅+ (KL + 2) . (13)

The algorithm is described in the following steps:

Step 1. Compute the order of the allpole filter N, using (13) for the real case, and (11) for the
complex case.

Step 2. Substitute the frequencies ωl , l = 1, . . . , L, group delays τ(ωl) and phases φD(ωl) into
(12), for the real case, or (10), for the complex case.

Step 3. Calculate the filter coefficients fn solving the resulting set of equations.

The following example illustrates the design of real allpole filter D(z), (α = 1) using three
desired frequency points, L = 3.
Example 1. The design parameters are shown in Table 1.

l ωl φD(ωl) τ(ωl) Kl

1 π/5 π/3 3 5
2 π/2 π/4 3 7
3 4π/5 π/5 4 4

Table 1. Design parameters in Example 1, using L = 3 and α = 1.

Step 1. From (13), the estimated value of N is 22.

Step 2. We substitute the frequencies ωl , group delays τ(ωl) and phases φD(ωl), l = 1, . . . , 3
into (12).

Step 3. Solving the resulting linear equations, we get the filter coefficients fn.

Figure 1a shows the corresponding group delay, while the phase response is presented in
Fig. 1b. The desired phases at ω = π/5, ω = π/2 and ω = 4π/5 are also indicated in Fig. 1b.
The following example illustrates the complex case.
Example 2. We design the complex allpole filter with characteristics given in Table 2.

Step 1. The order N of the allpole filter is 13 (see (11)).
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Fig. 1. Phase response and group delay of the designed real allpole filter in Example 1.

l ωl φD(ωl) τ(ωl) Kl

1 π/3 π/6 1/2 8
2 4π/5 −π/20 1/2 6
3 8π/5 −3π/20 1/2 6

Table 2. Design parameters in Example 2. The value L is 3 and α = 1.

Step 2. Using (10a) and (10b), we obtain the set of linear equations with 26 unknowns coeffi-
cients; 13 for fRn and 13 for fIn.

Step 3. Solving the resulting set of equations, we get the coefficients of the complex allpole
filter.

Figure 2 illustrates the phase response and group delay of the designed allpole filter.
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Fig. 2. Group delay and phase response of the complex allpole filter D(z) in Example 2.
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3. Description and discussion of the proposed allpole filter design

We describe the design procedure based on general equations for the allpole filter proposed
in Section 2
The parameters of the design are the constant α, the number L, the corresponding frequency
values ωl, l = 1, . . . , L, phase values φD(ωl), l = 1, . . . , L, group delays τ(ωl), l = 1, . . . , L,
and degrees of flatness Kl, l = 1, . . . , L.
For the real case, i.e., fIn = 0 and α is a real constant, the relations (10a) and (10b) become

N

∑
n=1

(n + τ)k cos(ωn − φD(ω)) fn = −τk cos(φD(ω)), k odd, (12a)

N

∑
n=1

(n + τ)k sin(ωn − φD(ω)) fn = τk sin(φD(ω)), k even. (12b)

Similarly, the condition (11), for the real case becomes

N = (K1 + 2) + (K2 + 2) + ⋅ ⋅ ⋅+ (KL + 2) . (13)

The algorithm is described in the following steps:

Step 1. Compute the order of the allpole filter N, using (13) for the real case, and (11) for the
complex case.

Step 2. Substitute the frequencies ωl , l = 1, . . . , L, group delays τ(ωl) and phases φD(ωl) into
(12), for the real case, or (10), for the complex case.

Step 3. Calculate the filter coefficients fn solving the resulting set of equations.

The following example illustrates the design of real allpole filter D(z), (α = 1) using three
desired frequency points, L = 3.
Example 1. The design parameters are shown in Table 1.

l ωl φD(ωl) τ(ωl) Kl

1 π/5 π/3 3 5
2 π/2 π/4 3 7
3 4π/5 π/5 4 4

Table 1. Design parameters in Example 1, using L = 3 and α = 1.

Step 1. From (13), the estimated value of N is 22.

Step 2. We substitute the frequencies ωl , group delays τ(ωl) and phases φD(ωl), l = 1, . . . , 3
into (12).

Step 3. Solving the resulting linear equations, we get the filter coefficients fn.

Figure 1a shows the corresponding group delay, while the phase response is presented in
Fig. 1b. The desired phases at ω = π/5, ω = π/2 and ω = 4π/5 are also indicated in Fig. 1b.
The following example illustrates the complex case.
Example 2. We design the complex allpole filter with characteristics given in Table 2.

Step 1. The order N of the allpole filter is 13 (see (11)).
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Fig. 1. Phase response and group delay of the designed real allpole filter in Example 1.

l ωl φD(ωl) τ(ωl) Kl

1 π/3 π/6 1/2 8
2 4π/5 −π/20 1/2 6
3 8π/5 −3π/20 1/2 6

Table 2. Design parameters in Example 2. The value L is 3 and α = 1.

Step 2. Using (10a) and (10b), we obtain the set of linear equations with 26 unknowns coeffi-
cients; 13 for fRn and 13 for fIn.

Step 3. Solving the resulting set of equations, we get the coefficients of the complex allpole
filter.

Figure 2 illustrates the phase response and group delay of the designed allpole filter.
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Fig. 2. Group delay and phase response of the complex allpole filter D(z) in Example 2.
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3.1 Relationships between allpole filters and allpass filters
We consider the relations between allpole filters of order N and allpass filters.
An allpass filter A(z) is related with an allpole filter as follows (Selesnick, 1999),

A(z) = z−N D(z)

D̃(z)
= z−N αF̃(z)

α∗F(z)
, (14)

where D̃(z) is the paraconjugate of D(z), that is, it is generated by conjugating the coefficients
of D(z) and by replacing z by z−1.
The phase φA(ω) of A(z) can be expressed as

φA(ω) = −ωN + 2φD(ω), (15)

where the desired phase φD(ω) is given by

φD(ω) =
φA(ω) + ωN

2
. (16)

From (15), the group delay of the complex allpass filter τA(ω) is given by

τA(ω) = N + 2τ(ω), (17)

where τ(ω) is the group delay of D(z).
Using (17), it follows

τ(ω) =
τA(ω)− N

2
. (18)

It is well known that the structures based on allpass filters exhibit a low sensitivity to the filter
quantization and a low noise level (Mitra, 2005). Therefore, the relationship (14), between all-
pass and allpole filters, gives the possibility to use efficient allpass structures in the proposed
design.

4. Promising special cases

The proposed allpole filters have desired phases, group delays and degrees of flatness at a
specified set of frequency points. In this section we introduce some new special cases of
the proposed design (10), which are used for the design of complex allpole filters, complex
wavelet filters, and linear-phase IIR filters.

4.1 First order allpole filters
Using (12), the filter coefficient fR1 is computed as follows:

fR1 =
sin(φD1

)

sin(ω1 − φD1
)

, (19)

where φD1
is the desired phase at ω = ω1.

To ensure the stability of the allpole filter, we have

tan(2φD1
) >

1 − cos(2ω1)

sin(2ω1)
. (20)

Similarly for the complex case, the filter coefficient f1 is

f1 =
sin(φα − φD2

)e j(ω1+φα−φD1
) − sin(φα − φD1

)e j(ω2+φα−φD2
)

sin(ω1 − ω2 + φD2
− φD1

)
, (21)

where φD1
and φD2

are the phases of the allpole filter at the desired frequency points ω = ω1

and ω = ω2, respectively. The stability of the allpole filter is satisfied if the following equation
holds

tan(φD2
− φα) <

cos(ω1 − ω2 + φα − φD1
)− ∣ cos(φD1

− φα)∣
sin(ω1 − ω2 + φα − φD1

) + sin(φD1
− φα)

. (22)

4.2 Second order allpole filter
We consider the following two cases.
Case 1. For ω = ω1, we specify the desired phase φD1

and group delay τ. Substituting these
conditions into the general equations (12), the resulting filter coefficients are

fR1 = − (τ + 1) sin(2ω1)− sin(2ω1 − 2φD1
)

(τ + 1) sin ω1 − sin(ω1 − φD1
) cos(2ω1 − φD1

)
, (23)

fR2 =
τ sin ω1 + sin(φD1

) cos(ω1 − φD1
)

(τ + 1) sin ω1 − sin(ω1 − φD1
) cos(2ω1 − φD1

)
. (24)

Additionally, the condition for the stability of the allpole filter is

τ > −1 +
∣ sin(2ω1 − 2φD1

)∣
2 sin ω1

. (25)

Case 2. For two phases φD1
and φD2

at the frequencies ω1 and ω2, the filter coefficients are

fR1 =
sin(2ω1 − φD1

) sin(φD2
)− sin(φD1

) sin(2ω2 − φD2
)

sin(ω2 − φD2
) sin(2ω1 − φD1

)− sin(ω1 − φD1
) sin(2ω2 − φD2

)
, (26)

fR2 =
sin(φD1

) sin(ω2 − φD2
)− sin(ω1 − φD1

) sin(φD2
)

sin(ω2 − φD2
) sin(2ω1 − φD1

)− sin(ω1 − φD1
) sin(2ω2 − φD2

)
. (27)

Furthermore, the stability of the allpole filter is guaranteed if the equation

tan(ω1 − φD1
) < − sin ω1 sin ω2 tan(ω2 − φD2

)

cos ω1 cos ω2 − 1 + ∣ cos ω1 − cos ω2∣
(28)

is satisfied.

4.3 Complex Thiran allpole filters
We generalize the result proposed by Thiran (Thiran, 1971), for the design of real allpole filters
that are maximally flat at ω = 0, to include both the real and complex cases. The required
design specifications are the order of the allpole filter N, group delay τ(ω) at ω = 0, τ0,
degree of flatness K, and the phase value φα.
Consequently, the allpole filter must satisfy:

𝒜.1 The degree of flatness at ω = 0 is K, where K can be either 2N − 2 or 2N − 3.

𝒜.2 The phase value φD(ω) is equal to zero at ω = 0.
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3.1 Relationships between allpole filters and allpass filters
We consider the relations between allpole filters of order N and allpass filters.
An allpass filter A(z) is related with an allpole filter as follows (Selesnick, 1999),

A(z) = z−N D(z)

D̃(z)
= z−N αF̃(z)

α∗F(z)
, (14)

where D̃(z) is the paraconjugate of D(z), that is, it is generated by conjugating the coefficients
of D(z) and by replacing z by z−1.
The phase φA(ω) of A(z) can be expressed as

φA(ω) = −ωN + 2φD(ω), (15)

where the desired phase φD(ω) is given by

φD(ω) =
φA(ω) + ωN

2
. (16)

From (15), the group delay of the complex allpass filter τA(ω) is given by

τA(ω) = N + 2τ(ω), (17)

where τ(ω) is the group delay of D(z).
Using (17), it follows

τ(ω) =
τA(ω)− N

2
. (18)

It is well known that the structures based on allpass filters exhibit a low sensitivity to the filter
quantization and a low noise level (Mitra, 2005). Therefore, the relationship (14), between all-
pass and allpole filters, gives the possibility to use efficient allpass structures in the proposed
design.

4. Promising special cases

The proposed allpole filters have desired phases, group delays and degrees of flatness at a
specified set of frequency points. In this section we introduce some new special cases of
the proposed design (10), which are used for the design of complex allpole filters, complex
wavelet filters, and linear-phase IIR filters.

4.1 First order allpole filters
Using (12), the filter coefficient fR1 is computed as follows:

fR1 =
sin(φD1

)

sin(ω1 − φD1
)

, (19)

where φD1
is the desired phase at ω = ω1.

To ensure the stability of the allpole filter, we have

tan(2φD1
) >

1 − cos(2ω1)

sin(2ω1)
. (20)

Similarly for the complex case, the filter coefficient f1 is

f1 =
sin(φα − φD2

)e j(ω1+φα−φD1
) − sin(φα − φD1

)e j(ω2+φα−φD2
)

sin(ω1 − ω2 + φD2
− φD1

)
, (21)

where φD1
and φD2

are the phases of the allpole filter at the desired frequency points ω = ω1

and ω = ω2, respectively. The stability of the allpole filter is satisfied if the following equation
holds

tan(φD2
− φα) <

cos(ω1 − ω2 + φα − φD1
)− ∣ cos(φD1

− φα)∣
sin(ω1 − ω2 + φα − φD1

) + sin(φD1
− φα)

. (22)

4.2 Second order allpole filter
We consider the following two cases.
Case 1. For ω = ω1, we specify the desired phase φD1

and group delay τ. Substituting these
conditions into the general equations (12), the resulting filter coefficients are

fR1 = − (τ + 1) sin(2ω1)− sin(2ω1 − 2φD1
)

(τ + 1) sin ω1 − sin(ω1 − φD1
) cos(2ω1 − φD1

)
, (23)

fR2 =
τ sin ω1 + sin(φD1

) cos(ω1 − φD1
)

(τ + 1) sin ω1 − sin(ω1 − φD1
) cos(2ω1 − φD1

)
. (24)

Additionally, the condition for the stability of the allpole filter is

τ > −1 +
∣ sin(2ω1 − 2φD1

)∣
2 sin ω1

. (25)

Case 2. For two phases φD1
and φD2

at the frequencies ω1 and ω2, the filter coefficients are

fR1 =
sin(2ω1 − φD1

) sin(φD2
)− sin(φD1

) sin(2ω2 − φD2
)

sin(ω2 − φD2
) sin(2ω1 − φD1

)− sin(ω1 − φD1
) sin(2ω2 − φD2

)
, (26)

fR2 =
sin(φD1

) sin(ω2 − φD2
)− sin(ω1 − φD1

) sin(φD2
)

sin(ω2 − φD2
) sin(2ω1 − φD1

)− sin(ω1 − φD1
) sin(2ω2 − φD2

)
. (27)

Furthermore, the stability of the allpole filter is guaranteed if the equation

tan(ω1 − φD1
) < − sin ω1 sin ω2 tan(ω2 − φD2

)

cos ω1 cos ω2 − 1 + ∣ cos ω1 − cos ω2∣
(28)

is satisfied.

4.3 Complex Thiran allpole filters
We generalize the result proposed by Thiran (Thiran, 1971), for the design of real allpole filters
that are maximally flat at ω = 0, to include both the real and complex cases. The required
design specifications are the order of the allpole filter N, group delay τ(ω) at ω = 0, τ0,
degree of flatness K, and the phase value φα.
Consequently, the allpole filter must satisfy:

𝒜.1 The degree of flatness at ω = 0 is K, where K can be either 2N − 2 or 2N − 3.

𝒜.2 The phase value φD(ω) is equal to zero at ω = 0.
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4.3.1 Degree of flatness K = 2N − 2
Substituting conditions 𝒜.1 and 𝒜.2 into the set of equations (10), we compute the complex
coefficients as follows

fn = (−1)n

(
N

n

)
2(2τ0 + 1)n−1

(2τ0 + N + 1)n

(
τ0 + ne j(φα−π/2) sin φα

)
, (29)

where n = 1, . . . , N, the binomial coefficient is given by

(
N

n

)
=

N!

n!(N − n)!
, (30)

and the Pochhammer symbol (x)m indicates the rising factorial of x, which is defined as (An-
drews, 1998),

(x)m =

{
(x)(x + 1)(x + 2) ⋅ ⋅ ⋅ (x + m − 1) m > 0,

1 m = 0.
(31)

The expression in (29) is the extension of the result proposed in (Thiran, 1971), which includes
both real and complex cases. If φα is 0 or π, the imaginary coefficients are zero, and the result
is a real allpole filter, consistent with (Thiran, 1971). For φα = ±π/2, the filter is a real allpole
filter (this case is not included in (Thiran, 1971)). For all other phase values, the imaginary
coefficients are strictly non-zero, i.e., the filter is complex.

4.3.2 Degree of flatness K = 2N − 3
In this case, in order to get a degree of flatness K = 2N − 3, we set fIN = 0. Consequently, the
filter coefficients are

fn = (−1)n

(
N

n

)
2(2τ0 + 1)n−1

(2τ0 + N + 1)n

(
τ0 + n + n

(n − N)e jφα cos φα

2τ0 + N

)
, (32)

where n = 0, . . . , N.
In contrast with (32), to obtain a different solution, we now set fRN = 0. Therefore, we have

fn = (−1)n

(
N

n

)
2(2τ0 + 1)n−1

(2τ0 + N + 1)n

(
τ0 + n − ne jφα

N cos φα

(
τ0 + n +

(N − n)(τ0 + N cos2 φα)

2τ0 + N

))
,

(33)
where n = 0, . . . , N.
We illustrate the design with one example.
Example 3. The desired phase φα, and the group delay τ0 at ω = 0, are −π/6, and 7/3,
respectively. The order N of the filter is 5.
We compute the corresponding filter coefficients using (29), (32), and (33). The resulting group
delays of D(z) are shown in Fig. 3a, while the phase responses of the designed filters are
shown in Fig. 3b.

4.4 Complex allpole filter with flatness at ω = 0 and ω = π

Now, we present the design of complex allpole filters of order N (any positive integer) with
flatness at ω = 0 and ω = π.
The design conditions are: (More detailed explanation is given in Section 5.1.)

ℬ.1 The phase response of D(z) is flat at the frequency points ω = 0 and ω = π with group
delays τ(0) = τ(π) = −N/2.
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Fig. 3. Group delays and phase responses of the complex allpole filters in Example 3.

ℬ.2 The degree of flatness at these frequency points is the same, i.e., K = N − 2.

ℬ.3 The phase values of the allpole filter φD(ω) at ω = 0 and ω = π, are 0 and π(2N +
(2l + 1))/4, respectively, where l is an integer.

ℬ.4 The desired phase value φD(ω) at the given frequency ω = ωp is φp, i.e., φp = φD(ωp).

Substituting conditions ℬ.1–ℬ.4 into (10a) and (10b) and solving the resulting set of linear
equations, we arrive at

fn =

⎧
⎨

⎩

�
N

n

�
n even,

�
N

n

��√
2e j(2φα+

π
4 ) − j

�
n odd,

(34)

where

φα = ∠

�
−j − 1 − (−1)⌈N/2⌉

�
cot

�
φp − ωpN

2

�
− 1

�
tanN

�ωp

2

��
, (35)

and ∠{⋅} indicates the angle of {⋅}, while ⌈⋅⌉ stands for the floor function.
Next example illustrates the proposed design where the parameters of the design are the filter
order N and the phase value φp at the frequency point ωp.
Example 4. We design a complex allpole filter using the following specifications: the order of
the allpole filter is N = 7 and the phase value φD(ω) at ωp is 1.2π, where ωp = 0.3π.
The group delay and phase response of the designed filter are presented in Fig. 4a and 4b,
respectively.

4.4.1 Closed form equations for the singularities of the allpole filter
In the following, we consider the computation of the poles of D(z).
Using (34), we obtain the z-transform of the denominator of D(z) defined in (1) as,

F(z) = ∑
n even

�
N

n

�
z−n + (

√
2e j(2φα+π/4) − j) ∑

n odd

�
N

n

�
z−n. (36)
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4.3.1 Degree of flatness K = 2N − 2
Substituting conditions 𝒜.1 and 𝒜.2 into the set of equations (10), we compute the complex
coefficients as follows

fn = (−1)n

(
N

n

)
2(2τ0 + 1)n−1

(2τ0 + N + 1)n

(
τ0 + ne j(φα−π/2) sin φα

)
, (29)

where n = 1, . . . , N, the binomial coefficient is given by

(
N

n

)
=

N!

n!(N − n)!
, (30)

and the Pochhammer symbol (x)m indicates the rising factorial of x, which is defined as (An-
drews, 1998),

(x)m =

{
(x)(x + 1)(x + 2) ⋅ ⋅ ⋅ (x + m − 1) m > 0,

1 m = 0.
(31)

The expression in (29) is the extension of the result proposed in (Thiran, 1971), which includes
both real and complex cases. If φα is 0 or π, the imaginary coefficients are zero, and the result
is a real allpole filter, consistent with (Thiran, 1971). For φα = ±π/2, the filter is a real allpole
filter (this case is not included in (Thiran, 1971)). For all other phase values, the imaginary
coefficients are strictly non-zero, i.e., the filter is complex.

4.3.2 Degree of flatness K = 2N − 3
In this case, in order to get a degree of flatness K = 2N − 3, we set fIN = 0. Consequently, the
filter coefficients are

fn = (−1)n

(
N

n

)
2(2τ0 + 1)n−1

(2τ0 + N + 1)n

(
τ0 + n + n

(n − N)e jφα cos φα

2τ0 + N

)
, (32)

where n = 0, . . . , N.
In contrast with (32), to obtain a different solution, we now set fRN = 0. Therefore, we have

fn = (−1)n

(
N

n

)
2(2τ0 + 1)n−1

(2τ0 + N + 1)n

(
τ0 + n − ne jφα

N cos φα

(
τ0 + n +

(N − n)(τ0 + N cos2 φα)

2τ0 + N

))
,

(33)
where n = 0, . . . , N.
We illustrate the design with one example.
Example 3. The desired phase φα, and the group delay τ0 at ω = 0, are −π/6, and 7/3,
respectively. The order N of the filter is 5.
We compute the corresponding filter coefficients using (29), (32), and (33). The resulting group
delays of D(z) are shown in Fig. 3a, while the phase responses of the designed filters are
shown in Fig. 3b.

4.4 Complex allpole filter with flatness at ω = 0 and ω = π

Now, we present the design of complex allpole filters of order N (any positive integer) with
flatness at ω = 0 and ω = π.
The design conditions are: (More detailed explanation is given in Section 5.1.)

ℬ.1 The phase response of D(z) is flat at the frequency points ω = 0 and ω = π with group
delays τ(0) = τ(π) = −N/2.
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Fig. 3. Group delays and phase responses of the complex allpole filters in Example 3.

ℬ.2 The degree of flatness at these frequency points is the same, i.e., K = N − 2.

ℬ.3 The phase values of the allpole filter φD(ω) at ω = 0 and ω = π, are 0 and π(2N +
(2l + 1))/4, respectively, where l is an integer.

ℬ.4 The desired phase value φD(ω) at the given frequency ω = ωp is φp, i.e., φp = φD(ωp).

Substituting conditions ℬ.1–ℬ.4 into (10a) and (10b) and solving the resulting set of linear
equations, we arrive at

fn =

⎧
⎨

⎩

�
N

n

�
n even,

�
N

n

��√
2e j(2φα+

π
4 ) − j

�
n odd,

(34)

where

φα = ∠

�
−j − 1 − (−1)⌈N/2⌉

�
cot

�
φp − ωpN

2

�
− 1

�
tanN

�ωp

2

��
, (35)

and ∠{⋅} indicates the angle of {⋅}, while ⌈⋅⌉ stands for the floor function.
Next example illustrates the proposed design where the parameters of the design are the filter
order N and the phase value φp at the frequency point ωp.
Example 4. We design a complex allpole filter using the following specifications: the order of
the allpole filter is N = 7 and the phase value φD(ω) at ωp is 1.2π, where ωp = 0.3π.
The group delay and phase response of the designed filter are presented in Fig. 4a and 4b,
respectively.

4.4.1 Closed form equations for the singularities of the allpole filter
In the following, we consider the computation of the poles of D(z).
Using (34), we obtain the z-transform of the denominator of D(z) defined in (1) as,

F(z) = ∑
n even

�
N

n

�
z−n + (

√
2e j(2φα+π/4) − j) ∑

n odd

�
N

n

�
z−n. (36)
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Fig. 4. Group delay and phase response and of the complex allpole filter in Example 4.

After some computations, we get

F(z) =
e jφα

√
2

[
(cos φα − sin φα)(1 + z−1)N − (j − 1) sin φα(1 − z−1)N

]
. (37)

Therefore, the corresponding poles are

pk =
γk + 1

γk − 1
, (38)

where k = 0, . . . , N − 1, and

γk =

( √
2

1 − cot φα

) 1
N

e−j 8k+1
4N π . (39)

4.5 Complex allpole filters with flatness at ω = 0, and ω = ±ωr

In this section, we design a complex allpole filter with the following characteristics:

𝒞.1 The order N is even.

𝒞.2 The allpole filter has flat group delay at the frequency points ω = 0, ω = −ωr , and
ω = ωr . The degrees of flatness are K1(ω = 0) = N − 2, K2(ω = ±ωr) = N/2 − 2. The
group delay at those frequency points is τ(0) = τ(±ωr) = −N/2.

𝒞.3 The desired allpole phase value φD(ω) at the given frequency ω = ωp is φp, i.e., φp =
φD(ωp).

𝒞.4 The phase values of the allpole filter φD(ω) at ω = 0, ω = −ωr, and ω = ωr are 0,
π/3 + ωrN/2, and π/3 − ωrN/2, respectively.

Substituting conditions 𝒞.1–𝒞.4 into (10a) and (10b) and solving the resulting set of linear
equations, we have

fn = (−1)n

[(
N

n

)
− 4e jφα

√
3

(
N/2

n

)
cN,n(ωr) cos (φα + π/6)

]
, (40)

where n = 0, . . . , N/2,

φα = ∠

{√
3Rp cot(φp − ωpN/2) + 1 + j

√
3(Rp + 1)

}
, (41)

and

Rp =
−2N−1 sinN

(
ωp

2

)

cN,N/2(ωr) + 2CN(ωr, ωp)
, (42)

where

CN(ωr, ωp) =
N/2−1

∑
n=1

(−1)N/2+n

(
N/2

n

)
cN,n(ωr) cos

(
(N/2 − n)ωp

)
. (43)

The function cN,n(ωr) for different values of N is given in Table 3. Moreover, we have
cN,0(ωr) = 0 and fn = fN−n.
Example 5. The desired design specification is as follows: the allpole filter order is equal to 8,
ωp = 0.35π, ωr = 0.75π, and φp = 1.5π. The resulting group delay and phase response of
the designed filter are shown in Fig. 5.
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Fig. 5. Group delay and phase response and of the designed complex allpole filter in Exam-
ple 5.

5. Design of IIR filters based on allpole filters

5.1 Direct design of linear-phase IIR Butterworth filters
A filter H(z) has linear-phase if,

H(z) = cz−kH̃(z), (44)

where H(z) is not necessary causal, z−k is the delay, the complex constant c has unit magni-

tude and H̃(z) is the paraconjugate of H(z), that is, it is generated by conjugating the coeffi-
cients of H(z) and by replacing z by z−1.
It has been shown that causal Finite Impulse Response (FIR) filters can be designed to have
linear-phase. However, Infinite Impulse Response (IIR) filters can have linear-phase property
only in the noncausal case (Vaidyanathan & Chen, 1998), (the phase response is either zero or
π). It has been recently shown that filters with the linear-phase property are useful in the filter
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Fig. 4. Group delay and phase response and of the complex allpole filter in Example 4.

After some computations, we get

F(z) =
e jφα

√
2

[
(cos φα − sin φα)(1 + z−1)N − (j − 1) sin φα(1 − z−1)N

]
. (37)

Therefore, the corresponding poles are

pk =
γk + 1

γk − 1
, (38)

where k = 0, . . . , N − 1, and

γk =

( √
2

1 − cot φα

) 1
N

e−j 8k+1
4N π . (39)

4.5 Complex allpole filters with flatness at ω = 0, and ω = ±ωr

In this section, we design a complex allpole filter with the following characteristics:

𝒞.1 The order N is even.

𝒞.2 The allpole filter has flat group delay at the frequency points ω = 0, ω = −ωr , and
ω = ωr . The degrees of flatness are K1(ω = 0) = N − 2, K2(ω = ±ωr) = N/2 − 2. The
group delay at those frequency points is τ(0) = τ(±ωr) = −N/2.

𝒞.3 The desired allpole phase value φD(ω) at the given frequency ω = ωp is φp, i.e., φp =
φD(ωp).

𝒞.4 The phase values of the allpole filter φD(ω) at ω = 0, ω = −ωr, and ω = ωr are 0,
π/3 + ωrN/2, and π/3 − ωrN/2, respectively.

Substituting conditions 𝒞.1–𝒞.4 into (10a) and (10b) and solving the resulting set of linear
equations, we have

fn = (−1)n

[(
N

n

)
− 4e jφα

√
3

(
N/2

n

)
cN,n(ωr) cos (φα + π/6)

]
, (40)

where n = 0, . . . , N/2,

φα = ∠

{√
3Rp cot(φp − ωpN/2) + 1 + j

√
3(Rp + 1)

}
, (41)

and

Rp =
−2N−1 sinN

(
ωp
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)

cN,N/2(ωr) + 2CN(ωr, ωp)
, (42)

where

CN(ωr, ωp) =
N/2−1

∑
n=1

(−1)N/2+n

(
N/2

n

)
cN,n(ωr) cos

(
(N/2 − n)ωp

)
. (43)

The function cN,n(ωr) for different values of N is given in Table 3. Moreover, we have
cN,0(ωr) = 0 and fn = fN−n.
Example 5. The desired design specification is as follows: the allpole filter order is equal to 8,
ωp = 0.35π, ωr = 0.75π, and φp = 1.5π. The resulting group delay and phase response of
the designed filter are shown in Fig. 5.
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Fig. 5. Group delay and phase response and of the designed complex allpole filter in Exam-
ple 5.

5. Design of IIR filters based on allpole filters

5.1 Direct design of linear-phase IIR Butterworth filters
A filter H(z) has linear-phase if,

H(z) = cz−kH̃(z), (44)

where H(z) is not necessary causal, z−k is the delay, the complex constant c has unit magni-

tude and H̃(z) is the paraconjugate of H(z), that is, it is generated by conjugating the coeffi-
cients of H(z) and by replacing z by z−1.
It has been shown that causal Finite Impulse Response (FIR) filters can be designed to have
linear-phase. However, Infinite Impulse Response (IIR) filters can have linear-phase property
only in the noncausal case (Vaidyanathan & Chen, 1998), (the phase response is either zero or
π). It has been recently shown that filters with the linear-phase property are useful in the filter
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N n cN,n(ωr) = cN,N−n(ωr)

2 1 1 − cos(ωr)

4
1 1 − cos(ωr)
2 1 − cos(2ωr)

6
1 1 − cos(ωr)
2 1 − cos(2ωr)
3 10 − 9 cos(ωr)− cos(3ωr)

8

1 1 − cos(ωr)
2 1 − cos(2ωr)
3 7 − 6 cos(ωr)− cos(3ωr)
4 17 − 16 cos(2ωr)− cos(4ωr)

10

1 1 − cos(ωr)
2 1 − cos(2ωr)
3 6 − 5 cos(ωr)− cos(3ωr)
4 11 − 10 cos(2ωr)− cos(4ωr)
5 126 − 100 cos(ωr)− 25 cos(3ωr)− cos(5ωr)

12

1 1 − cos(ωr)
2 1 − cos(2ωr)
3 11/2 − 9/2 cos(ωr)− cos(3ωr)
4 9 − 8 cos(2ωr)− cos(4ωr)
5 66 − 50 cos(ωr)− 15 cos(3ωr)− cos(5ωr)
6 262 − 225 cos(2ωr)− 36 cos(4ωr)− cos(6ωr)

14

1 1 − cos(ωr)
2 1 − cos(2ωr)
3 26/5 − 21/5 cos(ωr)− cos(3ωr)
4 8 − 7 cos(2ωr)− cos(4ωr)
5 143/3 − 35 cos(ωr)− 35/3 cos(3ωr)− cos(5ωr)
6 127 − 105 cos(2ωr)− 21 cos(4ωr)− cos(6ωr)
7 1761 − 1225 cos(ωr)− 441 cos(3ωr)− 49 cos(5ωr)− cos(7ωr)

16

1 1 − cos(ωr)
2 1 − cos(2ωr)
3 5 − 4 cos(ωr)− cos(3ωr)
4 37/5 − 32/5 cos(2ωr)− cos(4ωr)
5 39 − 28 cos(ωr)− 10 cos(3ωr)− cos(5ωr)
6 87 − 70 cos(2ωr)− 16 cos(4ωr)− cos(6ωr)
7 715 − 490 cos(ωr)− 196 cos(3ωr)− 28 cos(5ωr)− cos(7ωr)
8 3985 − 3136 cos(2ωr)− 784 cos(4ωr)− 64 cos(6ωr)− cos(8ωr)

Table 3. Function cN,n(ωr) for different values of N.

bank design and the Nyquist filter design and different methods have been proposed for this
design (Djokic et al., 1998; Powell & Chau, 1991; Surma-aho & Saramaki, 1999).
A linear-phase lowpass IIR filter H(z) can be expressed in terms of complex allpass filters as
(Zhang et al., 2001),

H(z) =
1

2

[
A(z) + Ã(z)

]
, (45)

where A(z) is a complex allpass of order N (see (14)).
We can note that the filter defined in (45) satisfies the relation (44) if k = 0 and c = 1.

The main goal is to propose a new technique to design real and complex IIR filters with linear-
phase, based on general design of Section 3, where the design specification is same as in tra-
ditional IIR filters design based on analog filters, i.e., the passband and stopband frequencies,
ωp and ωs, the passband droop Ap, and the stopband attenuation As, shown in Fig. 6.

Frequency

∣∣H (
e jω

)∣∣

π

1
Ap

ωp

As

ωs

Fig. 6. Design parameters for low pass filter.

We relate the design of linear-phase IIR filter with allpass filter and in the next section we use
the general approach to design the corresponding allpole filter.
First, we establish the conditions which the auxiliary complex allpass filters from (45) has to
satisfy.
From (45), the magnitude response of H(z) can be expressed as,

∣H(e jω)∣ =
∣∣cos

(
φA(ω)

)∣∣ , for all ω. (46)

The magnitude responses of ∣H(e jω)∣ at ω = 0, and ω = π are 1 and 0, respectively (see Fig. 6).
Therefore, the values of φA(ω) at these frequency points are 0 and (2l + 1)π/2, respectively,
where l is an integer. Since the magnitude response of H(z) decreases monotonically, relation
(46) can be rewritten as,

∣H(e jω)∣ = cos
(
φA(ω)

)
, 0 ≤ ω ≤ π. (47)

Note that ∣H(e jω)∣ has a flat magnitude response at ω = 0 and ω = π, and that the filter A(z)
has a flat phase response at the same frequency points. As a consequence, the corresponding
group delays τA(0) and τA(π) are equal to 0.
Considering the value Ap in dB we write

20 log10 ∣H(e jω)∣ω=ωp = −Ap. (48)

From (47) it follows,

φpA = φA(ωp) = arccos
(

10−Ap/20
)

. (49)

In summary, the conditions that the auxiliary complex allpass filter in (45) needs to satisfy are
the following:

𝒟.1 The phase values of φA(ω) at ω = 0 and ω = π are 0 and (2l + 1)π/2, respectively.

𝒟.2 The phase response of A(z) is flat at ω = 0 and ω = π. Therefore, τA(0) = τA(π) = 0.
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Table 3. Function cN,n(ωr) for different values of N.

bank design and the Nyquist filter design and different methods have been proposed for this
design (Djokic et al., 1998; Powell & Chau, 1991; Surma-aho & Saramaki, 1999).
A linear-phase lowpass IIR filter H(z) can be expressed in terms of complex allpass filters as
(Zhang et al., 2001),

H(z) =
1

2

[
A(z) + Ã(z)

]
, (45)

where A(z) is a complex allpass of order N (see (14)).
We can note that the filter defined in (45) satisfies the relation (44) if k = 0 and c = 1.

The main goal is to propose a new technique to design real and complex IIR filters with linear-
phase, based on general design of Section 3, where the design specification is same as in tra-
ditional IIR filters design based on analog filters, i.e., the passband and stopband frequencies,
ωp and ωs, the passband droop Ap, and the stopband attenuation As, shown in Fig. 6.
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We relate the design of linear-phase IIR filter with allpass filter and in the next section we use
the general approach to design the corresponding allpole filter.
First, we establish the conditions which the auxiliary complex allpass filters from (45) has to
satisfy.
From (45), the magnitude response of H(z) can be expressed as,

∣H(e jω)∣ =
∣∣cos

(
φA(ω)

)∣∣ , for all ω. (46)

The magnitude responses of ∣H(e jω)∣ at ω = 0, and ω = π are 1 and 0, respectively (see Fig. 6).
Therefore, the values of φA(ω) at these frequency points are 0 and (2l + 1)π/2, respectively,
where l is an integer. Since the magnitude response of H(z) decreases monotonically, relation
(46) can be rewritten as,

∣H(e jω)∣ = cos
(
φA(ω)

)
, 0 ≤ ω ≤ π. (47)

Note that ∣H(e jω)∣ has a flat magnitude response at ω = 0 and ω = π, and that the filter A(z)
has a flat phase response at the same frequency points. As a consequence, the corresponding
group delays τA(0) and τA(π) are equal to 0.
Considering the value Ap in dB we write

20 log10 ∣H(e jω)∣ω=ωp = −Ap. (48)

From (47) it follows,

φpA = φA(ωp) = arccos
(

10−Ap/20
)

. (49)

In summary, the conditions that the auxiliary complex allpass filter in (45) needs to satisfy are
the following:

𝒟.1 The phase values of φA(ω) at ω = 0 and ω = π are 0 and (2l + 1)π/2, respectively.

𝒟.2 The phase response of A(z) is flat at ω = 0 and ω = π. Therefore, τA(0) = τA(π) = 0.
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𝒟.3 The phase value φpA is controlled by Ap (see (49)).

In the following, we use the results from Section 3.1 and the Conditions 𝒟.1–𝒟.3 in order to
obtain the corresponding conditions for the allpole filter D(z).

5.1.1 Design of flat linear-phase IIR filters based on complex allpole filters
We relate the allpass filter from (45) with the corresponding allpole filter.
Using (16) and the phase values φA(ω) at ω = 0 and ω = π (see Condition 𝒟.1), we get
φ(0) = 0 and φ(π) = π(2N + (2l + 1))/4.
Now, from (18) and Condition 𝒟.2, we have τ(0) = τ(π) = −N/2.
Finally, the following relation is obtained using Condition 𝒟.3 and (16),

φD(ωp) = φp =
arccos

(
10−Ap/20

)
+ ωpN

2
. (50)

As a consequence, the corresponding conditions that the allpole filter D(z) has to satisfy are:

ℰ .1 The phase values of D(z) at ω = 0 and ω = π are 0 and π(2N + (2l + 1))/4, respec-
tively.

ℰ .2 The group delay τ(ω) of D(z) at ω = 0 and ω = π are −N/2.

ℰ .3 The phase value of D(z) at ωp, φD(ωp), is given by (50).

For a filter having coefficients given in (34) the Conditions ℰ .1 and ℰ .2 are satisfied.
From the Condition ℰ .3 and (35), the corresponding value of φα(N, ωp, Ap) is equal to

φα(N, ωp, Ap) = ∠

{
−j − 1 − (−1)⌈N/2⌉Ap

′ tanN
(ωp

2

)}
, (51)

where

Ap
′ =

√
10Ap/20 + 1

10Ap/20 − 1
− 1. (52)

We note that the resulting allpole filter has a causal and an anticausal parts. The causal part
can be implemented with the well known structures for allpass filters while the anticausal
part can be implemented with the structures proposed in (Vaidyanathan & Chen, 1998).
The degree of flatness of the allpass filter A(z) at ω = 0 and ω = π is equal to N − 2. Based
on this result it can be shown that we have 2N − 1 null derivatives in the square magnitude
response ∣H(e jω)∣2 at ω = 0 and ω = π.

5.1.2 Closed form equations for the singularities of H(z)
It follows from (37) and (45) that the transfer function H(z) is given as,

H(z) =
(1 + z−1)N E(z)

2z−N F(z)F̃(z)
, (53)

where

E(z) = (1 − sin(2φα))(1 + z−1)N + ((j + 1)− (j − 1)) sin φα(cos(φα)− sin(φα))(1 − z−1)N .
(54)

We note that the transfer function H(z) has N zeros at z = −1 and the other zeros are at (see
(54)),

zk =
βk + 1

βk − 1
, (55)

where k = 0, . . . , N − 1, and the parameter βk is given by,

βk =

⎧
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�
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1−cos(2φα)
1−sin(2φα)

� 1
2N

e j 2π
N k N even,

�
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π N odd.

(56)

It is easily shown that the absolute values of zk in (55), for even values of N, are always
different than 1. However, there also exists one absolute value of zk, for N odd, which is equal
to 1, i.e., there is a zero on the unit circle. The corresponding frequency ω0 is expressed as,

ω0 = π + 2 arctan

�
2

1 − cos(2φα)

1 − sin(2φα)

� 1
2N

. (57)

As a consequence, the frequency at which H(e jω) is equal to −1 is given by

ω1 = π + 2 arctan

�
1

2

1 − cos(2φα)

1 − sin(2φα)

� 1
2N

. (58)

Finally, the transfer function H(z) has 2N poles which are poles of the corresponding complex

allpole filters D(z) and �D(z) (see Section 4.4.1).

5.1.3 Description of the algorithm
The proposed algorithm is described in the following steps:

Step 1. Estimate the order of the allpole filter using the following equation, which can be
obtained by solving φα(N, ωp, Ap) = φα(N, ωs, As),

N =

⎢⎢⎢⎣
log10

�
A′

p

A′
s

�

log10

�
ωs

′
ωp

′

�

⎥⎥⎥⎦ , Ap
′ =

�
10Ap/20 + 1

10Ap/20 − 1
− 1, As

′ =

�
10As/20 + 1

10As/20 − 1
− 1, (59)

where ⌊⋅⌊ is the ceiling function.

Step 2. From the values N, ωp and Ap, compute the phase value φα(N, ωs, As), using (51).

Step 3. Using (34), compute the filter coefficients fn.

Step 4. Calculate the filter coefficients of H(z) using (45).

We illustrate the procedure with the following example.
Example 6. We design the IIR linear-phase lowpass filter with the passband and stopband
frequencies ωp = 0.25π and ωs = 0.5π, respectively. The passband droop is Ap = 1 dB, while
the stopband attenuation is As = 65 dB.

Step 1. Using (59), we estimate N = 10. As a consequence, the filter H(z) is real.

Step 2. We calculate the phase value φα(N, ωs, As), to be φα(N, ωs, As) = −0.749925π.

Step 3. The filter coefficients fn are computed from (34).

Step 4. We compute the coefficients of the designed filter H(z). The magnitude response of
the designed filter is given in Fig. 7.
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𝒟.3 The phase value φpA is controlled by Ap (see (49)).
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Finally, the transfer function H(z) has 2N poles which are poles of the corresponding complex
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where ⌊⋅⌊ is the ceiling function.

Step 2. From the values N, ωp and Ap, compute the phase value φα(N, ωs, As), using (51).

Step 3. Using (34), compute the filter coefficients fn.

Step 4. Calculate the filter coefficients of H(z) using (45).

We illustrate the procedure with the following example.
Example 6. We design the IIR linear-phase lowpass filter with the passband and stopband
frequencies ωp = 0.25π and ωs = 0.5π, respectively. The passband droop is Ap = 1 dB, while
the stopband attenuation is As = 65 dB.

Step 1. Using (59), we estimate N = 10. As a consequence, the filter H(z) is real.

Step 2. We calculate the phase value φα(N, ωs, As), to be φα(N, ωs, As) = −0.749925π.

Step 3. The filter coefficients fn are computed from (34).

Step 4. We compute the coefficients of the designed filter H(z). The magnitude response of
the designed filter is given in Fig. 7.
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5.1.4 Linear-phase IIR highpass filter design
Now, we extend the proposed algorithm for lowpass filter to highpass filter design.
Using the power-complementary property (Vaidyanathan et al., 1987), it can be shown that
the corresponding complementary filter of H(z), defined in (45), is given by

H1(z) =
1

2j

[
A(z)− Ã(z)

]
, (60)

where H1(z) is a highpass filter.
Using (60), the phase value φpA is expressed as,

φpA = arcsin
(

10−Ap/20
)

. (61)

Similarly, the phase value φα(N, ωp, Ap) is given by,

φα(N, ωp, Ap) = ∠

{
−(j + 1) cotN

(ωp

2

)
− 2(−1)⌊N/2⌋

Ap
′

}
. (62)

Finally, the filter coefficients of H1(z) are computed using (60).
The following example illustrates the procedure.
Example 7.The parameters of the design of the highpass filter are: the passband and stopband
frequencies are ωp = 0.75π and ωs = 0.4π, respectively. The stopband attenuation and
passband droop are 50 dB and 1 dB, respectively.
The resulting filter order is equal to 6 and φα(N, ωp, Ap) = −0.002569π. The magnitude
response, the passband and stopband details of the designed filter are shown in Fig. 8.

5.2 Direct design of linear-phase IIR filter banks
The modified two-band filter bank (Galand & Nussbaumer, 1984), is shown in Fig. 9. The
analysis filter H0(z) and the synthesis filter G0(z) are lowpass filters, while the analysis filter
H1(z) and the synthesis filter G1(z) are highpass filters. However, both the analysis and the
synthesis filters are not causal. As a difference with traditional structure, in this structure
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Fig. 8. Magnitude response of H1(z) in Example 7.

2

2

2

2

H0(z)

H1(z)

G0(z)

G1(z)

z−1 z−1

X(z)

Y(z)

Fig. 9. Modified two-band filter bank.

there are two extra delays, one in the highpass analysis filter and another one in the lowpass
synthesis filter (see Fig. 9).
The output Y(z) is obtained using some multirate computations (Jovanovic-Dolecek, 2002),
i.e.,

Y(z) =
z−1

2

(
X(z)

(
G0(z)H0(z) + G1(z)H1(z)

)
+ X(−z)

(
G0(z)H0(−z)− G1(z)H1(−z)

))
.

(63)
The output of the filter bank (63) suffers from three types of errors, i.e., aliasing, amplitude
distortion and phase distortion.
To avoid aliasing, the synthesis filters are related to the analysis filter H0(z) in the following
form (Vaidyanathan et al., 1987),

G0(z) = H̃0(z), G1(z) = H0(−z), (64)

where H̃0(z) is the paraconjugate of H0(z) and H1(z) = H̃0(−z).
The amplitude and phase distortions are eliminated if the analysis filters are chosen to satisfy

H0(z)H̃0(z) + H0(−z)H̃0(−z) = 1. (65)

From (65), the following relation holds,

∣H0(e
jω)∣2 + ∣H0(e

j(ω−π))∣2 = 1. (66)
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5.1.4 Linear-phase IIR highpass filter design
Now, we extend the proposed algorithm for lowpass filter to highpass filter design.
Using the power-complementary property (Vaidyanathan et al., 1987), it can be shown that
the corresponding complementary filter of H(z), defined in (45), is given by

H1(z) =
1

2j

[
A(z)− Ã(z)

]
, (60)

where H1(z) is a highpass filter.
Using (60), the phase value φpA is expressed as,

φpA = arcsin
(

10−Ap/20
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. (61)

Similarly, the phase value φα(N, ωp, Ap) is given by,

φα(N, ωp, Ap) = ∠

{
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Finally, the filter coefficients of H1(z) are computed using (60).
The following example illustrates the procedure.
Example 7.The parameters of the design of the highpass filter are: the passband and stopband
frequencies are ωp = 0.75π and ωs = 0.4π, respectively. The stopband attenuation and
passband droop are 50 dB and 1 dB, respectively.
The resulting filter order is equal to 6 and φα(N, ωp, Ap) = −0.002569π. The magnitude
response, the passband and stopband details of the designed filter are shown in Fig. 8.

5.2 Direct design of linear-phase IIR filter banks
The modified two-band filter bank (Galand & Nussbaumer, 1984), is shown in Fig. 9. The
analysis filter H0(z) and the synthesis filter G0(z) are lowpass filters, while the analysis filter
H1(z) and the synthesis filter G1(z) are highpass filters. However, both the analysis and the
synthesis filters are not causal. As a difference with traditional structure, in this structure
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there are two extra delays, one in the highpass analysis filter and another one in the lowpass
synthesis filter (see Fig. 9).
The output Y(z) is obtained using some multirate computations (Jovanovic-Dolecek, 2002),
i.e.,

Y(z) =
z−1

2

(
X(z)

(
G0(z)H0(z) + G1(z)H1(z)

)
+ X(−z)

(
G0(z)H0(−z)− G1(z)H1(−z)

))
.

(63)
The output of the filter bank (63) suffers from three types of errors, i.e., aliasing, amplitude
distortion and phase distortion.
To avoid aliasing, the synthesis filters are related to the analysis filter H0(z) in the following
form (Vaidyanathan et al., 1987),

G0(z) = H̃0(z), G1(z) = H0(−z), (64)

where H̃0(z) is the paraconjugate of H0(z) and H1(z) = H̃0(−z).
The amplitude and phase distortions are eliminated if the analysis filters are chosen to satisfy

H0(z)H̃0(z) + H0(−z)H̃0(−z) = 1. (65)

From (65), the following relation holds,

∣H0(e
jω)∣2 + ∣H0(e

j(ω−π))∣2 = 1. (66)
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The relationship between the passband frequency ωp and stopband frequency ωs of H0(z), is
given by,

ωp + ωs = π. (67)

Additionally, using (66) and (67) we have

10−Ap/10 + 10−As/10 = 1, (68)

where Ap and As are the passband droop and the stopband attenuation in dB.
According to (Zhang et al., 2001), the analysis filters are given by,

H0(z) =
1

2

[
A(z) + Ã(z)

]
, (69)

H1(z) =
1

2j

[
A(z)− Ã(z)

]
, (70)

where A(z) is a complex allpass filter and Ã(z) is its paraconjugate.
From (69) and (70), we can see that the design of perfect reconstruction filter banks is reduced
to the design of the complex allpass filter A(z). In the following, we present one method for
the modified two-band filter bank design based on the results obtained in Section 5.1.
The perfect reconstruction condition for the modified two-band IIR filter banks is established
in (Vaidyanathan et al., 1987; Zhang et al., 2001), which implies that the poles of H0(z) and
H1(z) must appear on the imaginary axis and in pairs jp and 1/jp, where p is a pole. From
this condition, it follows that the filter coefficients given in (34) must be imaginary for even
values of n (Vaidyanathan et al., 1987).
Consequently, the values of φα in (34) for an even N, must be

φα =

{
− 7

8 π for N
2 even,

− 3
8 π for N

2 odd.
(71)

Similarly, the values of φα when N is odd must be,

φα =

{
− 3

8 π for N+1
2 even,

− 7
8 π for N+1

2 odd.
(72)

5.2.1 Description of the algorithm
In the following, we describe the proposed algorithm for a linear-phase IIR filter banks. The
IIR filters are real if N is even, otherwise they are complex.
The steps of the algorithm are described in the following

Step 1. Calculate the order N of the allpole filter using (68), (67) and (59). (Note that the filter
H0(z) has order 2N.)

Step 2. If N is even compute the filter coefficients (34) using (71), otherwise use (72).

We illustrate the method with the following examples.
Example 8. Stopband frequency ωs of the analysis filter H0(z) is 0.65π, while the stopband
attenuation As is 45 dB.

Step 1. From (68) and (67), it follows that Ap = 1.373381 × 10−4 and ωp = 0.35π. Using (59),

the order of the complex allpole filter is 12. From (71), φα = − 7
8 π.

Step 2. We compute the filter coefficients using (34) and (71).

Figure 10a shows the corresponding magnitude responses of H0(z) and H1(z).

The following example illustrates the design of IIR filter banks using complex IIR filters. Ex-

ample 9. We design the IIR filter bank with the following specifications ωs = 0.75π and
As = 60 dB for the analysis filter H0(z).

Step 1. The estimated value of N is 9 since ωp = 0.25π and Ap = 4.342946 × 10−6. From (72),

φα = − 3
8 π.

Step 2. Using (34) and (71), we compute the allpole filter coefficients.

The magnitude responses of H0(z) and H1(z) are shown in Fig. 10b. From Fig. 10b, (57), and
(58), we note that both filters H0(z) and H1(z) have notch frequencies at ω0 = 1.512254π
and ω1 = 1.487745π, respectively.

In general, for N odd, both analysis filters have notch frequencies in the vicinity of ω =
3π/2.
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Fig. 10. Magnitude responses of the analysis filters in Examples 8 and 9.

5.3 Butterworth filters with an improved group delay
5.3.1 Linear-phase Butterworth filters
We relate the linear-phase Butterworth filter given in Section 5.1 with the corresponding stable
and causal IIR filter.
We remember that a linear phase filter H(z) can be expressed as

H(z) = cz−kH̃(z), (73)

where z−k is the delay, c is a rear or complex constant with unit magnitude and H̃(z) is the
paraconjugate of H(z).
Using k = 0 and c = 1, the linear-phase IIR filter H(z) can be expressed as (Powell & Chau,
1991),

H(z) = Hc(z)H̃c(z). (74)

where Hc(z) is a causal and stable IIR filter. Consequently, the corresponding Fourier trans-
form H(e jω) is real and positive for all ω.
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The relationship between the passband frequency ωp and stopband frequency ωs of H0(z), is
given by,

ωp + ωs = π. (67)

Additionally, using (66) and (67) we have

10−Ap/10 + 10−As/10 = 1, (68)

where Ap and As are the passband droop and the stopband attenuation in dB.
According to (Zhang et al., 2001), the analysis filters are given by,
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]
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where A(z) is a complex allpass filter and Ã(z) is its paraconjugate.
From (69) and (70), we can see that the design of perfect reconstruction filter banks is reduced
to the design of the complex allpass filter A(z). In the following, we present one method for
the modified two-band filter bank design based on the results obtained in Section 5.1.
The perfect reconstruction condition for the modified two-band IIR filter banks is established
in (Vaidyanathan et al., 1987; Zhang et al., 2001), which implies that the poles of H0(z) and
H1(z) must appear on the imaginary axis and in pairs jp and 1/jp, where p is a pole. From
this condition, it follows that the filter coefficients given in (34) must be imaginary for even
values of n (Vaidyanathan et al., 1987).
Consequently, the values of φα in (34) for an even N, must be
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Similarly, the values of φα when N is odd must be,
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5.2.1 Description of the algorithm
In the following, we describe the proposed algorithm for a linear-phase IIR filter banks. The
IIR filters are real if N is even, otherwise they are complex.
The steps of the algorithm are described in the following

Step 1. Calculate the order N of the allpole filter using (68), (67) and (59). (Note that the filter
H0(z) has order 2N.)

Step 2. If N is even compute the filter coefficients (34) using (71), otherwise use (72).

We illustrate the method with the following examples.
Example 8. Stopband frequency ωs of the analysis filter H0(z) is 0.65π, while the stopband
attenuation As is 45 dB.

Step 1. From (68) and (67), it follows that Ap = 1.373381 × 10−4 and ωp = 0.35π. Using (59),

the order of the complex allpole filter is 12. From (71), φα = − 7
8 π.

Step 2. We compute the filter coefficients using (34) and (71).

Figure 10a shows the corresponding magnitude responses of H0(z) and H1(z).

The following example illustrates the design of IIR filter banks using complex IIR filters. Ex-

ample 9. We design the IIR filter bank with the following specifications ωs = 0.75π and
As = 60 dB for the analysis filter H0(z).

Step 1. The estimated value of N is 9 since ωp = 0.25π and Ap = 4.342946 × 10−6. From (72),

φα = − 3
8 π.

Step 2. Using (34) and (71), we compute the allpole filter coefficients.

The magnitude responses of H0(z) and H1(z) are shown in Fig. 10b. From Fig. 10b, (57), and
(58), we note that both filters H0(z) and H1(z) have notch frequencies at ω0 = 1.512254π
and ω1 = 1.487745π, respectively.

In general, for N odd, both analysis filters have notch frequencies in the vicinity of ω =
3π/2.

Magnitude responses

Noralized frequency

G
ai

n,
dB

Lowpass
Highpass

0 0.1 0.2 0.3 0.4 0.5
−60

−50

−40

−30

−20

−10

0

(a) Example 8

Magnitude responses

Normalized frequency

G
ai

n,
dB

Lowpass
Highpass

ω0ω1

0 0.25 0.5 0.75 1
−80

−60

−40

−20

0

(b) Example 9

Fig. 10. Magnitude responses of the analysis filters in Examples 8 and 9.

5.3 Butterworth filters with an improved group delay
5.3.1 Linear-phase Butterworth filters
We relate the linear-phase Butterworth filter given in Section 5.1 with the corresponding stable
and causal IIR filter.
We remember that a linear phase filter H(z) can be expressed as

H(z) = cz−kH̃(z), (73)

where z−k is the delay, c is a rear or complex constant with unit magnitude and H̃(z) is the
paraconjugate of H(z).
Using k = 0 and c = 1, the linear-phase IIR filter H(z) can be expressed as (Powell & Chau,
1991),

H(z) = Hc(z)H̃c(z). (74)

where Hc(z) is a causal and stable IIR filter. Consequently, the corresponding Fourier trans-
form H(e jω) is real and positive for all ω.
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We note that the linear-phase filter H(e jω) given in (53) takes both positive and negative val-
ues for N odd (see (58)). However, when N is even, the function H(e jω) take only positives
values. Therefore, the condition (74) is satisfied.
In the following we design the filter Hcc(z) from (53).
From (53)–(54), it is easily shown that the polynomials E(z) and F(z) are symmetric for even
values of N. Consequently, they can be expressed as,

E(z) = z−N/2E0(z)E0(z
−1), (75)

F(z) = z−N/2F0(z)F0(z
−1), (76)

where E0(z) and F0(z) are subfilters of E(z) and F(z), respectively.
From (75) and (76), the transfer function H(z) (see (83)) can be rewritten as

H(z) =
z−N/2(1 + z−1)N E0(z)E0(z

−1)

2z−N F0(z)F̃0(z)F0(z−1)F̃0(z−1)
. (77)

Using (77) and (74), it follows

Hc(z) =
(1 + z−1)N/2E0(z)√

2F0(z)F̃0(z−1)
. (78)

Therefore, the transfer function Hc(z) has N/2 zeros at z = −1.
There exist many polynomials E0(z) and F0(z) satisfying (78). In order that Hc(z) be stable,
all zeros of F0(z) must be inside the unit circle. Moreover, it can be shown that for the given
value of N, there exists

Npoly = 2⌊N/4⌋, (79)

polynomials E0(z).
In the following example we design IIR filter H(z) with linear-phase and the corresponding
filter Hc(z) using (77) and (78).
Example 10. We design an IIR filter H(z) with the passband frequency, ωp = 0.3π, and
passband droop, Ap = 1 dB. The allpole filter order is 8.
Consequently, H(z) has 8 zeros at z = −1, while the remaining zeros zk, k = 0, . . . , 7, and
poles pk, k = 0, . . . , 2N − 1, are calculated using (55) and (38), respectively.
According to (79), there are four different polynomials for E0(z). The zeros of the first polino-

mial E
(1)
0 (z) are z0, z∗0, z1, and z∗1. Similarly, we can obtain the polynomials E

(l)
0 (z), l = 2, 3, 4,

which shown in Table 4.

z0, z7 = 1/z3 = z∗0 z1, z6 = 1/z2 = z∗1 z2, z5 = 1/z1 = z∗2 z3, z4 = 1/z0 = z∗3

E
(1)
0 (z) × ×

E
(2)
0 (z) × ×

E
(3)
0 (z) × ×

E
(4)
0 (z) × ×

Table 4. Different polynomials for E0(z).

The group delays of Hc(z) for all E
(l)
0 (z), l = 1, . . . , 4, are shown in Fig. 11.

Group delays

Normalized frequency

S
am

pl
es

E
(1)
0 (z)

E
(2)
0 (z)

E
(3)
0 (z)

E
(4)
0 (z)

0 0.1 0.2 0.3 0.4 0.5

2

4

6

8

10

12

Fig. 11. Different group delays for the IIR filter Hc(z) in Example 10.

We have different degrees of nonlinearity as illustrated in Fig. 11 for different E
(l)
0 , l = 1, . . . , 4.

In this example, the group delay for E
(2)
0 (z) is more linear than the others. Therefore, for this

example the best polynomial is E
(2)
0 (z).

The next issue is how to select in general case the best polynomial for E0(z).
Numerous examples indicate that it is necessary to satisfy the following two conditions:

1. The number of zeros of Hc(z) inside and outside the unit circle, Ni and No, respectively,
are related as

Ni ≥ No, (80)

where

No =

⎧
⎨
⎩

�
N
2

�
if

�
N
2

�
has the same parity of N,

�
N
2

�
− 1 if

�
N
2

�
− 1 has the same parity of N.

(81)

2. For each zero zm inside, and each zero zl outside of the unit circle, we have
����

1

zl

���� < ∣zm∣. (82)

5.3.2 Description of the algorithm
The design parameters of the algorithm are passband and stopband frequencies, ωp and ωs,
respectively, the passband droop Ap and the stopband attenuation As.
The algorithm has the following design steps:

Step 1. We estimate the order of the allpole filter D(z) using results from Section 5.1,

N =

⎢⎢⎢⎣
log10

�
Ap

′′

As
′′

�

log10

�
ωs

′
ωp

′

�

⎥⎥⎥⎦ , Ap
′′ =

�
10Ap/10 + 1

10Ap/10 − 1
− 1, As

′′ =

�
10As/10 + 1

10As/10 − 1
− 1. (83)

If the estimation filter order N is odd, increase it by one.

Step 2. Using the estimated value of N, we calculate the value of the phase φα(N, ωp, Ap) as,

φα(N, ωp, Ap) = ∠

�
−j − 1 − (−1)N/2 tanN

�ωp

2

�
Ap

′′
�

. (84)
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We note that the linear-phase filter H(e jω) given in (53) takes both positive and negative val-
ues for N odd (see (58)). However, when N is even, the function H(e jω) take only positives
values. Therefore, the condition (74) is satisfied.
In the following we design the filter Hcc(z) from (53).
From (53)–(54), it is easily shown that the polynomials E(z) and F(z) are symmetric for even
values of N. Consequently, they can be expressed as,

E(z) = z−N/2E0(z)E0(z
−1), (75)

F(z) = z−N/2F0(z)F0(z
−1), (76)

where E0(z) and F0(z) are subfilters of E(z) and F(z), respectively.
From (75) and (76), the transfer function H(z) (see (83)) can be rewritten as

H(z) =
z−N/2(1 + z−1)N E0(z)E0(z

−1)

2z−N F0(z)F̃0(z)F0(z−1)F̃0(z−1)
. (77)

Using (77) and (74), it follows

Hc(z) =
(1 + z−1)N/2E0(z)√

2F0(z)F̃0(z−1)
. (78)

Therefore, the transfer function Hc(z) has N/2 zeros at z = −1.
There exist many polynomials E0(z) and F0(z) satisfying (78). In order that Hc(z) be stable,
all zeros of F0(z) must be inside the unit circle. Moreover, it can be shown that for the given
value of N, there exists

Npoly = 2⌊N/4⌋, (79)

polynomials E0(z).
In the following example we design IIR filter H(z) with linear-phase and the corresponding
filter Hc(z) using (77) and (78).
Example 10. We design an IIR filter H(z) with the passband frequency, ωp = 0.3π, and
passband droop, Ap = 1 dB. The allpole filter order is 8.
Consequently, H(z) has 8 zeros at z = −1, while the remaining zeros zk, k = 0, . . . , 7, and
poles pk, k = 0, . . . , 2N − 1, are calculated using (55) and (38), respectively.
According to (79), there are four different polynomials for E0(z). The zeros of the first polino-

mial E
(1)
0 (z) are z0, z∗0, z1, and z∗1. Similarly, we can obtain the polynomials E

(l)
0 (z), l = 2, 3, 4,

which shown in Table 4.

z0, z7 = 1/z3 = z∗0 z1, z6 = 1/z2 = z∗1 z2, z5 = 1/z1 = z∗2 z3, z4 = 1/z0 = z∗3

E
(1)
0 (z) × ×

E
(2)
0 (z) × ×
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(3)
0 (z) × ×
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(4)
0 (z) × ×

Table 4. Different polynomials for E0(z).

The group delays of Hc(z) for all E
(l)
0 (z), l = 1, . . . , 4, are shown in Fig. 11.
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We have different degrees of nonlinearity as illustrated in Fig. 11 for different E
(l)
0 , l = 1, . . . , 4.

In this example, the group delay for E
(2)
0 (z) is more linear than the others. Therefore, for this

example the best polynomial is E
(2)
0 (z).

The next issue is how to select in general case the best polynomial for E0(z).
Numerous examples indicate that it is necessary to satisfy the following two conditions:

1. The number of zeros of Hc(z) inside and outside the unit circle, Ni and No, respectively,
are related as

Ni ≥ No, (80)

where
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2. For each zero zm inside, and each zero zl outside of the unit circle, we have
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1
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���� < ∣zm∣. (82)

5.3.2 Description of the algorithm
The design parameters of the algorithm are passband and stopband frequencies, ωp and ωs,
respectively, the passband droop Ap and the stopband attenuation As.
The algorithm has the following design steps:

Step 1. We estimate the order of the allpole filter D(z) using results from Section 5.1,

N =
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log10
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10Ap/10 + 1

10Ap/10 − 1
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′′ =
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10As/10 + 1

10As/10 − 1
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If the estimation filter order N is odd, increase it by one.

Step 2. Using the estimated value of N, we calculate the value of the phase φα(N, ωp, Ap) as,

φα(N, ωp, Ap) = ∠

�
−j − 1 − (−1)N/2 tanN

�ωp

2

�
Ap

′′
�

. (84)
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Step 3. Compute poles and zeros of Hc(z) as indicated in the following

1. The zeros and poles of H(z) are obtained using (55), (56), (38) and (39), respectively.

2. The N poles of H(z), which are inside the unit circle, become poles of Hc(z).

3. We select N/2 zeros of H(z) which satisfy conditions (80)–(82) to be zeros of the filter
Hc(z) and the others N/2 zeros are at z = −1.

Step 4. Using the MATLAB function poly.m, we find the transfer function Hc(z).

Example 11. We design the IIR filter with the following specifications: the passband and
stopband frequencies are 0.25π and 0.55π, respectively; the passband droop and stopband
attenuation are 1 dB and 50 dB, respectively.

Step 1. From (83), it follows that N = 12.

Step 2. Using the estimated value N and (84) we have, φα(N, ωp, Ap) = −0.75π.

Step 3. The resulting pole-zero pattern of Hc(z) is shown in Fig. 12a.

Step 4. We compute the filter coefficients of the transfer function Hc(z).
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Fig. 12. Example 11.

The group delay of the designed filter is shown in Fig. 12b, while Figs. 12c and 12d present
the magnitude response.
We compare our result with the traditional IIR Butterworth filter using the following specifi-
cation: the filter order is equal to 12 and ωc = 0.2689π. Figure 12b and 12c show the group
delays and magnitude responses of the Butterworth filter and the proposed one.
Notice that the proposed filter Hc(z) has a better group delay than the traditional Butterworth
filter.

5.4 Complex wavelet IIR filters
The main idea is to generalize the design of real IIR wavelets presented in (Phoong et al., 1995;
Selesnick, 1998) and (Zhang et al., 2006) in a way that the complex case is also included. To
this end we use the general approach for the complex allpole filter design from Section 4.3.
We generalize the result in (Selesnick, 1998), replacing the real allpass filter A(z−2) with the

complex allpass filter Ã(z2), i.e.,

H0(z) =
1

2

[
A(z2) + z−2M+1Ã(z2)

]
, (85)

H1(z) =
1

2

[
A(z2)− z−2M+1Ã(z2)

]
, (86)

where H0(z) and H1(z) are lowpass and highpass filters, respectively, and M is arbitrary inte-
ger.

Knowing that A(z) = 1/Ã(z) (see (14)), it is easy to verify that H0(z) can be rewritten as,

H0(z) =
Ã(z2)

2

[
z−k + A2(z2)

]
, (87)

where
k = 2M − 1. (88)

Now, the problem to design complex filters (85) and (86) is reduced to the design of an allpass
filter A(z), which has the phase response equal to −kω/4 near to ω = 0.
The group delay of A(z) at ω = 0 is equal to k/4. Then, the corresponding group delay τA(0)
of A(z) is expressed as,

τA0 =
2M − 1

4
, (89)

where τA0 = τA(0).
Using (17), the corresponding group delay of the complex allpole filter D(z) is

τ0 =
2M − 4N − 1

8
. (90)

The design of biorthogonal wavelet filter based on real allpass filter is proposed in (Phoong
et al., 1995). The generalization of this result is written in the form

H0(z) =
1

2

[
z−2M + z−1 A(z2)

]
, (91)

H1(z) = −A(z2)H0(z) + z−4M+1, (92)

where A(z) is a complex allpass filter and M is any integer.
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Step 3. Compute poles and zeros of Hc(z) as indicated in the following

1. The zeros and poles of H(z) are obtained using (55), (56), (38) and (39), respectively.

2. The N poles of H(z), which are inside the unit circle, become poles of Hc(z).

3. We select N/2 zeros of H(z) which satisfy conditions (80)–(82) to be zeros of the filter
Hc(z) and the others N/2 zeros are at z = −1.

Step 4. Using the MATLAB function poly.m, we find the transfer function Hc(z).

Example 11. We design the IIR filter with the following specifications: the passband and
stopband frequencies are 0.25π and 0.55π, respectively; the passband droop and stopband
attenuation are 1 dB and 50 dB, respectively.

Step 1. From (83), it follows that N = 12.

Step 2. Using the estimated value N and (84) we have, φα(N, ωp, Ap) = −0.75π.

Step 3. The resulting pole-zero pattern of Hc(z) is shown in Fig. 12a.

Step 4. We compute the filter coefficients of the transfer function Hc(z).
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The group delay of the designed filter is shown in Fig. 12b, while Figs. 12c and 12d present
the magnitude response.
We compare our result with the traditional IIR Butterworth filter using the following specifi-
cation: the filter order is equal to 12 and ωc = 0.2689π. Figure 12b and 12c show the group
delays and magnitude responses of the Butterworth filter and the proposed one.
Notice that the proposed filter Hc(z) has a better group delay than the traditional Butterworth
filter.

5.4 Complex wavelet IIR filters
The main idea is to generalize the design of real IIR wavelets presented in (Phoong et al., 1995;
Selesnick, 1998) and (Zhang et al., 2006) in a way that the complex case is also included. To
this end we use the general approach for the complex allpole filter design from Section 4.3.
We generalize the result in (Selesnick, 1998), replacing the real allpass filter A(z−2) with the

complex allpass filter Ã(z2), i.e.,

H0(z) =
1

2

[
A(z2) + z−2M+1Ã(z2)

]
, (85)

H1(z) =
1

2

[
A(z2)− z−2M+1Ã(z2)

]
, (86)

where H0(z) and H1(z) are lowpass and highpass filters, respectively, and M is arbitrary inte-
ger.

Knowing that A(z) = 1/Ã(z) (see (14)), it is easy to verify that H0(z) can be rewritten as,

H0(z) =
Ã(z2)

2

[
z−k + A2(z2)

]
, (87)

where
k = 2M − 1. (88)

Now, the problem to design complex filters (85) and (86) is reduced to the design of an allpass
filter A(z), which has the phase response equal to −kω/4 near to ω = 0.
The group delay of A(z) at ω = 0 is equal to k/4. Then, the corresponding group delay τA(0)
of A(z) is expressed as,

τA0 =
2M − 1

4
, (89)

where τA0 = τA(0).
Using (17), the corresponding group delay of the complex allpole filter D(z) is

τ0 =
2M − 4N − 1

8
. (90)

The design of biorthogonal wavelet filter based on real allpass filter is proposed in (Phoong
et al., 1995). The generalization of this result is written in the form

H0(z) =
1

2

[
z−2M + z−1 A(z2)

]
, (91)

H1(z) = −A(z2)H0(z) + z−4M+1, (92)

where A(z) is a complex allpass filter and M is any integer.
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In this case, we first design the corresponding allpass filter A(z) having the group delay at
ω = 0 equal to,

τA0 =
2M − 1

2
. (93)

The corresponding group delay τ0 of D(z) is given by, (See (17)),

τ0 =
2M − 2N − 1

4
. (94)

Finally, the generalization of the orthogonal wavelet filters proposed in (Zhang et al., 2006) is
given as,

H0(z) =
1

2

[
1 + z−2M+1Ã(z2)

]
, (95)

H1(z) =
1

2

[
z−1 − z2M A(z2)

]
. (96)

The group delays of the complex allpass filter A(z) and allpole filter D(z) at ω = 0 are the
same as for the filter (91) (see (93) and (94)).
We design the complex allpass filter A(z) using complex Thiran allpole filter D(z) given in
Section 4.3, i.e.,

A(z) = z−N D(z)

D̃(z)
==

e jφα

e−jφα

f ∗N + f ∗N−1z−1 + ⋅ ⋅ ⋅+ z−N

1 + f1z−1 + ⋅ ⋅ ⋅+ fNz−N
. (97)

We can notice that by setting different values of the phase φα of the corresponding complex
allpole filter D(z), we can obtain different types of complex wavelet filters.
The following example illustrates the proposed method.
Example 12. We consider the design of complex wavelet filters using the methods proposed in
(Selesnick, 1998), (Phoong et al., 1995) and (Zhang et al., 2006). We design a complex allpass
filter of order N = 6, the phase value at ω = 0 is equal to φα = −π/5, and delay k = 1.
Therefore, according to (88), M = 1. Additionally, the degree of flatness K in this example is 9
and the filter coefficients are computed using (33).
Substituting the values of M and N into (90) and (94) we compute different group delays of
the allpole filter D(z). In particular, we denote the group delay of D(z) based on equations
(85) and that based on (86) as τ1, and on (91) and (92) as τ2. For the design based on (95)
and (96) we have τ3 = τ2. The values of τ1, τ2 and τ3 are −2.875, −2.75 and −2.75 samples,
respectively. Substituting the values of τ1 and τ2 and the value of φα into (29), we compute the
corresponding filter coefficients.
The magnitude responses of the complex wavelet filters based on (85) and (86) are shown in
Fig. 13a, while the magnitude responses of the complex wavelet filters based on (91) and (92),
and (95) and (96) are shown in Fig. 14b and 14c, respectively.

5.5 Fractional Hilbert transformers
Fractional Hilbert transform has applications in digital communications and signal processing
(Pei & Yeh, 2000; Tseng & Pei, 2000). There exist different techniques for designing fractional
Hilbert transformers (FHT) (Pei & Wang, 2002; Tseng & Pei, 2000). Here, we describe a direct
method for the design of FHT. The method is based on the design of an allpass filter with
desired characteristic.
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Fig. 13. Magnitude response of the designed wavelet filters in Example 12.

The fractional Hilbert transformer is defined as (Pei & Wang, 2002),

Hβ(ω) =

{
e−j βπ

2 0 ≤ ω < π,

e j
βπ
2 −π ≤ ω < 0,

(98)

where β, satisfying 0 ≤ β ≤ 1, is the fraction of the Hilbert transformer.
We can see from (98) that the magnitude response of Hβ(ω) is 1 and the phase response is
given by,

∠Hβ(ω) =

{
− βπ

2 0 ≤ ω < π,
βπ
2 −π ≤ ω < 0.

(99)

Therefore, the design of FHT is reduced to the design of an allpass filter A(z) with the phase
response given in (99). If the allpass filter has real coefficients, it is well known that, its phase
response is an odd function of ω, (Mitra, 2005). Consequently, the allpass filter needs to satisfy
(99) only 0 ≤ ω < π.
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In this case, we first design the corresponding allpass filter A(z) having the group delay at
ω = 0 equal to,

τA0 =
2M − 1

2
. (93)

The corresponding group delay τ0 of D(z) is given by, (See (17)),

τ0 =
2M − 2N − 1

4
. (94)

Finally, the generalization of the orthogonal wavelet filters proposed in (Zhang et al., 2006) is
given as,

H0(z) =
1

2

[
1 + z−2M+1Ã(z2)

]
, (95)

H1(z) =
1

2

[
z−1 − z2M A(z2)

]
. (96)

The group delays of the complex allpass filter A(z) and allpole filter D(z) at ω = 0 are the
same as for the filter (91) (see (93) and (94)).
We design the complex allpass filter A(z) using complex Thiran allpole filter D(z) given in
Section 4.3, i.e.,

A(z) = z−N D(z)

D̃(z)
==

e jφα

e−jφα

f ∗N + f ∗N−1z−1 + ⋅ ⋅ ⋅+ z−N

1 + f1z−1 + ⋅ ⋅ ⋅+ fNz−N
. (97)

We can notice that by setting different values of the phase φα of the corresponding complex
allpole filter D(z), we can obtain different types of complex wavelet filters.
The following example illustrates the proposed method.
Example 12. We consider the design of complex wavelet filters using the methods proposed in
(Selesnick, 1998), (Phoong et al., 1995) and (Zhang et al., 2006). We design a complex allpass
filter of order N = 6, the phase value at ω = 0 is equal to φα = −π/5, and delay k = 1.
Therefore, according to (88), M = 1. Additionally, the degree of flatness K in this example is 9
and the filter coefficients are computed using (33).
Substituting the values of M and N into (90) and (94) we compute different group delays of
the allpole filter D(z). In particular, we denote the group delay of D(z) based on equations
(85) and that based on (86) as τ1, and on (91) and (92) as τ2. For the design based on (95)
and (96) we have τ3 = τ2. The values of τ1, τ2 and τ3 are −2.875, −2.75 and −2.75 samples,
respectively. Substituting the values of τ1 and τ2 and the value of φα into (29), we compute the
corresponding filter coefficients.
The magnitude responses of the complex wavelet filters based on (85) and (86) are shown in
Fig. 13a, while the magnitude responses of the complex wavelet filters based on (91) and (92),
and (95) and (96) are shown in Fig. 14b and 14c, respectively.

5.5 Fractional Hilbert transformers
Fractional Hilbert transform has applications in digital communications and signal processing
(Pei & Yeh, 2000; Tseng & Pei, 2000). There exist different techniques for designing fractional
Hilbert transformers (FHT) (Pei & Wang, 2002; Tseng & Pei, 2000). Here, we describe a direct
method for the design of FHT. The method is based on the design of an allpass filter with
desired characteristic.
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Fig. 13. Magnitude response of the designed wavelet filters in Example 12.

The fractional Hilbert transformer is defined as (Pei & Wang, 2002),

Hβ(ω) =

{
e−j βπ

2 0 ≤ ω < π,

e j
βπ
2 −π ≤ ω < 0,

(98)

where β, satisfying 0 ≤ β ≤ 1, is the fraction of the Hilbert transformer.
We can see from (98) that the magnitude response of Hβ(ω) is 1 and the phase response is
given by,

∠Hβ(ω) =

{
− βπ

2 0 ≤ ω < π,
βπ
2 −π ≤ ω < 0.

(99)

Therefore, the design of FHT is reduced to the design of an allpass filter A(z) with the phase
response given in (99). If the allpass filter has real coefficients, it is well known that, its phase
response is an odd function of ω, (Mitra, 2005). Consequently, the allpass filter needs to satisfy
(99) only 0 ≤ ω < π.
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We use a second order allpass filter and ω = π/2 to design the FHT. Therefore, for an stable
allpass filter, the phase φA(ω) and group delay τA(ω) must be −ℓω − βπ/2 and ℓ, respec-
tively, where ℓ is a positive integer.
Consequently, from (16) and (18), the design parameters of the corresponding allpole filter are

φD(π/2) =
(2 − ℓ− β)π

4
, (100)

τ(π/2) = ℓ/2 − 1. (101)

To ensure stability, from (25), we have

ℓ > ∣ sin((ℓ+ β)π/2)∣. (102)

Substituting (100) and (101) into (23) and (24), we get

fR1 =
2 sin((ℓ+ β)π/2)

ℓ+ 1 − cos((ℓ+ β)π/2)
, (103)

fR2 =
ℓ− 1 + cos((ℓ+ β)π/2)

ℓ+ 1 − cos((ℓ+ β)π/2)
. (104)

Example 13. The design parameter for the fractional Hilbert transformer are β = 0.2, 0.4, 0.6,
0.8, 1 and ℓ = 2. The resulting phase responses are shown in Fig. 14.
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Fig. 14. Designed Fractional Hilbert transformers.

5.6 New design of IIR Butterworth-like filters based on three allpass filters
We address the magnitude approximation of real-valued lowpass Butterworth-like filters
based on a new parallel connection of three allpass filters, that is, the proposed structure is
composed by one real- and two complex-valued allpass filters. The design problem of low-
pass filter is reduced further to design one complex-valued allpole filter with desired charac-
teristics.
The proposed IIR filter is given by

H(z) =
1

3

[
A0(z) + A1(z) + Ã1(z

−1)
]

. (105)

The allpass filters A0(z) and A1(z) must be stable in order that the filter H(z) be stable.

We show that the problem of designing lowpass and stable IIR filter is reduced to designing a
complex-valued allpole filter with desired characteristics.
At first, notice that (105) can be rewritten as

H(z) =
A0(z)

3

[
1 + A(z) + Ã(z−1)

]
, (106)

where A(z) = A1(z)/A0(z) is a complex allpass filter, which can have poles outside the unit
circle due to the zeros of A0(z). The complex allpass filter is defined by (14).
In the following, some characteristics of A(z) are described.
From (106), the corresponding magnitude response of H(z) is

∣H(e jω)∣ = 1

3

∣∣∣1 + e jφA(ω) + e−jφA(−ω)
∣∣∣ , (107)

where φA(ω) is the phase response of A(z).
In order that ∣H(e jω)∣ has the value 1 in the passband and the value 0 in the stopband (ideal
case), the condition φA(ω) = φA(−ω) must be satisfied, that is, the phase response must be
an even function of ω.
Using this property, it follows that A(z) = A(z−1). Consequently, the magnitude response
∣H(e jω)∣ becomes

∣H(e jω)∣ = 1

3
∣1 + 2 cos (φA(ω))∣ . (108)

Considering the passband edge frequency ωp and the attenuation in dB at this frequency point
Ap. From (108) we define

φpA = cos−1

(
3 ⋅ 10−Ap/20 − 1

2

)
, (109)

which gives the desired phase φA(ω) at ωp, i.e., φpA = φA(ωp).

In order to achieve the condition A(z) = A(z−1), the corresponding filter coefficients fn,
n = 0, . . . , N, need to satisfy fn = fN−n, i.e., they must be a symmetric sequence. Generally,
there are two cases that should be considered: N odd and N even. However, one can verify
that N odd implies that at least one pole of A(z) must be on the unit circle. As a consequence,
in our design, we only consider the case where N is even.
Based on (108), We define the following properties for A(z):

ℱ .1 We select three frequency points where the phase response φA(ω) is flat, i.e., ω = 0 for
the passband and ω = ±ωr for the stopband. Furthermore, φA(0) = 0 and φA(±ωr) =
2π/3. This condition ensures that the filter H(z) has flat magnitude response at ω = 0
and ω = ωr.

ℱ .2 The group delay τA at ω = 0 and ω = ωr is 0.

ℱ .3 The phase value φpA is controlled by Ap (see (109)).

We relate the allpass filter A(z) with the corresponding allpole filter.
Using (16) and the phase values φA(ω) at ω = 0 and ω = ±ωr (see Condition ℱ .1), we get
φD(0) = 0 and φD(±ωr) = π/3 ± ωrN/2.
From (18) and Condition ℱ .2, we have τ(0) = τ(±ωr) = −N/2.
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We use a second order allpass filter and ω = π/2 to design the FHT. Therefore, for an stable
allpass filter, the phase φA(ω) and group delay τA(ω) must be −ℓω − βπ/2 and ℓ, respec-
tively, where ℓ is a positive integer.
Consequently, from (16) and (18), the design parameters of the corresponding allpole filter are

φD(π/2) =
(2 − ℓ− β)π

4
, (100)

τ(π/2) = ℓ/2 − 1. (101)

To ensure stability, from (25), we have

ℓ > ∣ sin((ℓ+ β)π/2)∣. (102)

Substituting (100) and (101) into (23) and (24), we get

fR1 =
2 sin((ℓ+ β)π/2)

ℓ+ 1 − cos((ℓ+ β)π/2)
, (103)

fR2 =
ℓ− 1 + cos((ℓ+ β)π/2)

ℓ+ 1 − cos((ℓ+ β)π/2)
. (104)

Example 13. The design parameter for the fractional Hilbert transformer are β = 0.2, 0.4, 0.6,
0.8, 1 and ℓ = 2. The resulting phase responses are shown in Fig. 14.
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Fig. 14. Designed Fractional Hilbert transformers.

5.6 New design of IIR Butterworth-like filters based on three allpass filters
We address the magnitude approximation of real-valued lowpass Butterworth-like filters
based on a new parallel connection of three allpass filters, that is, the proposed structure is
composed by one real- and two complex-valued allpass filters. The design problem of low-
pass filter is reduced further to design one complex-valued allpole filter with desired charac-
teristics.
The proposed IIR filter is given by

H(z) =
1

3

[
A0(z) + A1(z) + Ã1(z

−1)
]

. (105)

The allpass filters A0(z) and A1(z) must be stable in order that the filter H(z) be stable.

We show that the problem of designing lowpass and stable IIR filter is reduced to designing a
complex-valued allpole filter with desired characteristics.
At first, notice that (105) can be rewritten as

H(z) =
A0(z)

3

[
1 + A(z) + Ã(z−1)

]
, (106)

where A(z) = A1(z)/A0(z) is a complex allpass filter, which can have poles outside the unit
circle due to the zeros of A0(z). The complex allpass filter is defined by (14).
In the following, some characteristics of A(z) are described.
From (106), the corresponding magnitude response of H(z) is

∣H(e jω)∣ = 1

3

∣∣∣1 + e jφA(ω) + e−jφA(−ω)
∣∣∣ , (107)

where φA(ω) is the phase response of A(z).
In order that ∣H(e jω)∣ has the value 1 in the passband and the value 0 in the stopband (ideal
case), the condition φA(ω) = φA(−ω) must be satisfied, that is, the phase response must be
an even function of ω.
Using this property, it follows that A(z) = A(z−1). Consequently, the magnitude response
∣H(e jω)∣ becomes

∣H(e jω)∣ = 1

3
∣1 + 2 cos (φA(ω))∣ . (108)

Considering the passband edge frequency ωp and the attenuation in dB at this frequency point
Ap. From (108) we define

φpA = cos−1

(
3 ⋅ 10−Ap/20 − 1

2

)
, (109)

which gives the desired phase φA(ω) at ωp, i.e., φpA = φA(ωp).

In order to achieve the condition A(z) = A(z−1), the corresponding filter coefficients fn,
n = 0, . . . , N, need to satisfy fn = fN−n, i.e., they must be a symmetric sequence. Generally,
there are two cases that should be considered: N odd and N even. However, one can verify
that N odd implies that at least one pole of A(z) must be on the unit circle. As a consequence,
in our design, we only consider the case where N is even.
Based on (108), We define the following properties for A(z):

ℱ .1 We select three frequency points where the phase response φA(ω) is flat, i.e., ω = 0 for
the passband and ω = ±ωr for the stopband. Furthermore, φA(0) = 0 and φA(±ωr) =
2π/3. This condition ensures that the filter H(z) has flat magnitude response at ω = 0
and ω = ωr.

ℱ .2 The group delay τA at ω = 0 and ω = ωr is 0.

ℱ .3 The phase value φpA is controlled by Ap (see (109)).

We relate the allpass filter A(z) with the corresponding allpole filter.
Using (16) and the phase values φA(ω) at ω = 0 and ω = ±ωr (see Condition ℱ .1), we get
φD(0) = 0 and φD(±ωr) = π/3 ± ωrN/2.
From (18) and Condition ℱ .2, we have τ(0) = τ(±ωr) = −N/2.
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Finally, the following relation is obtained using Condition ℱ .3 and (16),

φD(ωp) = φp =
cos−1

(
3⋅10−Ap/20−1

2

)
+ ωpN

2
. (110)

As a consequence, the allpole filter D(z) has to satisfy the following conditions:

𝒢 .1 The phase values of D(z) at ω = 0 and ω = ±ωr are 0 and π/3 ± ωrN/2, respectively.

𝒢 .2 The group delay τ(ω) of D(z) at ω = 0 and ω = ±ωr are −N/2.

𝒢 .3 The phase value of D(z) at ωp, φD(ωp), is given by (110).

For a filter having coefficients given in (40) the Conditions 𝒢 .1 and 𝒢 .2 are satisfied.
From the Condition 𝒢 .3 and (41), the corresponding value of φα becomes

φα(ωp, Ap, ωr) = ∠

{
Rp Ap

′ + 1 + j
√

3(Rp + 1)
}

, (111)

where

Ap
′ =

√
1 + 3 ⋅ 10−Ap/20

1 − 10−Ap/20
. (112)

In order to find the value ωr and the order of the allpole filter N, we solve the following set of
nonlinear equations:

φα(ωp, Ap, ωr)− φα(π, As, ωr) = 0, (113)

φα(ωp, Ap, ωr)− φα(ωs, As, ωr) = 0. (114)

Finally, we wish to find the allpass filters A0(z) and A1(z). First note that F(z), the z-transform
of fn, can be rewritten as F(z) = z−N/2F2(z

−1)F2(z)/β, where F2(z) is a polynomial with all
zeros inside the unit circle, i.e., F2(z) = 1 + f2,1z−1 + ⋅ ⋅ ⋅+ f2,N/2z−N/2, and β = f2,N/2.
Accordingly, the corresponding allpass filters are expressed as,

A0(z) = z−N F2(z
−1)F̃2(z)

F̃2(z−1)F2(z)
, A1(z) = z−N α

α∗
β

β∗
F̃2

2 (z)

F2
2 (z)

. (115)

Example 14. We design the IIR filter based on three allpass filter using the following specifi-
cation: ωp = 0.3π, ωs = 0.55π, Ap = 0.5 dB, and As = 45 dB.
From (111)–(114), it follows that N = 6, ωr = 0.641272π, and φα(ωp, Ap, ωr) = 0.407889π.
Figure 15 shows the magnitude response of the designed IIR filter.

6. Conclusions

In this chapter, we have proposed a new general framework to designing real and complex
allpole filters with given degree of flatness, and with phase and group delays at any desired
set of frequency points. The filter coefficients are obtained by solving a set of linear equations.
In the proposed allpole filter design, we can control the phase, group delay, and degree of
flatness at different frequency points. Consequently, as demonstrated here, our proposal is
useful for special IIR filter designs, i.e., linear-phase Butterworth-like filter, Butterworth-like
filters with improved group delay, complex wavelet filters, fractional Hilbert transformers,
and new IIR filters based on three allpass filters.
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Fig. 15. Magnitude response of the designed IIR filter in Example 14.

Our approach is also useful for the direct design of causal Butterworth filters (Fernandez-
Vazquez & Jovanovic-Dolecek, 2006) and higher order digital audio equalizers (Fernandez-
Vazquez et al., 2007).
As a future work, we will turn our attention to other interesting applications of our proposed
design.

7. Acknowledgments

This work was supported by CONACyT Mexico under Project 49640.

8. References

Andrews, L. C. (1998), Special functions of mathematics for engineers, second edn, Oxford Uni-
versity Press, SPIE Optical Press Engineering.

Chan, S., Chen, H. H. & Pun, K. S. (2005), ‘The design of digital all-pass filter using second-
order cone programming (SOCP)’, IEEE Trans. Circuits Syst. II 52(2), 66–70.

Djokic, B., Popovic, M. & Lutovac, M. (1998), ‘A new improvement to the Powell and Chau
linear phase IIR fitlers’, IEEE Trans. Signal Process. 46(6), 1685–1688.

Fernandes, F. C. A., Selesnick, I. W., Van-Spaendonck, R. L. C. & Burrus, C. S. (2003), ‘Complex
wavelet transform with allpass filters’, Signal Processing 83(5), 1689–1706.

Fernandez-Vazquez, A. & Jovanovic-Dolecek, G. (2006), ‘A new method for the design of IIR
filters with flat magnitude response’, IEEE Trans. Circuits Syst. I 53(8), 1761–1771.

Fernandez-Vazquez, A., Rosas-Romero, R. & Rodriguez-Asomoza, J. (2007), A new method
for designing flat shelving and peaking filters based on allpass filters, in ‘IEEE In-
ternational Conference on Electronics, Communications and Computers (CONIELE-
COMP’07)’, Vol. I, Cholula, Puebla, Mexico. Proceedings in CD.

Galand, C. R. & Nussbaumer, H. J. (1984), ‘New quadrature mirror filter structures’, IEEE
Trans. Acoust., Speech, Signal Process. 32(3), 522–531.

Joshi, Y. V. & Roy, S. D. (1999), ‘Design of IIR multiple notch filters based on all-pass filters’,
IEEE Trans. Circuits Syst. II 46(2), 134–138.



Direct	Design	of	Infinite	Impulse	Response	Filters	based	on	Allpole	Filters 303

Finally, the following relation is obtained using Condition ℱ .3 and (16),

φD(ωp) = φp =
cos−1

(
3⋅10−Ap/20−1

2

)
+ ωpN

2
. (110)

As a consequence, the allpole filter D(z) has to satisfy the following conditions:

𝒢 .1 The phase values of D(z) at ω = 0 and ω = ±ωr are 0 and π/3 ± ωrN/2, respectively.

𝒢 .2 The group delay τ(ω) of D(z) at ω = 0 and ω = ±ωr are −N/2.

𝒢 .3 The phase value of D(z) at ωp, φD(ωp), is given by (110).

For a filter having coefficients given in (40) the Conditions 𝒢 .1 and 𝒢 .2 are satisfied.
From the Condition 𝒢 .3 and (41), the corresponding value of φα becomes
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In order to find the value ωr and the order of the allpole filter N, we solve the following set of
nonlinear equations:

φα(ωp, Ap, ωr)− φα(π, As, ωr) = 0, (113)

φα(ωp, Ap, ωr)− φα(ωs, As, ωr) = 0. (114)

Finally, we wish to find the allpass filters A0(z) and A1(z). First note that F(z), the z-transform
of fn, can be rewritten as F(z) = z−N/2F2(z

−1)F2(z)/β, where F2(z) is a polynomial with all
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Example 14. We design the IIR filter based on three allpass filter using the following specifi-
cation: ωp = 0.3π, ωs = 0.55π, Ap = 0.5 dB, and As = 45 dB.
From (111)–(114), it follows that N = 6, ωr = 0.641272π, and φα(ωp, Ap, ωr) = 0.407889π.
Figure 15 shows the magnitude response of the designed IIR filter.

6. Conclusions

In this chapter, we have proposed a new general framework to designing real and complex
allpole filters with given degree of flatness, and with phase and group delays at any desired
set of frequency points. The filter coefficients are obtained by solving a set of linear equations.
In the proposed allpole filter design, we can control the phase, group delay, and degree of
flatness at different frequency points. Consequently, as demonstrated here, our proposal is
useful for special IIR filter designs, i.e., linear-phase Butterworth-like filter, Butterworth-like
filters with improved group delay, complex wavelet filters, fractional Hilbert transformers,
and new IIR filters based on three allpass filters.
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Our approach is also useful for the direct design of causal Butterworth filters (Fernandez-
Vazquez & Jovanovic-Dolecek, 2006) and higher order digital audio equalizers (Fernandez-
Vazquez et al., 2007).
As a future work, we will turn our attention to other interesting applications of our proposed
design.

7. Acknowledgments

This work was supported by CONACyT Mexico under Project 49640.

8. References

Andrews, L. C. (1998), Special functions of mathematics for engineers, second edn, Oxford Uni-
versity Press, SPIE Optical Press Engineering.

Chan, S., Chen, H. H. & Pun, K. S. (2005), ‘The design of digital all-pass filter using second-
order cone programming (SOCP)’, IEEE Trans. Circuits Syst. II 52(2), 66–70.

Djokic, B., Popovic, M. & Lutovac, M. (1998), ‘A new improvement to the Powell and Chau
linear phase IIR fitlers’, IEEE Trans. Signal Process. 46(6), 1685–1688.

Fernandes, F. C. A., Selesnick, I. W., Van-Spaendonck, R. L. C. & Burrus, C. S. (2003), ‘Complex
wavelet transform with allpass filters’, Signal Processing 83(5), 1689–1706.

Fernandez-Vazquez, A. & Jovanovic-Dolecek, G. (2006), ‘A new method for the design of IIR
filters with flat magnitude response’, IEEE Trans. Circuits Syst. I 53(8), 1761–1771.

Fernandez-Vazquez, A., Rosas-Romero, R. & Rodriguez-Asomoza, J. (2007), A new method
for designing flat shelving and peaking filters based on allpass filters, in ‘IEEE In-
ternational Conference on Electronics, Communications and Computers (CONIELE-
COMP’07)’, Vol. I, Cholula, Puebla, Mexico. Proceedings in CD.

Galand, C. R. & Nussbaumer, H. J. (1984), ‘New quadrature mirror filter structures’, IEEE
Trans. Acoust., Speech, Signal Process. 32(3), 522–531.

Joshi, Y. V. & Roy, S. D. (1999), ‘Design of IIR multiple notch filters based on all-pass filters’,
IEEE Trans. Circuits Syst. II 46(2), 134–138.



Signal	Processing304

Jovanovic-Dolecek, G., ed. (2002), Multirate Systems: Design and Applications, Idea Group Pub-
lishing.

Kim, S. G. & Yoo, C. D. (2003), ‘Highly selective M-channel IIR cosine-modulated filter banks’,
IEE, Electronics Letters 39(20), 1478–1479.

Laakso, T. I., Välimäki, V., Karjalainen, M. & Laine, U. K. (1996), ‘Splitting the unit delay’, IEEE
Signal Process. Mag. 13(1), 30–60.

Lang, M. (1998), ‘Allpass filter design and applications’, IEEE Trans. Signal Process. 46(9), 2505–
2514.

Lee, J.-H. & Yang, Y.-H. (2004), ‘Minimax design of two-channel nonuniform-division filter-
banks using IIR allpass filters’, IEEE Trans. Signal Process. 52(11), 3227–3240.

Mitra, S. K. (2005), Digital Signal Processing: A computer based approach, third edn, Mc Graw
Hill.

Pei, S.-C. & Tseng, C.-C. (1997), ‘IIR multiple notch filter design based on allpass filter’, IEEE
Trans. Circuits Syst. II 44(2), 133–136.

Pei, S.-C. & Wang, P.-H. (2002), Maximally flat allpass fractional Hilbert transformer, in ‘Proc.
IEEE Int. Symp. Circuits Syst. (ISCAS’02)’, Vol. V, Scottsdale, Arizona, pp. 701–704.

Pei, S.-C. & Yeh, M.-H. (2000), ‘Discrete fractional Hilbert transform’, IEEE Trans. Circuits Syst.
II 47(11), 1307–1311.

Phoong, S.-M., Kim, C. W., Vaidynathan, P. P. & Ansary, R. (1995), ‘A new class of two-channel
biorthogonal filter banks and wavelets bases’, IEEE Trans. Signal Process. 43(3), 393–
396.

Powell, S. R. & Chau, P. M. (1991), ‘A technique for linear phase IIR filters’, IEEE Trans. Signal
Process. 39(11), 2425–2435.

Pun, C. K. & Chan, S. C. (2003), The minimax design digital all-pass filters with prescribed
pole radius constraint using semidefinite programming (SDP), in ‘Proc. IEEE Int.
Conf. Acoustics, Speech, Signal Processing (ICASSP’03)’, Vol. VI, Hong Kong, China,
pp. 413–416.

Saramaki, T. & Bregovic, R. (2002), Multirate Systems and Filter Banks, in Jovanovic-Dolecek
(2002), chapter 2.

Selesnick, I. W. (1998), ‘Formulas for orthogonal IIR wavelet filters’, IEEE Trans. Signal Process.
46(4), 1138–1141.

Selesnick, I. W. (1999), ‘Low-pass filter realizable as all-pass sums: Design via a new flat delay
filter’, IEEE Trans. Circuits Syst. II 46(1), 40–50.

Surma-aho, K. & Saramaki, T. (1999), ‘A systematic technique for designing approximately
linear phase recursive digital filters’, IEEE Trans. Circuits Syst. II 46(7), 956–963.

Thiran, J. P. (1971), ‘Recursive digital filters with maximally flat group delay’, IEEE Trans.
Circuit Theory CT–18(6), 659–664.

Tseng, C.-C. & Pei, S.-C. (1998), ‘Complex notch filter design using allpass filter’, IEE, Electron-
ics Letters 34(10), 966–967.

Tseng, C.-C. & Pei, S.-C. (2000), ‘Design and application of discrete-time fractional Hilbert
transformer’, IEEE Trans. Circuits Syst. II 47(12), 1529–1533.

Vaidyanathan, P. P. & Chen, T. (1998), ‘Structures for anticausal inverses and application in
multirate filter banks’, IEEE Trans. Signal Process. 46(2), 507–514.

Vaidyanathan, P. P., Regalia, P. A. & Mitra, S. K. (1987), ‘Design of doubly complementary IIR
digital filters using a single complex allpass filter, with multirate applications’, IEEE
Trans. Circuits Syst. 34(4), 378–389.

Zhang, X. & Amaratunga, K. (2002), ‘Closed-form design of maximally flat IIR half-band fil-
ters’, IEEE Trans. Circuits Syst. II 49(6), 409–417.

Zhang, X. & Iwakura, H. (1999), ‘Design of IIR digital allpass filters based on eigenvalue prob-
lem’, IEEE Trans. Signal Process. 47(2), 554–559.

Zhang, X., Kato, A. & Yoshikawa, T. (2001), ‘A new class of orthonormal symmetric wavelet
bases using a complex allpass filter’, IEEE Trans. Signal Process. 49(11), 2640–2647.

Zhang, X., Muguruma, T. & Yoshikawa, T. (2000), ‘Design of orthogonal symmetric wavelet
filter using real allpass filters’, Signal Processing 80(8), 1551–1559.

Zhang, X., Wang, W., Yoshikawa, T. & Takei, Y. (2006), ‘Design of IIR orthogonal wavelet filter
banks using lifting scheme’, IEEE Trans. Signal Process. 54(7), 2616–2624.



Direct	Design	of	Infinite	Impulse	Response	Filters	based	on	Allpole	Filters 305

Jovanovic-Dolecek, G., ed. (2002), Multirate Systems: Design and Applications, Idea Group Pub-
lishing.

Kim, S. G. & Yoo, C. D. (2003), ‘Highly selective M-channel IIR cosine-modulated filter banks’,
IEE, Electronics Letters 39(20), 1478–1479.

Laakso, T. I., Välimäki, V., Karjalainen, M. & Laine, U. K. (1996), ‘Splitting the unit delay’, IEEE
Signal Process. Mag. 13(1), 30–60.

Lang, M. (1998), ‘Allpass filter design and applications’, IEEE Trans. Signal Process. 46(9), 2505–
2514.

Lee, J.-H. & Yang, Y.-H. (2004), ‘Minimax design of two-channel nonuniform-division filter-
banks using IIR allpass filters’, IEEE Trans. Signal Process. 52(11), 3227–3240.

Mitra, S. K. (2005), Digital Signal Processing: A computer based approach, third edn, Mc Graw
Hill.

Pei, S.-C. & Tseng, C.-C. (1997), ‘IIR multiple notch filter design based on allpass filter’, IEEE
Trans. Circuits Syst. II 44(2), 133–136.

Pei, S.-C. & Wang, P.-H. (2002), Maximally flat allpass fractional Hilbert transformer, in ‘Proc.
IEEE Int. Symp. Circuits Syst. (ISCAS’02)’, Vol. V, Scottsdale, Arizona, pp. 701–704.

Pei, S.-C. & Yeh, M.-H. (2000), ‘Discrete fractional Hilbert transform’, IEEE Trans. Circuits Syst.
II 47(11), 1307–1311.

Phoong, S.-M., Kim, C. W., Vaidynathan, P. P. & Ansary, R. (1995), ‘A new class of two-channel
biorthogonal filter banks and wavelets bases’, IEEE Trans. Signal Process. 43(3), 393–
396.

Powell, S. R. & Chau, P. M. (1991), ‘A technique for linear phase IIR filters’, IEEE Trans. Signal
Process. 39(11), 2425–2435.

Pun, C. K. & Chan, S. C. (2003), The minimax design digital all-pass filters with prescribed
pole radius constraint using semidefinite programming (SDP), in ‘Proc. IEEE Int.
Conf. Acoustics, Speech, Signal Processing (ICASSP’03)’, Vol. VI, Hong Kong, China,
pp. 413–416.

Saramaki, T. & Bregovic, R. (2002), Multirate Systems and Filter Banks, in Jovanovic-Dolecek
(2002), chapter 2.

Selesnick, I. W. (1998), ‘Formulas for orthogonal IIR wavelet filters’, IEEE Trans. Signal Process.
46(4), 1138–1141.

Selesnick, I. W. (1999), ‘Low-pass filter realizable as all-pass sums: Design via a new flat delay
filter’, IEEE Trans. Circuits Syst. II 46(1), 40–50.

Surma-aho, K. & Saramaki, T. (1999), ‘A systematic technique for designing approximately
linear phase recursive digital filters’, IEEE Trans. Circuits Syst. II 46(7), 956–963.

Thiran, J. P. (1971), ‘Recursive digital filters with maximally flat group delay’, IEEE Trans.
Circuit Theory CT–18(6), 659–664.

Tseng, C.-C. & Pei, S.-C. (1998), ‘Complex notch filter design using allpass filter’, IEE, Electron-
ics Letters 34(10), 966–967.

Tseng, C.-C. & Pei, S.-C. (2000), ‘Design and application of discrete-time fractional Hilbert
transformer’, IEEE Trans. Circuits Syst. II 47(12), 1529–1533.

Vaidyanathan, P. P. & Chen, T. (1998), ‘Structures for anticausal inverses and application in
multirate filter banks’, IEEE Trans. Signal Process. 46(2), 507–514.

Vaidyanathan, P. P., Regalia, P. A. & Mitra, S. K. (1987), ‘Design of doubly complementary IIR
digital filters using a single complex allpass filter, with multirate applications’, IEEE
Trans. Circuits Syst. 34(4), 378–389.

Zhang, X. & Amaratunga, K. (2002), ‘Closed-form design of maximally flat IIR half-band fil-
ters’, IEEE Trans. Circuits Syst. II 49(6), 409–417.

Zhang, X. & Iwakura, H. (1999), ‘Design of IIR digital allpass filters based on eigenvalue prob-
lem’, IEEE Trans. Signal Process. 47(2), 554–559.

Zhang, X., Kato, A. & Yoshikawa, T. (2001), ‘A new class of orthonormal symmetric wavelet
bases using a complex allpass filter’, IEEE Trans. Signal Process. 49(11), 2640–2647.

Zhang, X., Muguruma, T. & Yoshikawa, T. (2000), ‘Design of orthogonal symmetric wavelet
filter using real allpass filters’, Signal Processing 80(8), 1551–1559.

Zhang, X., Wang, W., Yoshikawa, T. & Takei, Y. (2006), ‘Design of IIR orthogonal wavelet filter
banks using lifting scheme’, IEEE Trans. Signal Process. 54(7), 2616–2624.



Signal	Processing306



Robust	Unsupervised	Speaker	Segmentation	for	Audio	Diarization 307

Robust	Unsupervised	Speaker	Segmentation	for	Audio	Diarization

Hachem	Kadri,	Manuel	Davy	and	Noureddine	Ellouze

0

Robust Unsupervised Speaker Segmentation
for Audio Diarization

Hachem Kadri1, Manuel Davy1 and Noureddine Ellouze2

1LAGIS, UMR CNRS 8146 and INRIA SequeL Team
France

2Unité de Recherche Signal, Image et Reconnaissance de Formes
Tunisia

1. Introduction

Audio diarization Reynolds & Carrasquillo (2005) is the process of partitioning an input au-
dio stream into homogeneous regions according to their specific audio sources. These sources
can include audio type (speech, music, background noise, ect.), speaker identity and channel
characteristics. With the continually increasing number of larges volumes of spoken docu-
ments including broadcasts, voice mails, meetings and telephone conversations, diarization
has received a great deal of interest in recent years which significantly impacts performances
of automatic speech recognition and audio indexing systems. A subtype of audio diarization,
where the speech segments of the signal are broken into different speakers, is speaker di-
arization Tranter & Reynolds (2006). It generally answers to the question "Who spoke when?"
and it is divided in two modules: speaker segmentation and speaker clustering. The goal
of speaker segmentation is finding the times when there is a change of speaker in the au-
dio stream. Speaker clustering consists in merging speech segments, detected by the speaker
segmentation step, related to a same speaker.
Recently, three main domains of application for speaker segmentation have received special
attention Reynolds & Carrasquillo (2004):

- Broadcast news : Radio and TV programs with various kinds of programming, usually
containing commercial breaks and music, over a single channel.

- Recorded meetings: meetings or lectures where multiple people interact in the same
room or over the phone. Normally recordings are made with several microphones.

- Phone conversations: single channel recordings of phone conversations between two or
more people.

Segmenting this types of audio stream in terms of speakers is useful in many application. In
Automatic Speech Recognition (ASR) Moraru et al. (2003), for example, an initial segmenta-
tion is required in terms of homogeneous speech and non-speech regions. Having segmented
speech regions, it is also often necessary to segment these further in terms of homogeneous
speaker turns. In addition to improving ASR systems, speaker turn information can be help-
ful for speaker adaptation in rich transcription of videos and meetings Bonastre et al. (2000)
and for content based audio classification and retrieval Hansen et al. (2005) which have a wide
range of applications in the entertainment industry, audio archive management, surveillance,
etc. Audio segmentation would also be an important tool in summarizing meetings, which
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has recently gained a lot of interest in the research community. For example, segmentation of
the speech data in terms of speakers could help in efficient navigation through audio docu-
ments like meeting recordings Dielmann & Renals (2007); Jin & Schultz (2004). Using these
segmentation queues, an interested user can directly access a particular segment of the speech
made by a particular speaker.

1.1 Previous works
Recent research on audio segmentation mostly focused on four categories: energy based,
model-based Kemp et al. (2000), metric-based Delacourt & Wellekens (2000), and informa-
tion criterion-based approaches Cettolo & Vescovi (2003); Chen & Gopalakrishnan (1998);
M.Cettolo & M.Federico (2000). Energy audio segmentation only detects change-points at si-
lence segments, which generally are not directly connected with the acoustic changes of the
audio signals. Model-based segmentation approach requires predefined audio classes and
complete training data. The metric-based approach are not stable and need thresholds gener-
ally selected from experiments results. The information criterion-based scheme are proposed
for evaluating models constructed by various estimation procedures when the specified fam-
ily of probability distributions does not contain the distribution generating the data. The so-
called Delta Bayesian information criterion (BIC) segmentation algorithm is widely employed
in many studies Chen & Gopalakrishnan (1998). The BIC is intended to provide a measure
of the weight of evidence favoring one model over another. According to previous research,
the Delta-BIC is threshold-free and suitable for unknown acoustic conditions. However, this
method, extremely computationally expensive, can introduce an estimation error due to insuf-
ficient data when the speaker turns are close to each other Huang & Hansen (2004). In order
to minimize these effects, Delacourt Delacourt & Wellekens (2000)tested different metric cri-
teria to associate them to the BIC criterion such as the Kullbach-Leibler distance, the similarity
measure and the Generalized Likelihood Ratio measure (GLR). Still, this method encountered
problems in case of short segments and requires also a high computation cost. On another
issue, Zhou Zhou & Hansen (2000)recommends the use of the T2−Statistic for metric-based
segmentation in the aim to reduce this computation cost. However its technique, T2−BIC,
depends on many empiric parameters which affect the quality of the detection of speaker
turns. In our previous work Kadri et al. (2006), we developed a hybrid segmentation algo-
rithm called DIS_T2_BIC to improve the detection of speaker turns close to each others using
a fixed threshold independent of the type of the audio stream with a low computation cost.
Nevertheless all of these techniques suppose that the audio signal don’t contains different
acoustic changes and simultaneous speeches of two or more speakers and then find difficul-
ties in segmenting streams containing background noise and overlapped speeches.

1.2 Contributions and Chapter organization
The main focus of this chapter is to introduce a new unsupervised speaker segmentation tech-
nique robust to different acoustic conditions. In most commonly used model selection seg-
mentation techniques like BIC segmentation, the basic problem may be viewed as a two-class
classification where the object is to determine whether N consecutive audio frames constitute
a single homogeneous of frames W or two such windows: W1 and W2 with the boundary
frame or change occurring at the ith frame. In order to detect if a speaker change occurred
within a window of N frames, two models are built. One which represents the entire window
by a Gaussian characterized by µ (mean) , Σ (variance) ; a second which represents the win-
dow up to the ith frame, W1 with µ1,Σ1 and the remaining part, W2, with a second Gaussian

µ2,Σ2. This representation using a gaussian process is not totally exact when the audio stream
contains overlapped speeches and very short segments. To solve this problem, our proposed
segmentation technique use the one class SVM and exponential family model to maximize the
generalized likelihood ratio with any probability distribution of windows Kadri et al. (August
2008). Moreover, we use the discrete wavelet coefficient (DWC) to improve the detection of
speaker changes in the presence of background noise. The use of these coefficient is suitable
since our technique is insensitive to the dimension of acoustic features.
The remainder of this chapter is organized as follows. Section 2 details previous audio seg-
mentation techniques based on BIC. Section 3 reviews the support vector machines approach
and the exponential family model. The proposed speaker change detection method is illus-
trated in section 4. Experimental results are provided in Section 5. Section 6 concludes the
paper with a summary and discussion.

2. Previous techniques: BIC based segmentation techniques

Model selection based speaker segmentation is proposed by Chen and Gopalakrishnan Chen
& Gopalakrishnan (1998). Their method employs the bayesian information criterion as model
selection criterion, illustrating several desirable properties such as robustness, threshold inde-
pendence and optimality.

2.1 BIC Segmentation
BIC Chen & Gopalakrishnan (1998) is a model selection criterion penalized by the model com-
plexity (amount of free parameters in the model). For a given acoustic segment Xi, the BIC
value of a model Mi indicates how well the model fits the data, and is determined by:

BIC(X, M) = log L(Xi, Mi)−
λ

2
#(Mi) · log(Ni) (1)

log L(Xi, Mi) is the log-likelihood of the data given the considered model, Ni is the number of
frames in the considered segment, #(Mi) the number of free parameters to estimate in model
Mi and λ is a free design parameter dependent on the data being modelled. λ determines the
’weight’ applied to model parameters, theoretically 1, but tunable in practice. Given several
different candidate models to explain a single dataset, the model with the largest BIC gives
the best fit according to this criterion.
The BIC-based segmentation procedure is as follows: A sequence of d-dimensional audio fea-
ture vectors X = xi ∈ Rd : i = 1, . . . , N are modelled as independent draws from either one
or two multivariate Gaussian distributions. The null hypothesis is that the entire sequence is
drawn from a single distribution:

H0 = {x1, . . . , xN} ∼ N (µ0, Σ0)

where N(µ, Σ) denotes a multivariate Gaussian distribution with mean vector µ and full co-
variance matrix Σ. The null hypothesis is compared to the hypothesis of having a segment
boundary after sample t i.e. that the first t points are drawn from one distribution and that
the remaining points come from a different distribution:

H1 : {x1, . . . , xt} ∼ N (µ1, Σ1)

{xt+1, . . . , xN} ∼ N (µ2, Σ2)
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has recently gained a lot of interest in the research community. For example, segmentation of
the speech data in terms of speakers could help in efficient navigation through audio docu-
ments like meeting recordings Dielmann & Renals (2007); Jin & Schultz (2004). Using these
segmentation queues, an interested user can directly access a particular segment of the speech
made by a particular speaker.

1.1 Previous works
Recent research on audio segmentation mostly focused on four categories: energy based,
model-based Kemp et al. (2000), metric-based Delacourt & Wellekens (2000), and informa-
tion criterion-based approaches Cettolo & Vescovi (2003); Chen & Gopalakrishnan (1998);
M.Cettolo & M.Federico (2000). Energy audio segmentation only detects change-points at si-
lence segments, which generally are not directly connected with the acoustic changes of the
audio signals. Model-based segmentation approach requires predefined audio classes and
complete training data. The metric-based approach are not stable and need thresholds gener-
ally selected from experiments results. The information criterion-based scheme are proposed
for evaluating models constructed by various estimation procedures when the specified fam-
ily of probability distributions does not contain the distribution generating the data. The so-
called Delta Bayesian information criterion (BIC) segmentation algorithm is widely employed
in many studies Chen & Gopalakrishnan (1998). The BIC is intended to provide a measure
of the weight of evidence favoring one model over another. According to previous research,
the Delta-BIC is threshold-free and suitable for unknown acoustic conditions. However, this
method, extremely computationally expensive, can introduce an estimation error due to insuf-
ficient data when the speaker turns are close to each other Huang & Hansen (2004). In order
to minimize these effects, Delacourt Delacourt & Wellekens (2000)tested different metric cri-
teria to associate them to the BIC criterion such as the Kullbach-Leibler distance, the similarity
measure and the Generalized Likelihood Ratio measure (GLR). Still, this method encountered
problems in case of short segments and requires also a high computation cost. On another
issue, Zhou Zhou & Hansen (2000)recommends the use of the T2−Statistic for metric-based
segmentation in the aim to reduce this computation cost. However its technique, T2−BIC,
depends on many empiric parameters which affect the quality of the detection of speaker
turns. In our previous work Kadri et al. (2006), we developed a hybrid segmentation algo-
rithm called DIS_T2_BIC to improve the detection of speaker turns close to each others using
a fixed threshold independent of the type of the audio stream with a low computation cost.
Nevertheless all of these techniques suppose that the audio signal don’t contains different
acoustic changes and simultaneous speeches of two or more speakers and then find difficul-
ties in segmenting streams containing background noise and overlapped speeches.

1.2 Contributions and Chapter organization
The main focus of this chapter is to introduce a new unsupervised speaker segmentation tech-
nique robust to different acoustic conditions. In most commonly used model selection seg-
mentation techniques like BIC segmentation, the basic problem may be viewed as a two-class
classification where the object is to determine whether N consecutive audio frames constitute
a single homogeneous of frames W or two such windows: W1 and W2 with the boundary
frame or change occurring at the ith frame. In order to detect if a speaker change occurred
within a window of N frames, two models are built. One which represents the entire window
by a Gaussian characterized by µ (mean) , Σ (variance) ; a second which represents the win-
dow up to the ith frame, W1 with µ1,Σ1 and the remaining part, W2, with a second Gaussian

µ2,Σ2. This representation using a gaussian process is not totally exact when the audio stream
contains overlapped speeches and very short segments. To solve this problem, our proposed
segmentation technique use the one class SVM and exponential family model to maximize the
generalized likelihood ratio with any probability distribution of windows Kadri et al. (August
2008). Moreover, we use the discrete wavelet coefficient (DWC) to improve the detection of
speaker changes in the presence of background noise. The use of these coefficient is suitable
since our technique is insensitive to the dimension of acoustic features.
The remainder of this chapter is organized as follows. Section 2 details previous audio seg-
mentation techniques based on BIC. Section 3 reviews the support vector machines approach
and the exponential family model. The proposed speaker change detection method is illus-
trated in section 4. Experimental results are provided in Section 5. Section 6 concludes the
paper with a summary and discussion.

2. Previous techniques: BIC based segmentation techniques

Model selection based speaker segmentation is proposed by Chen and Gopalakrishnan Chen
& Gopalakrishnan (1998). Their method employs the bayesian information criterion as model
selection criterion, illustrating several desirable properties such as robustness, threshold inde-
pendence and optimality.

2.1 BIC Segmentation
BIC Chen & Gopalakrishnan (1998) is a model selection criterion penalized by the model com-
plexity (amount of free parameters in the model). For a given acoustic segment Xi, the BIC
value of a model Mi indicates how well the model fits the data, and is determined by:

BIC(X, M) = log L(Xi, Mi)−
λ

2
#(Mi) · log(Ni) (1)

log L(Xi, Mi) is the log-likelihood of the data given the considered model, Ni is the number of
frames in the considered segment, #(Mi) the number of free parameters to estimate in model
Mi and λ is a free design parameter dependent on the data being modelled. λ determines the
’weight’ applied to model parameters, theoretically 1, but tunable in practice. Given several
different candidate models to explain a single dataset, the model with the largest BIC gives
the best fit according to this criterion.
The BIC-based segmentation procedure is as follows: A sequence of d-dimensional audio fea-
ture vectors X = xi ∈ Rd : i = 1, . . . , N are modelled as independent draws from either one
or two multivariate Gaussian distributions. The null hypothesis is that the entire sequence is
drawn from a single distribution:

H0 = {x1, . . . , xN} ∼ N (µ0, Σ0)

where N(µ, Σ) denotes a multivariate Gaussian distribution with mean vector µ and full co-
variance matrix Σ. The null hypothesis is compared to the hypothesis of having a segment
boundary after sample t i.e. that the first t points are drawn from one distribution and that
the remaining points come from a different distribution:

H1 : {x1, . . . , xt} ∼ N (µ1, Σ1)

{xt+1, . . . , xN} ∼ N (µ2, Σ2)
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The difference in BIC scores between these two models is a function of the candidate boundary
position t:

∆BIC(t) = log(
L(X\H0)

L(X\H1)
)− λ

2
d2 + 3d

2
log(N) (2)

where L(X\H0) is the likelihood of X under hypothesis H0 etc., and (d2 + 3d)/2 is the number
of extra parameters in the two-model hypothesis H1. When ∆BIC(t) > 0, we place a segment
boundary at time t, and then begin searching again to the right of this boundary and the search
window size N is reset. If no candidate boundary t meets this criteria, the search window size
is increased, and the search across all possible boundaries t is repeated. This continues until
the end of the signal is reached.

2.2 T2-BIC
T2-BIC Zhou & Hansen (2000) is a variant of BIC segmentation technique which validates each
speaker change point detected by Hotelling’s T2-statistic using the BIC criterion. Hotelling’s
T2-statistic is a multivariate analogue of the square of the t-distribution Anderson (1985). The
T2-statistic is used when we wish to test if the mean of one normal population is equal to the
mean of the other where the covariance matrices are assumed equal but unknown. In terms
of segmentation Wegmann et al. (1999), the problem can be viewed as testing the hypothesis
H0 : µ1 = µ2 against the alternative H0 : µ1 �= µ2 where µ1, µ2 are, respectively, the means
of two samples of the audio stream, one containing the frame [1, b] and the second contains
[b, N]. The likelihood ratio test is given by the following T2-statistic:

T2 =
b(N − b)

N
(µ1 − µ2)

′Σ−1(µ1 − µ2) (3)

where Σ represent the common covariance matrix. The T2 value defined in 3 can be considered
as a distance measure of two samples. Obviously, the smaller the value of T2, the more similar
the two samples distributions. The T2-BIC algorithm operates by fixing an analysis frame
with L second length from the beginning of the parameterized audio stream and calculating
the T2 value in different points situated on this frame; the point that represents the highest
value of T2 is more probable to be a real speaker turns; then it can be validated by the BIC
criterion. The T2-BIC segmentation presents certainly some advantages. The selection, from
the statistical criteria T2, of a candidate speaker change permits to reduce computational costs.
Thus, T2-BIC offers a reduced calculation time compared to the BIC segmentation. Besides,
this technique works with an automatic threshold and presents a low false alarm. However,
T2-BIC is not reliable for the segmentation of audio documents that contain speaker changes
close to each other. In fact, it requires the use of a time delay τ Zhou & Hansen (2000) between
two consecutive speaker turns which can lead missing some break points.

2.3 DIS_T2_BIC
Like T2-BIC, DIS_T2_BIC Kadri et al. (2006) is a speaker segmentation algorithm which pro-
cess with a fixed threshold and low computation cost. It is proposed to improve speaker turns
detection even they are close to each other. DIS_T2_BIC is based in a hybrid concept which
is organized in two steps: the detection of most probable speaker turns and the validation of
changes already detected. Speaker turns are detected by computing the value of T2 between
a pair of adjacent windows of the same size shifted by a fixed step along the whole param-
eterized speech signal. In the end of this procedure we obtain the curve of the variation of

T2 in time. A speaker change point is characterized by the presence of a high value peak. To
differentiate high peaks from low peaks, a fixed threshold is defined as below:

T2 >
(N − 2)p
N − p − 1

Fp,N−p−1(α) = T2
0

where Fp,N−p−1 is the F-point for p and N − p− 1 degrees of freedom with significance level α.
A T2 value lower than T2

0 shows that the two samples are homogenous and consequently don’t
present a speaker change. So, break points can be detected by searching the local maxima of
the T2 curve that verify the criterion 2.3. The validation of already detected break points is
made using the BIC criterion. Denote {T1, ..., TN} as the set of speaker turns found in the
first step, a ∆BIC value is computed for each pair of windows [Ti−1, Ti] [Ti, Ti+1]. When this
value is positive, a speaker turn is identified at time i. Otherwise, the point i is discarded
from the candidate set, then the ∆BIC value is applied again for a larger pair of windows
[Ti−1, Ti+1] [Ti+1, Ti+2]. At this stage, when segments are large enough, BIC criterion gives
better validation results since model estimation becomes more accurate. Detecting speaker
changes from the curve of T2 gives to DIS_T2_BIC the advantage to detect speaker turns
close to each others and the use of the T2-statistic criteria permits to reduce the computation
cost and to have an automatic threshold decision independent of the type of the audio stream.
However, like others BIC based segmentation technique, suppose that the audio signal don’t
contains different acoustic changes and simultaneous speeches of two or more speakers and
then find difficulties to segment audio streams containing background noise and overlapped
speeches.

3. Background information

This section provides a brief review of reproducing kernel Hilbert spaces, One-class Support
Vector Machines and exponential families.

3.1 reproducing kernel Hilbert spaces Aronszajn (1950)
Let X be a set, and H be a Hilbert space included in the set of all functions on X . The Hilbert
space H is called reproducing kernel Hilbert space (RKHS) if the evaluation functional ex :
H � f �−→ f (x) ∈ R is continuous on H for any x ∈ X .
A function k : X ×X −→ R is a positive kernel if it is symmetric and for any points x1, ...xn in
X the matrix (k(xi, xj))i,j is positive semidefinite, i.e., for any sequence of scalar α1, ...αn the
inequality ∑

n
i,j=1 αiαjk(xi, xj) ≥ 0 is verified.

Using Riesz’s theorem, If H is a RKHS on X then there exists a function k(., x) ∈ H, called
reproducing kernel, such that ex( f ) = f (x) = 〈 f (.), k(., x)〉H, where 〈 , 〉H is the inner product
of H. The function k(x, y) is a positive definite kernel, because it is symmetric from k(y, x) =
〈k(., x), k(., y)〉H = 〈k(., y), k(., x)〉H = k(x, y), and positive definite from ∑i,j αiαjk(xi, xj) =

‖∑i αik(., xi)‖2
H ≥ 0.

In the other hand, it is known that for a positive definite kernel k on X there uniquely exists
a Hilbert space Hk such that 〈 f (.), k(., x)〉Hk = f (x) holds for any f ∈ Hk and x ∈ X . This
propriety means that Hk is a RKHS with a reproduicing kernel k. given a RKHS H and its
reproducing kernel k(., x), because of the uniqueness of the reproducing kernel, we can con-
clude that the Hilbert space Hk constructed by k is identic to H. So there is a bijection between
the set of all possible RKHS and the set of all positive kernels.
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The difference in BIC scores between these two models is a function of the candidate boundary
position t:
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L(X\H0)

L(X\H1)
)− λ

2
d2 + 3d

2
log(N) (2)
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the end of the signal is reached.

2.2 T2-BIC
T2-BIC Zhou & Hansen (2000) is a variant of BIC segmentation technique which validates each
speaker change point detected by Hotelling’s T2-statistic using the BIC criterion. Hotelling’s
T2-statistic is a multivariate analogue of the square of the t-distribution Anderson (1985). The
T2-statistic is used when we wish to test if the mean of one normal population is equal to the
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N
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′Σ−1(µ1 − µ2) (3)
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0
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3.2 One-Class SVM
The One-class approach was proposed by Schölkopf Smola & Shawe-Taylor (2000) and has
been successfully aused for novetly detection. Davy & Godsill (2002) Davy et al. (2006) Des-
obry et al. (2005). 1-SVM distinguishes one class of data from the rest of the feature space
given only a positive data set. Based on a strong mathematical foundation, 1-SVM draws a
nonlinear boundary of the positive data set in the feature space using a parameter to control
the noise in the training data and another one to control the smoothness of the boundary.
The 1-class SVM is a method that aims at learning a single class, by determining its contours.
To explain 1-class SVM, we can begin by giving a kernel. A kernel k(x, y) is a positive and
symmetric function of two variables (for more details see [12]) lying in a Reproducing Kernel
Hilbert Space with the scalar product:

〈 f , g〉H =
k

∑
i=1

l

∑
j=1

figik(xi, yj) (4)

In this framework, the 1-class SVM problem with the sample (xi), i = 1, . . . , m is the solution
of the following optimisation problem under constraints for f ∈ H :







min f ,ρ,ξ
1
2‖ f ‖2

H + C ∑
m
i=1 ξi − ρ

s.t. f (xi) > ρ − ξi i = 1, . . . , m
and ξi ≥ 0, i = 1, . . . , m

(5)

where C is a scalar that adjusts the smoothness of the decision function, ρ is a scalar called
bias and ξ are slack variables. The dual formulation is:







maxα∈Rm
−1
2 αTKα

s.t. αTe = 1
and 0 < αi < C, i = 1, . . . , m

(6)

where K is the kernel matrix Kij = k(xi, xj) and e = [1, . . . , 1]T . The 1-class SVM solution
is then given by solving a quadratic optimization problem of dimension m under box con-
straints. The decision function is D(x) = sign( f (x)− ρ). The input points are considered as
part of the current class as long as the decision function is positive.

3.3 Exponential family
The exponential family covers a large number (and well-known classes) of distributions such
as Gaussian, Multinomial and poisson. A general representation of a exponential family is
given by the following probability density function:

p(x|η) = h(x) exp{ηTT(x)− A(η)} (7)

where h(x) is called the base density which is always ≥ 0,
η is the natural parameter,
T(x) is the sufficient statistic vector
A(η) is the cumulant generating function or the log normalizer.
The choice of T(x) and h(x) determines the member of the exponential family. Also we know
that since this is a density function,

∫

h(x) exp{ηTT(x)− A(η)}dx = 1 (8)

then,
A(η) = log

∫
exp[ηTT(x)]h(x)dx (9)

For a Gaussian distribution, p(x|µ, σ2) = 1√
2π

exp( µ
σ2 x − 1

2σ2 x2 − µ2

2σ2 − logσ). In this case,

h(x) = 1√
2π

, η = [
µ
σ2 , −1

2σ2 ] and T(x) = [x, x2]. Thus, Gaussian distribution is included in the
exponential family.
The density function of a exponential family can be written in the case of presence of an re-
producing kernel Hilbert space H with a reproducing kernel k as :

p(x|η) = h(x) exp{〈η(.), k(x, .)〉H − A(η)} (10)

with
A(η) = log

∫
exp{〈η(.), k(x, .)〉Hh(x)dx (11)

4. SVM based speaker segmentation

4.1 Speaker change detection using 1-class SVM and exponential family
Novetly change detection using SVM and exponential family is proposed by Canu and
Smola Canu & Smola (2005) Smola (2004). Let X = {x1, x2, . . . , xN} and Y = {y1, y2, . . . , yN}
two adjacent windows of acoustic feature vectors extracted from the audio signal ,where N is
the number of data points in one window. Let Z denote the union of the contents of the two
windows having 2N data points. The sequences of random variables X and Y are distributed
according respectively to Px and Py distribution. We want to test if there exist a speaker turn
after the sample xN between the two windows. The problem can be viewed as testing the
hypothesis H0 : Px = Py against the alternative H1 : Px �= Py. H0 is the null hypothesis and
represents that the entire sequence is drawn from a single distribution, thus there not exist
a speaker turn. While H1 represents the hypothesis that there is a segment boundary after
sample Xn. The likelihood ratio test of this hypotheses test is the following :

L(z1, . . . , z2N) =
∏

N
i=1 Px(zi)∏

2N
i=t+1 Py(zi)

∏
2N
i=1 Px(zi)

=
2N

∏
i=N+1

Py(zi)

Px(zi)
(12)

since both densities are unknown the generalized likelihood ratio (GLR) has to be used :

L(z1, . . . , z2N) =
2N

∏
i=N+1

P̂y(zi)

P̂x(zi)
(13)

where P̂x and P̂y are the maximum likelihood estimates of the densities.
Assuming that both densities Px and Py are included in the generalized exponential family,
thus it exists a reproducing kernel Hilbert space H embedded with the dot product < ·, · >H
with a reproducing kernel k such that:

Px(z) = h(z) exp{〈ηx(.), k(z, .)〉H − A(ηx)} (14)

and
Py(z) = h(z) exp{〈ηy(.), k(z, .)〉H − A(ηy)} (15)

Using One class SVM and the exponential family, a robust approximation of the maximum
likelihood estimates of the densities Px and Py can be written as:
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P̂x(z) = h(z) exp

(
N

∑
i=1

α
(x)
i k(z, zi)− A(ηx)

)
(16)

P̂y(z) = h(z) exp

(
2N

∑
i=N+1

α
(y)
i k(z, zi)− A(ηy)

)
(17)

where α
(x)
i is computed by solving the one class SVM problem on the first half of the data

(z1 to zN), while α
(y)
i is given by solving the one class SVM problem on the second half of

the data (zN+1 to z2N). Using these three hypotheses, the generalized likelihood ratio test is
approximated as follows:

L(z1, . . . , z2N) =
2N

∏
j=N+1

exp (∑2N
i=N+1 α

(y)
i k(zj, zi)− A(ηy))

exp (∑N
i=1 α

(x)
i k(zj, zi)− A(ηx))

(18)

A speaker change in the frame zn exist if :

L(z1, . . . , z2N) > sx ⇔
2N

∑
j=N+1

(
2N

∑
i=N+1

α
(y)
i k(zj, zi)−

N

∑
i=1

α
(x)
i k(zj, zi) ) > s′x (19)

where sx is a fixed threshold. Moreover, ∑
2N
i=N+1 α

(y)
i k(zj, zi) is very small and can be neglect

in comparison with ∑
N
i=1 α

(x)
i k(zj, zi). Then a speaker turn is detected when :

2N

∑
j=N+1

(−
N

∑
i=1

α
(x)
i k(zj, zi)) > s′x (20)

4.2 Proposed speaker segmentation technique
In section 4.1, we show that a speaker changes exist if the condition defined by the equa-
tion (20) is verified. This speaker change detection approach can be interpreted like this: to
decide if a speaker change exit between the two windows X and Y, we built an SVM using the
data X as learning data, then Y data is used for testing if the two windows are homogenous
or not.
On the other hand, since H0 represent the hypothesis of Px = Py the likelihood ratio test of
the hypotheses test described in section 4.1 can be written like this:

L(z1, . . . , z2N) =
∏

N
i=1 Px(zi)∏

2N
i=t+1 Py(zi)

∏
2N
i=1 Py(zi)

=
N

∏
i=1

Px(zi)

Py(zi)
(21)

Using the same gait, a speaker change has occurred if :

N

∑
j=1

(−
2N

∑
i=N+1

α
(y)
i k(zj, zi)) > s′y (22)

Experimental tests show that in some case is more appropriate when we use Y data for learn-
ing and X data for testing. Figure 1 presents the segmentation of an audio stream which
presents four speaker changes. This audio stream is a sample of broadcast news extracted

Fig. 1. Segmentation results of an audio stream extracted from NIST RT-02 broadcast news
data using criteria defined by eq (20)(subplot b), eq (22)(subplot c) and eq (23)(subplot d).

from NIST RT-02 data. Figures (b) and (c) represent the result of segmentation using respec-
tively (20) and (22). Using the criteria (20), we can detect only changes number 1 and 3 and
using the criteria (22), we can detect only changes number 2 and 4. For these reason it is more
appropriate to use the criterion described as follow:

2N

∑
j=N+1

(−
N

∑
i=1

α
(x)
i k(zj, zi)) +

N

∑
j=1

(−
2N

∑
i=N+1

α
(y)
i k(zj, zi)) > S (23)

In this case and as illustrated in figure 1, we can detect easily all speaker changes.

4.3 Our segmentation method
Our technique detects speaker turns by computing the distance detailed in equation (27) be-
tween a pair of adjacent windows of the same size shifted by a fixed step along the whole
parameterized speech signal. In the end of this procedure we obtain the curve of the variation
of the distance in time. The analysis of this curve shows that a speaker change point is char-
acterized by the presence of a "significant" peak. A peak is regarded as "significant" when it
presents a high value. So, break points can be detected easily by searching the local maxima
of the distance curve that presents a value higher than a fixed threshold.

Algorithm 1: Speaker change detection algorithm
Step 0: Initialization

• initialize the interval [a, b], a = 0, b = SIZE_WINDOW

Step 1: Computing detection criterion

• Compute the distance measure d1 according to equation (20) with [a, b/2] testing data and [b/2 + 1, b]
training data.

• Compute the distance measure d2 according to equation (22) with [b/2 + 1, b] testing data and [a, b/2]
training data

• Compute the decision criterion d = d1 + d2

• a=a + pas and b = b + pas; go to step 1

Step 2: speaker turns detection
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from NIST RT-02 data. Figures (b) and (c) represent the result of segmentation using respec-
tively (20) and (22). Using the criteria (20), we can detect only changes number 1 and 3 and
using the criteria (22), we can detect only changes number 2 and 4. For these reason it is more
appropriate to use the criterion described as follow:
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In this case and as illustrated in figure 1, we can detect easily all speaker changes.

4.3 Our segmentation method
Our technique detects speaker turns by computing the distance detailed in equation (27) be-
tween a pair of adjacent windows of the same size shifted by a fixed step along the whole
parameterized speech signal. In the end of this procedure we obtain the curve of the variation
of the distance in time. The analysis of this curve shows that a speaker change point is char-
acterized by the presence of a "significant" peak. A peak is regarded as "significant" when it
presents a high value. So, break points can be detected easily by searching the local maxima
of the distance curve that presents a value higher than a fixed threshold.

Algorithm 1: Speaker change detection algorithm
Step 0: Initialization

• initialize the interval [a, b], a = 0, b = SIZE_WINDOW

Step 1: Computing detection criterion

• Compute the distance measure d1 according to equation (20) with [a, b/2] testing data and [b/2 + 1, b]
training data.

• Compute the distance measure d2 according to equation (22) with [b/2 + 1, b] testing data and [a, b/2]
training data

• Compute the decision criterion d = d1 + d2

• a=a + pas and b = b + pas; go to step 1

Step 2: speaker turns detection



Signal	Processing316

• detecting peaks of d-curve, p = pi

• decision:

– if d(pi) > s a speaker change is detected,

– if d(pi) < s no speaker change is detected,

5. Experiments

5.1 Data set
In order to evaluate 1-SVM-based segmentation method, experiments are based essentially on
the segmentation of IDIAP meetings Corpus. This database contains two separate test sets
sampled at 16 kHz. The first test set contains only single speaker segments without overlap-
ping. However the second one contains a short overlap segment included at each speaker
change. Further, to generalize our experiments, we used also other types of audio streams
like broadcast news and telephone conversations. These audio streams are extracted from the
Rich Transcription-04 MDE Training Data Speech corpus created by Linguistic Data Consor-
tium (LDC). Description of the used datasets is presented below:

1. IDIAP meetings Moore (2002):

• Test set 1: contains only single speaker segments without overlap segments. This
test set groups nine files, each of them contains 10 speaker turns constructed in a
random manner with segments duration varying from 5 to 20 seconds. The total
test set duration was 20 minutes.

• Test set 2: contains a short overlap segment included at each speaker change.
The test set is formed by six files, each containing 10 single speaker segments
(of between 5-17 seconds duration), interleaved with 9 segments of dual-speaker
overlap (of between 1.5-5 seconds duration).

2. Broadcast news data: is composed of three approximately 10-minute excerpts from
three different broadcasts. The broadcasts were selected from programs from NBC,
CNN and ABC, all collected in 1998.

3. Telephone conversation: is composed of a 10-minute excerpt from a conversation be-
tween two switchboard operators.

5.2 Evaluation criteria
For evaluating the performance of the segmentation task, we use Type-I errors: precision
(PRC) and Type-II errors: recall (RCL) was widely used in previous research Ajmera et al.
(2004). Type-I errors occur if a true change is not spotted (missed alarm) within a certain
window. Type-II errors occur when a detected change does not correspond to a true change
in the reference (false alarm). Precision (PRC) and recall (RCL) are defined as below:

PRC =
number of correctly found changes

Total number of changes found
(24)

RCL =
number of correctly found changes

Total number of correct changes
(25)

(26)

In order to compare the performance of different systems, the F-measure is often used and is
defined as

F =
2.0 × PRC × RCL

PRC + RCL
(27)

The F-measure varies from 0 to 1, with a higher F-measure indicating better performance.

5.3 Audio features components
In the experiments, two kinds of feature vectors are proposed: MFCCs and DWCs. Mel
frequency cepstral coefficients (MFCCs) are a short-time spectral decomposition of audio
that convey the general frequency characteristics important to human hearing. We calcu-
late MFCCs by using overlapping frames of 30 ms. The Discrete Wavelet Coefficients (DWCs)
are computed by applying the Discrete Wavelet Transform (DWT) which provides a time-
frequency representation of the signal. It was developed to overcome the short coming of the
Short Time Fourier Transform (STFT), which can also be used to analyze non-stationary sig-
nals. While STFT gives a constant resolution at all frequencies, the Wavelet Transform uses
multi-resolution technique by which different frequencies are analyzed with different reso-
lutions. The DWT is computed by successive lowpass and highpass filtering of the discrete
time-domain signal. This is called the Mallat algorithm or Mallat-tree decomposition Mallat
(1998).

5.3.1 Mel frequency cepstral coefficient
MFCCs are a short-time spectral decomposition of audio that convey the general frequency
characteristics important to human hearing. While originally developed to decouple vocal ex-
citation from vocal tract shape for automatic speech recognition. In order to calculate MFCCs,
the signal is first broken into overlapping frames, each approximately 25ms long, a time scale
at which the signal is assumed to be stationary. The log-magnitude of the discrete Fourier
transform of each window is warped to the Mel frequency scale, imitating human frequency
and amplitude sensitivity. The inverse discrete cosine transform decorrelates these "auditory
spectra" and the so called "high time" portion of the signal, corresponding to fine spectral
detail, is discarded, leaving only the general spectral shape

5.3.2 Discrete Wavelet transform
The Wavelet Transform provides a time-frequency representation of the signal. It was de-
veloped to overcome the short coming of the Short Time Fourier Transform (STFT), which
can also be used to analyze non-stationary signals. While STFT gives a constant resolution
at all frequencies, the Wavelet Transform uses multi-resolution technique by which differ-
ent frequencies are analyzed with different resolutions. The DWT is computed by successive
lowpass and highpass filtering of the discrete time-domain signal. This is called the Mallat
algorithm or Mallat-tree decomposition Mallat (1998). Its significance is in the manner it con-
nects the continuous-time mutiresolution to discrete-time filters. In the figure, the signal is
denoted by the sequence x[n], where n is an integer. The low pass filter is denoted by G0
while the high pass filter is denoted by H0. At each level, the high pass filter produces detail
information, d[n], while the low pass filter associated with scaling function produces coarse
approximations, a[n].

5.4 Results
Table 1 illustrates speaker segmentation experiments conducted on the various audio docu-
ments previously described and their corresponding results using 1-SVMs and DIS_T2_BIC
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The F-measure varies from 0 to 1, with a higher F-measure indicating better performance.

5.3 Audio features components
In the experiments, two kinds of feature vectors are proposed: MFCCs and DWCs. Mel
frequency cepstral coefficients (MFCCs) are a short-time spectral decomposition of audio
that convey the general frequency characteristics important to human hearing. We calcu-
late MFCCs by using overlapping frames of 30 ms. The Discrete Wavelet Coefficients (DWCs)
are computed by applying the Discrete Wavelet Transform (DWT) which provides a time-
frequency representation of the signal. It was developed to overcome the short coming of the
Short Time Fourier Transform (STFT), which can also be used to analyze non-stationary sig-
nals. While STFT gives a constant resolution at all frequencies, the Wavelet Transform uses
multi-resolution technique by which different frequencies are analyzed with different reso-
lutions. The DWT is computed by successive lowpass and highpass filtering of the discrete
time-domain signal. This is called the Mallat algorithm or Mallat-tree decomposition Mallat
(1998).

5.3.1 Mel frequency cepstral coefficient
MFCCs are a short-time spectral decomposition of audio that convey the general frequency
characteristics important to human hearing. While originally developed to decouple vocal ex-
citation from vocal tract shape for automatic speech recognition. In order to calculate MFCCs,
the signal is first broken into overlapping frames, each approximately 25ms long, a time scale
at which the signal is assumed to be stationary. The log-magnitude of the discrete Fourier
transform of each window is warped to the Mel frequency scale, imitating human frequency
and amplitude sensitivity. The inverse discrete cosine transform decorrelates these "auditory
spectra" and the so called "high time" portion of the signal, corresponding to fine spectral
detail, is discarded, leaving only the general spectral shape

5.3.2 Discrete Wavelet transform
The Wavelet Transform provides a time-frequency representation of the signal. It was de-
veloped to overcome the short coming of the Short Time Fourier Transform (STFT), which
can also be used to analyze non-stationary signals. While STFT gives a constant resolution
at all frequencies, the Wavelet Transform uses multi-resolution technique by which differ-
ent frequencies are analyzed with different resolutions. The DWT is computed by successive
lowpass and highpass filtering of the discrete time-domain signal. This is called the Mallat
algorithm or Mallat-tree decomposition Mallat (1998). Its significance is in the manner it con-
nects the continuous-time mutiresolution to discrete-time filters. In the figure, the signal is
denoted by the sequence x[n], where n is an integer. The low pass filter is denoted by G0
while the high pass filter is denoted by H0. At each level, the high pass filter produces detail
information, d[n], while the low pass filter associated with scaling function produces coarse
approximations, a[n].

5.4 Results
Table 1 illustrates speaker segmentation experiments conducted on the various audio docu-
ments previously described and their corresponding results using 1-SVMs and DIS_T2_BIC
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approaches. Segmentation using 1-SVMs outperforms DIS_T2_BIC based segmentation tech-
nique for all the tested audio documents. The segmentation of the IDIAP meetings(1) using
the two methods presents the highest value of precision and recall. In fact, opposite to other
types of audio streams, this corpus contains long speech segments allowing good estimation
of data. As presented in the table 1, the PRC and RCL values obtained with IDIAP meetings(1)
increases respectively from 0.69 to 0.8 and from 0.68 to 0.79.

Audio 1-SVM method DIS_T2_BIC method
Streams Features RCL PRC F Features RCL PRC F

M. IDIAP1 39MFCC+DWC5 0.8 0.79 0.79 13MFCC 0.69 0.68 0.68
M. IDIAP2 39MFCC+DWC5 0.68 0.67 0.67 13MFCC 0.58 0.56 0.57

B. News 39MFCC+DWC6 0.75 0.75 0.75 39MFCC 0.63 0.66 0.64
Tel. Conv 39MFCC+DWC3 0.72 0.71 0.71 13MFCC 0.56 0.58 0.57

Table 1. Segmentation results using the proposed 1-SVM and DIS_T2_BIC methods.

The proposed method based on 1-SVMs allows the improvement of speaker change detection
in audio streams which contain overlapping speeches. The improvement in the PRC and
RCL values using IDIAP meetings(2) is more than 10% with respect to DIS_T2_BIC method.
Generally, BIC based segmentation techniques detect a speaker change between two adjacent
analysis windows. Each window is modelized by a gaussian distribution. This supposition is
not true when the window contains overlapped speeches. In this case, it is more suitable to
suppose that each window can be modelized by an exponential family.
Broadcast news segmentation results are enhanced by adding discrete wavelet coefficients to
cepstral coefficients. The use of this kind of parametrization makes speaker changes detection
possible in the presence of background noise. Further, deploying 1-SVMs permits to better
put in evidence this characteristic since it is insensitive to the dimension of acoustic features.
Also, the proposed method is more appropriate to detect speaker changes close each others.
The F value obtained with the segmentation results of the telephone conversation is raised
from 0.56 with DIS_T2_BIC method to 0.71 with 1-SVMS method.

6. Conclusion

In this chapter, we have proposed a new unsupervised detection algorithm based on 1-SVMs.
This algorithm outperforms model-selection based detection methods. Using the exponen-
tial family model, we obtain a good estimation of the generalized Likelihood ratio applied on
the known hypothesis test generally used in change detection tasks. By adding to cepstral
coefficients the discrete wavelet coefficients. The use of this kind of parametrization permit-
ted to detect speaker changes even in real-world conditions in which the environment and
context are so complex that the segmentation results are often affected. The use of support
vector machines permit to deal practically with this high dimensional acoustic features vec-
tor. Experimental results present higher precision and recall values than those obtained with
DIS_T2_BIC technique, the increase of PRC and RCL values obtained with various kinds of
audio streams is roughly over 10%.
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1. Introduction

One of the first articles that have addressed lattice quantizers in practical applications is the
work of Sayood et al. (Sayood et al., 1984). The lattice quantization has been strongly stim-
ulated by the articles of Conway and Sloane (Conway & Sloane, 1982), (Conway & Sloane,
1983) presenting fast algorithms for nearest neighbor search algorithms. The principal factors
that have brought the lattices in the attention of the quantization community are:

• The lattices are uniformly distributed structures in the n-dimensional space, therefore
they are immediately applicable as quantizer structures for uniform sources. This af-
firmation is based on the, now widely accepted, conjecture of Gersho (Gersho, 1979),
stating that, when the rate is high, the optimal quantizer of a uniform source will have
the partition cells all congruent to some polytope. This is equivalent to saying that the
optimal quantizer of a uniform source is a tessellating1 quantizer, i.e. it completely fills
the space with copies of a same polytope. Gersho (Gersho, 1979) has shown that this
polytope must have the lowest normalized second order moment for the considered
space dimension.

• The asymptotic equipartition property, used in the context of source coding, suggests
that in a high-dimensional space almost all points will lie in a region of high proba-
bility specified by the entropy of the source (Cover & Thomas, 1991). The region of
high probability will have a shape dependent on the source (Fischer, 1989) (e.g. the
hypersphere for the memoryless Gaussian source (Sakrison, 1968), the hyper-pyramid
(hyper-octahedron) for the memoryless Laplacian source (Fischer, 1986)). The pdf of the
points, f , being almost constant on that region of high probability, the formula under
the high-rate assumption, for the point density of the optimal quantizer (Gersho, 1979)
indicates, that the codebook should also be uniform in that region.

• The regular structure of a lattice VQ reduces considerably the memory requirements for
the storage of the codebook.

• Fast nearest neighbor search algorithms exist for the lattices which are generally used
as quantizers (Conway & Sloane, 1992).

State of the art speech codecs as AMR-WB+ (Ragot et al., 2004) and G.718 (Rämö et al., 2008)
codec make use of its advantages. Audio coding methods based on lattice quantization have
been as well proposed (Vasilache & Toukomaa, 2006).

1 All the lattices form tessellations, but not all tessellations are obtained from lattices.
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Most of the lattice based coding methods rely on fixed rate coding or on a semi-variable rate
coding where the vector to be quantized is split in several sub-blocks for which the rate is vari-
able, but the overall bit rate for the global vector is fixed (Ragot et al., 2004). There exist also
variable rate encoding techniques of lattice codevectors. Most of these methods rely on the
grouping of codevectors on classes such as leader classes or shells (Fischer, 1991), (Vasilache
& Tabus, 2001) or apply directly entropy coding methods to the lattice codevector components
(Zhao et al., 2007). However, the former method becomes less practical when the number of
classes increases (with the increase of the bit rate and for some of the truncation shapes), while
the latter is from the start less efficient than a direct entropy coding of the lattice vectors in-
dexes, but obviously less complex.

We discuss in the present work a new approach for entropy encoding of lattice codevec-
tors that can be applied for higher dimensional lattices without additional storage require-
ments and that allows parameterization of the lattice truncation size. The proposed method is
based on the indexing method for lattice vectors that makes use of the product code indexing
method. The presented approach is exemplified on rectagular truncation of lattices, where the
number of leader classes is relatively high, but the shape of the truncation is accounted for
through companding.

This work is presenting first several lattice definitions and terms, followed by a short descrip-
tion of the product code indexing that enables the key method of the work, the new entropy
encoding of lattice vectors. The proposed method will be exemplified within an audio coding
scheme that will be briefly presented prior to the results. Future research directions will be
discussed and conclusions of the work will make the object of the last section.

2. Lattice quantization: terminology and definitions

2.1 Lattice definition
Geometrically, a lattice is an infinite regular array of points which uniformly fills the n-
dimensional space.

Algebraically, an n-dimensional lattice Λ is a set of real vectors whose coordinates are integers
in a given basis {bi ∈ Rn}i=1,n

Λ =
{

v ∈ Rn|v =
n

∑
i=1

αibi, αi ∈ Z
}

. (1)

When used as fixed rate quantizer a lattice should be truncated to a finite number of points
corresponding to the selected bit rate. Even if, in principle, for the variable bit rate case,
when entropy coding is applied, the lattice can be considered infinite, for practical reasons
(i.e. indexing algorithms and numerical aspects of entropy coding), a finite support for the
lattice should be specified.

2.2 Lattice truncation
Generally, the lattice support, or truncation is defined by means of a norm N(x) of the lattice
points which should be less than a given value K:

ΛK =
{

(x) = (x1, x2, . . . , xn) ∈ Λ |N(x) ≤ K
}

. (2)

The truncation shape is spherical if N is the Euclidean norm, or pyramidal if the N is l1, or
rectangular if N is the maximum norm i.e. the maximum absolute value of the lattice vector
components. Also other, more general norms, can be considered.

A generalization of the rectangular truncation is the truncation having different maximum
absolute norms, {Ki}i=1:n along different dimensions

ΛKi =
{

(x) = (x1, x2, . . . , xn) ∈ Λ ||xi| ≤ Ki

}

. (3)

The generalization is exemplified in Fig. 1 for the lattice Z2 with K1 = 3 and K2 = 2. The
truncation includes all Z2 points inside the smaller rectangle, as well as the points from the
border.
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Fig. 1. Illustration of the generalized rectangular truncation of Z2.

A given norm defines, in addition to the lattice truncation, the lattice shell, as the set of lattice
points that have the same norm value, K:

ΛK =
{

(x) = (x1, x2, . . . , xn) ∈ Λ |N(x) = K
}

. (4)

Consequently, the lattice truncation can be seen as a union of lattice shells.

A division of the lattice into even finer sets is obtained starting from the definition of a
leader vector and that of a leader class. A leader vector is a positive integer vector v =
(vm, ..., vm, ..., vi, ..., vi, ..., v1, ..., v1) where 0 ≤ v1 < ... < vi < ... < vm. The leader class of the
leader vector v is the set of all the vectors obtained through signed permutations, with some
possible constraints, of the vector v. The leader class notion has been proposed originally in
(Adoul, 1986), (Adoul & Barth, 1988).
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A given norm defines, in addition to the lattice truncation, the lattice shell, as the set of lattice
points that have the same norm value, K:

ΛK =
{

(x) = (x1, x2, . . . , xn) ∈ Λ |N(x) = K
}

. (4)

Consequently, the lattice truncation can be seen as a union of lattice shells.

A division of the lattice into even finer sets is obtained starting from the definition of a
leader vector and that of a leader class. A leader vector is a positive integer vector v =
(vm, ..., vm, ..., vi, ..., vi, ..., v1, ..., v1) where 0 ≤ v1 < ... < vi < ... < vm. The leader class of the
leader vector v is the set of all the vectors obtained through signed permutations, with some
possible constraints, of the vector v. The leader class notion has been proposed originally in
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Most of the lattices used for quantization can be defined as union of leader classes (Moureaux
et al., 1998).

2.3 Counting lattice points
The use of lattice truncations as quantizers implies knowing the number of lattice codevectors
inside the considered truncation. Following the definition of a lattice truncation as a union of
shells, counting the lattice points reduces to finding expressions for the cardinality of a shell,
i.e. the number of lattice points at a given distance from the origin, under the specified norm.
The solution of this problem is given by the theta functions for �2 norm for many standard
lattices in (Conway & Sloane, 1992). In (Solé, 1993) the theta functions have been generalized
for the norm �p and in (Moureaux et al., 1995), (Barlaud et al., 1993) for weighted �2 norms. In
(Vasilache et al., 1999) the theta series approach is used to count the lattice points on spherical
(�2 norm) shells and generalized to pyramidal (�1 norm) shells.

A second method of counting the points from a truncated lattice is based on the notion of
leader classes: from the definition of the leader class, the number of vectors belonging to that
class can be easily deduced using polynomial coefficients (Moureaux et al., 1998), (Rault &
Guillemot, 2001). This approach is also more appropriate for applications where the indexing
of lattice points is also required. There exist other methods for counting the lattice points, but
they will be treated in the section dedicated to the indexing of lattice points.

2.4 Indexing the vectors in truncated lattices
Several lattice enumeration techniques have been proposed over the years for different trunca-
tions and lattice types. One of the first papers to present an indexing algorithm for lattices was
(Conway & Sloane, 1983), but it was restricted to Voronoi truncated lattices. Few years later,
Fischer introduced the first enumeration technique on pyramid truncated lattice in (Fischer,
1986) which he subsequently generalized for weighted pyramids in Zn (Fischer, 1989), (Fis-
cher & Pan, 1995). This method, which we dub Fischer enumeration, is based on the iterative
counting

N(l, k) =
k

∑
i=−k

N(l − 1, k − |i|) (5)

where N(l, k) is the number of vectors in the pyramidal shell of norm k of the lattice Zl . N(l, k)
can be viewed as the number of ways l integer values can sum up in absolute value to k. For
maximum efficiency, the numbers N(k, l) must be stored, resulting in a table of size logarith-
mic in the codebook size. Alternatively, methods of deriving the values of N(l, k) are pre-
sented in (Hung et al., 1998). A second type of indexing method, also based on an iterative
counting of the points having a certain property has been presented in (Hung et al., 1998).
There are four significant quantities of a codevector, which can be iteratively numbered, fi-
nally their juxtaposition forming a product code. These quantities are:

1. D(s, l): the number of possible distinct distributions of s elements in l locations,

2. S(s, k): the number of possible combinations of s non-zero elements that sum up to k
(distinct additive partitions),

3. B(s): the number of sign combinations for s non-zero elements.

In terms of a lattice codevector, s is the number of non-zero components of the l dimensional
vector. The number of points for a given �1 norm k is thus given by (Hung et al., 1998)

N(l, k) =
m

∑
s=1

B(s)D(s, l)S(s, k) =
m

∑
s=1

2s
(

l
s

)(

k − 1
s − 1

)

(6)

where m is the maximum number of non-zero elements in the lattice vectors included in trun-
cation. The use of a product code enhances the error resilience over noisy channels, when
compared to the original enumeration proposed by Fischer (Hung et al., 1998). These algo-
rithms, as described in (Hung et al., 1998) apply mainly to Zn lattices or Dn with pyramidal
truncations. The product code of (Hung et al., 1998) can be generalized to spherical trun-
cations, but with some additional storage requirements for the term S(s, k) (Constantinescu,
2001).
In (Serra-Sagrista, 2000) combinatorial formulas like in (6) have been proposed for the An, D∗

n
and D+

n lattices with pyramidal truncation. A generalization of Fischer’s method to lattices
derived from binary linear block codes through Construction A and B (Conway & Sloane, 1992)
has been presented for pyramidal truncations in (Wang et al., 1998). This method has O(nK)
computational complexity, where n is the lattice dimension and K the truncation maximum
�1 norm, and it is based on a Fischer type enumeration of pyramidal truncations of Zn and of
translated 2Zn.
An indexing technique based on the notion of leader vector of a lattice was developed in
(Moureaux et al., 1998) for Zn and Dn lattices. In (Vasilache & Tabus, 2002) a method based
on leader vectors for lattices that can be defined as unions of leader classes (including Zn, Dn,
D∗

n and D+
n lattices) has been proposed. Rault and Guillemot (Rault & Guillemot, 2001) have

presented an enumeration based on signed leaders or generated signed leaders valid for a
large class of lattices (Zn, An, Dn and D++

n ). The principle of the methods based on leaders,
is to count the signed permutations generating the vectors in a leader class. The methods
described in (Moureaux et al., 1998) and (Rault & Guillemot, 2001) are based on the lexico-
graphical or inverse lexicographical order of vectors. The methods proposed in (Vasilache &
Tabus, 2002) utilize also a second possible order of the vectors within a leader class, based on
binomial coefficients.

3. Lattice entropy coding

Allowing variable bit rate encoding through entropy encoding brings substantial compression
efficiency increase. Moreover, in the case of vector quantization, lattice vector quantization in
particular, it is more efficient to entropy encode the codevector indexes than the codevector
components.
This fact is illustrated in figures 2 and 3 where experimental compression performance in the
rate-distortion plane is drawn for the lattices D4 and D8 respectively. The curve marked as
“comp” corresponds to the case when the lattice codevector components are supposed to be
entropy encoded, while the curve marked with “idx” corresponds to the case when the code-
vector indexes are supposed to be entropy encoded. The rate is assimilated to the entropy, to
consider the best achievable case and the entropy values are estimated from the data. Zero
mean Gaussian data with unitary variance is used for test. Also the curve corresponding to
the Z4/Z8 lattice is depicted in the graphs, and as expected, for this lattice the rate-distortion
curves are the same whether the entropy coding is applied to the components or to the in-
dexes.
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Fig. 2. Comparison of rate-distortion curves for Z4 and D4 lattice when the lattice vector
components are entropy encoded (“comp”) and when the lattice vector indexes are entropy
encoded (“idx”).

Ideally, the entropy coding of lattice codevectors should consider each codevector individu-
ally. However, the use of lattice codebooks is most usefull for high dimensions, where even
for bit rates relatively small, the number of codevectors easily becomes large, making the indi-
vidual consideration of each codevector impractical. Practical solutions to this problem have
been the grouping of codevectors into sets (i.e. shells or leader classes) and entropy encoding
of the index of the set while the vector index within the set is encoded using enumerative cod-
ing (Vasilache & Tabus, 2001), (Rault & Guillemot, 2001), (Moureaux et al., 1998), (Loyer et al.,
2003). However, the large number of leader classes for some particular truncation shapes,
makes their use less practical.

Another approach has been to entropy encode the lattice vector components (Zhao et al., 2007),
but for lattices where there exist constraints relative to the values of a lattice vector (e.g. sum
of components should be even) this approach is not very efficient with respect to the entropy
coding of the lattice vector indexes.

3.1 Product code lattice codevector indexing
In (Hung et al., 1998) the use of a product code type index for pyramidal truncation, in which
at least the sign bits were separated has been proposed and shown to have good error re-
silience performance.

Using a similar approach, the idea of a product code has been extended to spherical lattice
truncations (Constantinescu, 2001) and to rectangular lattice truncations (Vasilache, 2007).
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Fig. 3. Comparison of rate-distortion curves for Z8 and D8 lattice when the lattice vector
components are entropy encoded (“comp”) and when the lattice vector indexes are entropy
encoded (“idx”).

We propose in the present study the use of the product code indexing from (Vasilache, 2007)
for the entropy coding of the lattice codevectors. The rectangular truncation uses the maxi-
mum absolute norm of a vector y = (y1, y2, ..., yn) ∈ Rn defined as

N(y) = max
i=1:n

(|yi|). (7)

The idea of the product code is to extract different informational entities from the vector to be
indexed and concatenate their respective codes. The information contained in the vector from
a rectangular Zn lattice truncation is represented by the following entities:

• The number of the significant (non zero) components (A);

• The number of maximum valued components (in absolute value) (B);

• The position of the maximum valued components within the lattice codevector (C);

• The values of the significant non-maximum components (D);

• The position of the significant non maximum values within the lattice codevector with-
out the maximum valued components (E);

• The signs of the significant components (F).

The borders between the bits corresponding to different entities that form the index are not
strict, except for the bits corresponding to the signs. The strict border of the sign bits is due
to the fact that they are situated at an extreme of the index and the cardinality of the set
describing all the sign combinations is a power of two. The indexing corresponds to the bits
ordering A / B / C / D / E F . The delimiter “|” represents a strict border.
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of components should be even) this approach is not very efficient with respect to the entropy
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In (Hung et al., 1998) the use of a product code type index for pyramidal truncation, in which
at least the sign bits were separated has been proposed and shown to have good error re-
silience performance.

Using a similar approach, the idea of a product code has been extended to spherical lattice
truncations (Constantinescu, 2001) and to rectangular lattice truncations (Vasilache, 2007).
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We propose in the present study the use of the product code indexing from (Vasilache, 2007)
for the entropy coding of the lattice codevectors. The rectangular truncation uses the maxi-
mum absolute norm of a vector y = (y1, y2, ..., yn) ∈ Rn defined as

N(y) = max
i=1:n

(|yi|). (7)

The idea of the product code is to extract different informational entities from the vector to be
indexed and concatenate their respective codes. The information contained in the vector from
a rectangular Zn lattice truncation is represented by the following entities:

• The number of the significant (non zero) components (A);

• The number of maximum valued components (in absolute value) (B);

• The position of the maximum valued components within the lattice codevector (C);

• The values of the significant non-maximum components (D);

• The position of the significant non maximum values within the lattice codevector with-
out the maximum valued components (E);

• The signs of the significant components (F).

The borders between the bits corresponding to different entities that form the index are not
strict, except for the bits corresponding to the signs. The strict border of the sign bits is due
to the fact that they are situated at an extreme of the index and the cardinality of the set
describing all the sign combinations is a power of two. The indexing corresponds to the bits
ordering A / B / C / D / E F . The delimiter “|” represents a strict border.



Signal	Processing328

3.1.1 Alternate approaches
There are more possible representations into information units. For instance, an equivalent
representation can be (representation II):

• The number of the significant (non zero) components (A’);

• The number of maximum valued components (in absolute value) (B’);

• The position of the significant components within the lattice vector (C’);

• The position of the maximum valued components within the significant ones (D’);

• The values of the significant non-maximum components (E’);

• The signs of the significant components (F’)

or as representation III:

• The number of the significant (non zero) components (A”);

• The number of maximum valued components (in absolute value) (B”);

• The position of the maximum valued components within the lattice codevector (C”);

• The positions of the significant non-maximum values within the lattice codevector with-
out the maximum components (D”);

• The values of the significant non-maximum components (E”);

• The signs of the significant components (F”).

3.2 Entropy coding based on product code lattice codevector indexing
The different informational entities extracted from the vector, can be also interpreted as means
of classifying the vectors into different sets. The existence of several entities implies the divi-
sion of all the vectors into sets, sub-sets and so forth. If the index corresponding to all or part
of the set(sub-set) types are entropy encoded, an entropy code can be obtained for the initial
lattice vector.

For instance, given the 4 dimensional vector (2 -3 0 -1), having maximum norm equal to 3,
it has three significant components (A), one maximum valued component (B), index 1 for
the position of the maximum valued component (C) and index 1 for the position of the non
maximum valued components (E) (Vasilache, 2007). There are at least one and at most four
significant values, therefore there are four possible symbols for the number of significant com-
ponents, which can be entropy encoded. Furthermore, the number of maximum valued com-
ponents can be entropy encoded, as well as the position indexes of the maximum valued
components and so on.

There is a practical limit to the number of entities that can be entropy encoded, which is
activated when the number of symbols for the considered entity becomes prohibitively large.
For instance, for the encoding of the index of non-maximum significative values there are
(K − 1)S−M possible symbols, where S is the number of significative components and M the
number of maximum components. For high truncation size (K) and/or high number of non-
maximum significative values ((S − M)), this number becomes large and the probability of
the index to be encoded very hard to model.

For small lattice codevector dimension the proposed lattice codevector entropy encoding
method might become less efficient than the fixed rate encoding because there are more
sources of inexact modelling.

3.2.1 Lattice truncation size parametrization
In the previously presented representations of the index, the lattice truncation size, given by
its norm, is considered to be fixed. A more flexible approach for data with wide range of
variation is obtained if the value of the current maximum is considered as side information
that is entropy encoded.

3.2.2 Context entropy encoding of the index information units
The encoding of the information units should be done context based, because there is a strong
correlation between the different units involved.

For instance, let’s consider representation II, when the value of the maximum for each lat-
tice codevector is transmitted as side information and the variables to be encoded (maximum
value, number of significant components, number of maxima, position of significant com-
ponents, position of maxima, index of non-maximum significant values, signs of significant
components) are denoted respectively by

K, S, M, pS, pM, nM, sg.

Then the probability models for each variable are:

p(K), p(S|K), p(M|S, K), p(pS|S), p(pM|S, M), p(nM|S, M), p(sg).

For the first variables (K, S, M) their actual values are encoded. For pS and pM a position
index specifying the location of l components out of n possible locations is created. A position
vector r = (r0, ..., rl−1) ∈ 0, ..., n − 1l , r0 < ... < rl−1 is created, which specifies the exact
location of each of the l components. Since there are (n

l ) such vectors, they can be enumerated
like binomial coefficients following the algorithm given by the next equations:

Ipos(l, n, r) =
r0

∑
i=1

(

n − i
l − 1

)

+ Ipos(n − r0 − 1, l − 1, (r1, ..., rl−1)− r0 − 1) (8)

Ipos(l′, 1, [i]) = i, 0 ≤ i < l′ ≤ l. (9)

The resulting index Ipos is the number to be encoded for pS and pM.

The index to be encoded for the values of non-maximum significant components is calculated
as

InM =
S−M

∑
i=1

(K − 1)i−1(yi − 1) (10)

where yi, i = 0, S − M − 1 are the non-maximum significant values.

3.2.3 Bit rate calculation
Consider the n-dimensional vectors from the Zn rectangular truncation of norm K. Any vector
from this set can be represented on N0 bits, where

N0 = �log2((2K + 1)n)�. (11)

If the entity corresponding to the number of significant values is entropy encoded on n1 bits,
the current vector from the set of vectors can be represented on N1 bits instead of N0, where
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N1 = n1 +
⌈

log2

(

2S
(

(

n
1

)(

n − 1
S − 1

)

(K − 1)S−1 +

(

n
2

)(

n − 2
S − 2

)

(K − 1)S−2 + ... +
(

n
S

)

))⌉

, (12)

S is the number of significant components.
If the number of significant components is entropy encoded on n1 bits, the number of maxi-
mum valued components is encoded on n2 bits and the index of positions for the maximum
valued components is encoded on n3 bits, then the current vector from the set of vectors can
be represented on N3 bits, where

N3 = n1 + n2 + n3 +
⌈

log2

(

2S
(

n − M
S − M

)

(K − 1)S−M
)⌉

(13)

where M is the number of maximum valued components whose position is already coded on
n3 bits.
If, in addition, the positions of the non-maximum significant values are entropy encoded on
n4 bits, then the current vector from the set of vectors can be represented on N4 bits, where

N4 = n1 + n2 + n3 + n4 +
⌈

log2

(

(K − 1)S−M
)⌉

+ S. (14)

4. Lattice quantization for audio coding

We exemplify the potential of the proposed method within an audio encoding algorithm. For
the sake of completeness, we present briefly the overall audio encoding framework that uses
rectangular lattice truncations for quantization. For a detailed description see (Vasilache &
Toukomaa, 2006). The overall performance of the audio coding method is similar to the
MPEG4-AAC for higher bitrates (128kbits/s down to 64kbits/s) and better than MPEG4-AAC
for lower bitrates.
The global encoding framework is similar to the one used in the AAC. Within the bit pool
mechanism, at each frame a given number of bits is available for the quantization of the mod-
ified discrete cosine transform (MDCT) coefficients grouped in several scale factor bands, ac-
cording to the perceptual model. Roughly, only half of the coefficients are actually quantized,
the coefficients corresponding to the higher frequencies being set to zero. The number of spec-
tral coefficients, the number of scale factor bands and their lengths depend upon the sampling
frequency of the input audio signal.
The normalized MDCT coefficients from each scale factor band i, are multiplied with b−si and
the result is further encoded. The encoding consists of companding the scaled coefficients
and quantizing using a rectangular truncation of the lattice Zn. The companding function is
trained off-line.
The information to be encoded consists of the scale factor exponents {si}, the lattice code-
vector indexes, and side information providing the number of bits on which each index is
represented. The maximum absolute value, i.e. the maximum norm of the scale factor band
codevector, is used to calculate the number of bits on which the index of the scale factor band
codevector is represented. We denote in the following {si} by scales.
The scales are integers from a finite domain and they are entropy coded, same as the max-
imum norms of the lattice codevectors. The scale values are optimized such that the total

Name Description
es01 Vocal (S. Vega)
es02 German male speech
es03 English female speech
sc01 Trumpet solo and orch.
sc02 Classical orch. music
sc03 Contemp. pop music
si01 Harpsichord
si02 Castanets
si03 Pitch pipe
sm01 Bagpipes
sm02 Glockenspiel
sm03 Plucked strings

Table 1. Test samples.

number of bits to encode a frame is within the available number of bits given by the bit pool
mechanism. Since the maximum absolute norm of the lattice codevectors is encoded sepa-
rately, the indexing of the lattice codevectors is done within the corresponding rectangular
shell.

5. Results

We consider as test samples the 44.1kHz, mono samples presented in Table 1.
We have considered two encoding bit rates 32kbits/s and 48kbits/s for the audio codec from
(Vasilache & Toukomaa, 2006). The number of bits for the quantized spectral coefficients is
calculated according to the formulas from Equations 11 and 12. The difference between the
average per frame number of bits N1 and N0 for all the spectral scale-factor bands is given
numerically in percentages in Table 2. It corresponds to the case when the number of signifi-
cant values is entropy encoded for all the scale-factor bands. The average codelength for n1 is
estimated based on the entropy. The absolute bit savings are not very significant yet.
However, when the first three entities (number of significant values, number of maximum
valued components, and their position index) are entropy encoded, the bit savings become
significant.
The difference between the average per frame number of bits N3 and N0 for all the spectral
scale-factor bands is given numerically in Table 3. The number of bits for the quantized spec-
tral coefficients are calculated according to the formulas from Equations 11 and 13.
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Toukomaa, 2006). The overall performance of the audio coding method is similar to the
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the coefficients corresponding to the higher frequencies being set to zero. The number of spec-
tral coefficients, the number of scale factor bands and their lengths depend upon the sampling
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The normalized MDCT coefficients from each scale factor band i, are multiplied with b−si and
the result is further encoded. The encoding consists of companding the scaled coefficients
and quantizing using a rectangular truncation of the lattice Zn. The companding function is
trained off-line.
The information to be encoded consists of the scale factor exponents {si}, the lattice code-
vector indexes, and side information providing the number of bits on which each index is
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codevector, is used to calculate the number of bits on which the index of the scale factor band
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number of bits to encode a frame is within the available number of bits given by the bit pool
mechanism. Since the maximum absolute norm of the lattice codevectors is encoded sepa-
rately, the indexing of the lattice codevectors is done within the corresponding rectangular
shell.

5. Results

We consider as test samples the 44.1kHz, mono samples presented in Table 1.
We have considered two encoding bit rates 32kbits/s and 48kbits/s for the audio codec from
(Vasilache & Toukomaa, 2006). The number of bits for the quantized spectral coefficients is
calculated according to the formulas from Equations 11 and 12. The difference between the
average per frame number of bits N1 and N0 for all the spectral scale-factor bands is given
numerically in percentages in Table 2. It corresponds to the case when the number of signifi-
cant values is entropy encoded for all the scale-factor bands. The average codelength for n1 is
estimated based on the entropy. The absolute bit savings are not very significant yet.
However, when the first three entities (number of significant values, number of maximum
valued components, and their position index) are entropy encoded, the bit savings become
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The difference between the average per frame number of bits N3 and N0 for all the spectral
scale-factor bands is given numerically in Table 3. The number of bits for the quantized spec-
tral coefficients are calculated according to the formulas from Equations 11 and 13.
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File BS32[%] BS48[%]
es01 6.60 4.75
es02 8.00 5.62
es03 8.80 6.00
sc01 11.20 7.00
sc02 7.20 5.25
sc03 4.80 3.62
si01 5.40 2.75
si02 9.00 7.00
si03 10.60 6.75

sm01 7.40 4.00
sm02 8.40 5.25
sm03 4.80 3.25

Table 2. Bitrate savings, in percentage, when the number of significant values is entropy en-
coded.






































































Fig. 4. Listening test results (Vasilache & Toukomaa, 2006)

Compared with the number of bits per frame available for spectral quantization only, in the
fixed rate case, for the considered bitrates, the values in Table 3 give an average of 30% bitrate
reduction without any loss of quality.
The method (labeled as ’LatVQ’) without entropy coding was compared in (Vasilache &
Toukomaa, 2006), against the quantization procedure from the MPEG4-AAC codec, in a MUlti
Stimulus test with Hidden Reference and Anchor (MUSHRA) (BS.1534-1, 2003). A particular-
ity of the AAC codec framework was the 11kHz bandwidth considered for quantization for

File BS32[%] BS48[%]
es01 70.20 53.12
es02 37.80 30.12
es03 49.20 36.62
sc01 34.80 21.75
sc02 60.20 48.75
sc03 76.60 63.87
si01 -21.80 -6.25
si02 -19.80 -0.75
si03 14.00 9.62

sm01 35.40 28.12
sm02 -0.80 -0.50
sm03 46.20 40.37

Table 3. Bit savings, in percentages, when the number of significant values, the number of
maximum valued components, and their position index are entropy encoded.

all the bitrates. The files used in the tests are listed in Table 1. The files es01 and sm01 were
used only in the training experiment and the remaining files were used in each of the three
testing experiments. There were 11 expert listeners.

Since the addition of the proposed entropy coding does not change the quality of the LatVQ
method, it means that the conditions LatVQ_48 and LatVQ_32 (Figure 4) should actually cor-
respond to bitrates of approximately 30 % less than 48 kbits/s and 32 kbits/s respectively.

The proposed entropy encoded method was used in this case only for the scale-factor bands
with dimensions up to 24, the higher dimensional ones generating too many symbols, at least
for the position index of the maximum valued components. However, previous entropy cod-
ing methods of lattice vector indexes were generally on dimension 10 or lower (Vasilache &
Tabus, 2001).

5.1 Further discussions
A very delicate matter related to the enumeration of lattice points is the error resilience over a
noisy channel. Few papers (Hung et al., 1998), (Vasilache & Tabus, 2002), (Vasilache & Tabus,
2003) have dealt with the error resilience over the channel for lattice codebooks.

In (Hung et al., 1998) the channel error resilience is obtained through the use of product code
based indexing while in (Vasilache & Tabus, 2003) lexicographical and binomial families of
indexing methods are proposed, allowing the optimization of the indexing with respect to the
channel distortion (or some other criterion) within a given family.

The proposed lattice coding, being an entropy encoding method, is on one side sensitive to
channel errors but is has built-in error concealment mechanisms due to the dependencies ex-
isting between the information units that are encoded. In addition, extending the observations
from (Vasilache, 2007), the proposed method can made scalable in bitrate through the control
of the variables that are encoded, allowing thus an approximate representation of the original
lattice codevector and the use of the corresponding bits for channel protection, for instance.
The potential of this approach needs to be investigated through future studies.
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used only in the training experiment and the remaining files were used in each of the three
testing experiments. There were 11 expert listeners.
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for the position index of the maximum valued components. However, previous entropy cod-
ing methods of lattice vector indexes were generally on dimension 10 or lower (Vasilache &
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A very delicate matter related to the enumeration of lattice points is the error resilience over a
noisy channel. Few papers (Hung et al., 1998), (Vasilache & Tabus, 2002), (Vasilache & Tabus,
2003) have dealt with the error resilience over the channel for lattice codebooks.

In (Hung et al., 1998) the channel error resilience is obtained through the use of product code
based indexing while in (Vasilache & Tabus, 2003) lexicographical and binomial families of
indexing methods are proposed, allowing the optimization of the indexing with respect to the
channel distortion (or some other criterion) within a given family.

The proposed lattice coding, being an entropy encoding method, is on one side sensitive to
channel errors but is has built-in error concealment mechanisms due to the dependencies ex-
isting between the information units that are encoded. In addition, extending the observations
from (Vasilache, 2007), the proposed method can made scalable in bitrate through the control
of the variables that are encoded, allowing thus an approximate representation of the original
lattice codevector and the use of the corresponding bits for channel protection, for instance.
The potential of this approach needs to be investigated through future studies.
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Another potential direction of investigation is to study the time correlation of each information
unit to be encoded, that should be easier to exploit than the time correlation of the lattice
codevector indexes if it exists.

The method presented here can be applied wherever product code indexing is applicable
(pyramidal or spherical truncations as well), but it is limited so far to Zn, Dn, D∗

n and D+
n

lattices.

6. Conclusion

We have presented a new method for entropy encoding of lattice codevectors. It is based on
the lattice vector set partitioning generated by the product code indexes of such vectors. It can
provide bitrate savings up to 30% within an audio coding scenario with respect to the fixed
rate lattice quantization. In addition to the improved compression efficiency, the proposed
method enables the use of lattice entropy encoding in higher dimensions.
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Another potential direction of investigation is to study the time correlation of each information
unit to be encoded, that should be easier to exploit than the time correlation of the lattice
codevector indexes if it exists.

The method presented here can be applied wherever product code indexing is applicable
(pyramidal or spherical truncations as well), but it is limited so far to Zn, Dn, D∗

n and D+
n

lattices.

6. Conclusion

We have presented a new method for entropy encoding of lattice codevectors. It is based on
the lattice vector set partitioning generated by the product code indexes of such vectors. It can
provide bitrate savings up to 30% within an audio coding scenario with respect to the fixed
rate lattice quantization. In addition to the improved compression efficiency, the proposed
method enables the use of lattice entropy encoding in higher dimensions.
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1. Introduction 

Data filtering systems are used in different fields of research, aiming at isolating signals of 
interest from patterns related to a given background noise. Nowadays, in many complex 
applications, the input data space dimensionality is very high, as well as the incoming data 
rate. In this case, the difficulty of the input data stream analysis increases significantly. Also, 
the processing speed plays a critical role when the filtering system is envisaged for online 
operation. Finally, the signals of interest may rarely occur, forcing the experiment to keep 
running for a long period of time in order to acquire a reasonable amount of events for 
better measurement estimation.  
In general, online filtering systems should have the following features: 
• High detection efficiency for a low false alarm probability. 
• Simplified software / hardware implementation. 
• Flexibility in order to accomplish possible future requirements. 
• Execution speed capable of meeting the desired time requirements. 
• Robustness, in order to keep its filtering features through its lifetime of operation. 
To cope with such high-input data dimension, feature extraction techniques may be applied 
in order to isolate the relevant information from the event data description, eventually 
reducing its dimension. For this, different data compaction techniques have been developed 
using expert information or / and stochastic processing. Pre-processing schemes based on 
signal decorrelation (linear or nonlinear) may even reduce the complexity of the classifier 
(signal against background) design. Finally, in the case where the available information is 
from a set of sensors, signal pre-processing might also be segmented, better exploiting the 
available local information.  
Statistical processing can play a valuable role in the pattern recognition task, since it can 
provide better separation cuts than deterministic methods, specially for the case where the 
problem to be solved presents nonlinear characteristics. By using algorithms based on high-
order statistics, it is possible to better estimate the bounds of each pattern, achieving higher 
detection efficiencies. In many applications, neural networks (Haykin, 2008) may play a role in 
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signal classification. On the other hand, by reducing the classifier design complexity by means 
of signal pre-processing, it might be possible to restrict the nonlinear processing implemented 
by the neural network to perform slight adjustments to the linear signal classification. It may 
also be the case where signal classification can go linear (through a Fisher Discriminant) (Duda 
et al., 2004), as a result of a highly-efficient pre-processing scheme. 
In the field of experimental high-energy physics, stringent conditions make signal 
processing a challenge, as there is often a large gap between the experiment requirements 
and the technology currently available, which forces the development of new technologies. 
This is particularly the case for modern particle collider experiments, in which particles are 
accelerated at high speed and put in collision route. Analyzing the resulting collisions 
products, one can probe deeper into the structure of matter (Perkins, 2000). One important 
aspect in particle collider experiments is that events of interest are typically very rare, since 
most of the produced events are from background noise. In addition, the fine-grained 
segmentation of the particle detectors placed around the collision points for the resulting 
interaction readout may produce up to terabytes per second of information. Therefore, an 
online filtering system must be applied for selecting only the interesting physics channels, 
while rejecting, as much as possible, the huge amount of background noise. 
Presently, the Large Hadron Collider (LHC) at CERN (CERN, 2007) is the largest particle 
accelerator in the world. LHC has a total length of 27 km and will be colliding protons with 
14 TeV at their center of mass, at a rate of 40 MHz and at a luminosity of 1034cm-2s-1 (Evans 
and Bryant, 2008). Multiple collision points occur around the LHC ring. Around each 
collision point, a detection laboratory is placed to analyze the sub-products of the collisions. 
Among such detectors ATLAS (The ATLAS Collaboration, 2008) is the largest one. It 
comprises multiple sub-detectors, such as tracking, calorimeter and muon detection 
systems. Due to the detector granularity, each collision produces ~1.5 MBytes of 
information, resulting in a total rate of ~60 TB/s of information. Therefore, an online 
filtering system is mandatory for proper ATLAS operation. 
This chapter focuses on proposing an efficient data filtering strategy for operating at 
stringent conditions. It is based on a signal processing scheme that combines expert 
knowledge with stochastic signal processing techniques for data dimension reduction and 
relevant feature extraction. The classifier design that implements the final filtering operation 
(rejection / acceptance of incoming data) is evaluated in terms of complexity and efficiency. 
For this, the input nodes of the classifier are fed from pre-processed information. The 
proposed signal processing strategy will be applied in high-energy physics, using the 
ATLAS detector as a case study. 
This chapter is organized as follows: Section 2 briefly describes the pre-processing methods 
used in the application. Then, in Section 3, the ATLAS filtering system will be explained, 
and the envisaged application is presented. In Section 4, the obtained results for such 
application are discussed. Finally, conclusions are derived in Section 5. 

 
2. Signal Pre-Processing 

The pre-processing techniques presented in this section focus on performing linear and 
nonlinear input variable decorrelation. This could make the relevant discrimination features 
more evident to the classifier, simplifying its design. Furthermore, depending on the power 

of the nonlinear decorrelation applied, the classifier could be simplified to the point of a 
simple linear discriminant. 

 
2.1 Independent Component Analysis 
Independent Component Analysis (ICA) is a multidimensional signal processing technique 
that searches for a linear transformation of the data, so that its essential structure becomes 
somehow more accessible (Hyvärinen et al., 2001). In ICA, the transformed variables are 
restricted to be statistically independent. 
In the standard ICA model, the measured (observed) signals x=[x1,x2,...,xN]T are considered 
to be generated through a linear combination of the independent (unobserved) signals 
s=[s1,s2,...,sN]T: 
 

1
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where i=1,...,N and A is the mixing matrix. The ICA model has been widely applied in a 
variety of signal processing tasks, see as reference (Choi et al., 2005) and (Moura et al., 2009). 
The purpose of ICA is to estimate the independent signals s and the mixing matrix A using 
only the observed data x. This can be achieved through an inverse model:  
 

= ,y Wx      (2) 
where the coefficients of the estimated matrix W are obtained by considering that the 
components of y are statistically independent (or at least as much independent as possible). 
There are some indeterminacies in the ICA model: the order of extraction of the independent 
components can change and scalar multipliers (positive or negative) may modify the 
estimated components. Fortunately these limitations are insignificant in most applications. 
In some practical signal processing problems, the standard linear ICA model may not be 
able to properly describe the data. Considering a practical ICA application, both the mixing 
environment and the sensors may present some nonlinear behavior. Providing a more 
general formulation, the nonlinear independent component analysis (NLICA) model 
considers that the measured signals x are formed by a nonlinear instantaneous mixing 
model (Almeida, 2006): 

 =Fx s      (3) 

 
where F(.) is a RN -> RN nonlinear mapping (the number of sources is usually assumed to be 
equal to the number of observed signals). The purpose of NLICA is to estimate an inverse 
transformation G(.) RN -> RN:  

 =Gy x      (4) 

 

so that the components of y are statistically independent. If G(.)=F-1(.), the sources are 
perfectly recovered (Jutten and Karhunen, 2003). 
A characteristic of the NLICA problem is that the solutions are non-unique (Jutten and 
Karhunen, 2003). If u and v are independent random variables, it is easy to prove that f(u) 



Segmented	Online	Neural	Filtering	System	Based		
On	Independent	Components	Of	Pre-Processed	Information 339

signal classification. On the other hand, by reducing the classifier design complexity by means 
of signal pre-processing, it might be possible to restrict the nonlinear processing implemented 
by the neural network to perform slight adjustments to the linear signal classification. It may 
also be the case where signal classification can go linear (through a Fisher Discriminant) (Duda 
et al., 2004), as a result of a highly-efficient pre-processing scheme. 
In the field of experimental high-energy physics, stringent conditions make signal 
processing a challenge, as there is often a large gap between the experiment requirements 
and the technology currently available, which forces the development of new technologies. 
This is particularly the case for modern particle collider experiments, in which particles are 
accelerated at high speed and put in collision route. Analyzing the resulting collisions 
products, one can probe deeper into the structure of matter (Perkins, 2000). One important 
aspect in particle collider experiments is that events of interest are typically very rare, since 
most of the produced events are from background noise. In addition, the fine-grained 
segmentation of the particle detectors placed around the collision points for the resulting 
interaction readout may produce up to terabytes per second of information. Therefore, an 
online filtering system must be applied for selecting only the interesting physics channels, 
while rejecting, as much as possible, the huge amount of background noise. 
Presently, the Large Hadron Collider (LHC) at CERN (CERN, 2007) is the largest particle 
accelerator in the world. LHC has a total length of 27 km and will be colliding protons with 
14 TeV at their center of mass, at a rate of 40 MHz and at a luminosity of 1034cm-2s-1 (Evans 
and Bryant, 2008). Multiple collision points occur around the LHC ring. Around each 
collision point, a detection laboratory is placed to analyze the sub-products of the collisions. 
Among such detectors ATLAS (The ATLAS Collaboration, 2008) is the largest one. It 
comprises multiple sub-detectors, such as tracking, calorimeter and muon detection 
systems. Due to the detector granularity, each collision produces ~1.5 MBytes of 
information, resulting in a total rate of ~60 TB/s of information. Therefore, an online 
filtering system is mandatory for proper ATLAS operation. 
This chapter focuses on proposing an efficient data filtering strategy for operating at 
stringent conditions. It is based on a signal processing scheme that combines expert 
knowledge with stochastic signal processing techniques for data dimension reduction and 
relevant feature extraction. The classifier design that implements the final filtering operation 
(rejection / acceptance of incoming data) is evaluated in terms of complexity and efficiency. 
For this, the input nodes of the classifier are fed from pre-processed information. The 
proposed signal processing strategy will be applied in high-energy physics, using the 
ATLAS detector as a case study. 
This chapter is organized as follows: Section 2 briefly describes the pre-processing methods 
used in the application. Then, in Section 3, the ATLAS filtering system will be explained, 
and the envisaged application is presented. In Section 4, the obtained results for such 
application are discussed. Finally, conclusions are derived in Section 5. 

 
2. Signal Pre-Processing 

The pre-processing techniques presented in this section focus on performing linear and 
nonlinear input variable decorrelation. This could make the relevant discrimination features 
more evident to the classifier, simplifying its design. Furthermore, depending on the power 

of the nonlinear decorrelation applied, the classifier could be simplified to the point of a 
simple linear discriminant. 

 
2.1 Independent Component Analysis 
Independent Component Analysis (ICA) is a multidimensional signal processing technique 
that searches for a linear transformation of the data, so that its essential structure becomes 
somehow more accessible (Hyvärinen et al., 2001). In ICA, the transformed variables are 
restricted to be statistically independent. 
In the standard ICA model, the measured (observed) signals x=[x1,x2,...,xN]T are considered 
to be generated through a linear combination of the independent (unobserved) signals 
s=[s1,s2,...,sN]T: 
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where i=1,...,N and A is the mixing matrix. The ICA model has been widely applied in a 
variety of signal processing tasks, see as reference (Choi et al., 2005) and (Moura et al., 2009). 
The purpose of ICA is to estimate the independent signals s and the mixing matrix A using 
only the observed data x. This can be achieved through an inverse model:  
 

= ,y Wx      (2) 
where the coefficients of the estimated matrix W are obtained by considering that the 
components of y are statistically independent (or at least as much independent as possible). 
There are some indeterminacies in the ICA model: the order of extraction of the independent 
components can change and scalar multipliers (positive or negative) may modify the 
estimated components. Fortunately these limitations are insignificant in most applications. 
In some practical signal processing problems, the standard linear ICA model may not be 
able to properly describe the data. Considering a practical ICA application, both the mixing 
environment and the sensors may present some nonlinear behavior. Providing a more 
general formulation, the nonlinear independent component analysis (NLICA) model 
considers that the measured signals x are formed by a nonlinear instantaneous mixing 
model (Almeida, 2006): 

 =Fx s      (3) 

 
where F(.) is a RN -> RN nonlinear mapping (the number of sources is usually assumed to be 
equal to the number of observed signals). The purpose of NLICA is to estimate an inverse 
transformation G(.) RN -> RN:  

 =Gy x      (4) 

 

so that the components of y are statistically independent. If G(.)=F-1(.), the sources are 
perfectly recovered (Jutten and Karhunen, 2003). 
A characteristic of the NLICA problem is that the solutions are non-unique (Jutten and 
Karhunen, 2003). If u and v are independent random variables, it is easy to prove that f(u) 
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and g(v), where f(.) and g(.) are differentiable functions, are also independent. So, it is clear 
that, without imposing some restrictions, there is an infinite number of solutions for the 
inverse mapping G in a given application (the problem is ill-posed). Considering this, an 
unique solution for the nonlinear independent component analysis (NLICA) can not be 
achieved without some prior information on the mixing model or the sources. A complete 
investigation on the uniqueness of nonlinear ICA solutions can be found in (Hyvärinen and 
Pajunen, 1999). NLICA algorithms have recently been applied in different problems such as 
speech processing (Rojas et al., 2003), (Wei et al., 2006), image denoising (Haritopoulos et al., 
2002), chemistry sensor array processing (Duarte et al., 2009). 
The minimization of statistical dependence is a main concern for any ICA/NLICA 
algorithm, as it leads to the estimation of the mixing system (and consequently the 
independent components). In addition, ICA often requires some pre-processing for data 
compaction, especially for high-dimension input data space applications. These topics are 
briefly described in the next subsections. It is also summarized the JADE algorithm, which 
has been widely used for independent component estimation. Different NLICA approaches 
are also briefly reviewed. 

 
2.1.1 Statistical Independence 
Considering two random vectors v1 and v2, they are statistically independent if and only if 
(Papoulis and Pillai, 2002): 
 

pv1 ,v 2 v1,v2  pv1 (v1)pv 2 (v2)    (5) 
 
where pv1(v1), pv2(v2) are, respectively, the probability density function (pdf) of v1 and v2 
and pv1,v2 (v1, v2) is their joint pdf. In typical ICA problems, there is very little information 
on the source signals and so, the pdf estimation is a very difficult task. Considering this, 
alternative independence measures are usually applied during the search for independent 
components (Hyvärinen et al., 2001) (Cichocki and Amari, 2002). They are defined next for 
reference. 

 
2.1.1.1 Nonlinear Decorrelation 
Two zero-mean random variables (u1 and u2) are said to be (linearly) uncorrelated if their 
cross-correlation Ru1u2 is zero (here, E{.} is the expectation operator): 

 1 2 1 2
T

u uR E u u      (6) 

 
Independent variables are uncorrelated, although, the reciprocal is not always true. Linear 
correlation is verified by second order statistics, while independence needs higher-order 
information too (requiring direct or indirect computation of higher-order moments). 
Considering g(u1) and f(u2) absolutely integrable functions of u1 and u2, respectively, it can be 
proved that if Equation 7 holds for all possible g(.) and f(.), than u1 and u2 are independent 

E g u1  f u2   E g u1  E f u2      (7) 
By choosing g(.) and f(.) as nonlinear functions, high-order statistical information is (indirectly) 
accessed. The statistical independence measure provided by Equation 7 is usually called the 
nonlinear decorrelation between u1 and u2 (Cichocki and Unbehauen, 1996).  

A practical limitation appears when trying to apply this measure in an ICA algorithm as it is 
not possible to check all integrable functions g(.) and f(.). Thus estimates of the independent 
components are usually obtained while guaranteeing nonlinear decorrelation between a 
finite set of nonlinear functions (Cichocki and Unbehauen, 1996). 

 
2.1.1.2 Higher-Order Statistics 
Another principle that can be used to estimate the dependence of variables comes from the 
central limit theorem (McClave et al., 2008): “The sum of two random variables is always 
closer to a Gaussian distribution than the original variable distributions”. As the measured 
signals (x) are considered to be a linear combination of independent sources (s), then the 
measured signals are closer to a Gaussian distribution than the original sources. Thus, the 
independent components can be obtained through maximization of non-gaussianity 
(Hyvärinen et al., 2001). 
It is known that, for Gaussian random variables, the cumulants of orders higher than two 
are all zero. Considering this, non-gaussianity (and consequently independence) measures 
can be obtained by using high-order cumulants, such as the kurtosis Κ4, which, for a zero-
mean, unit-variance random variable u is defined through (Papoulis and Pillai, 2002): 

    24 2
4 3K E u E u         (8) 

 
2.1.1.3 Information Theoretic Measures 

Alternative statistical independence measures can be obtained from information theory 
(Mackay, 2002). A basic definition in information theory is the entropy (H(.)), which, for a 
discrete random variable u, is defined as (Shannon, 1948): 
 

 H u   P u  i logP u  i 
i
            (9) 

 
Where κ1, κ2, ..., κ m are all the possible discrete values of u. is that the Gaussian variable 
has maximum entropy between the random variables of same variance (Hyvärinen et al., 
2001). Considering this, entropy can be used as gaussianity measure. 
The Negentropy J(u) of the random variable u is also applied in the ICA context:. 

     gaussJ u H u H u      (10) 

 
where ugauss is a Gaussian random variable with the same mean and variance of u. The 
advantage of using J(u), instead of H(u), is that it is always non-negative and zero when u is 
Gaussian. A problem with the computation of both J(.) and H(.) is the pdf estimation. To 
avoid this, approximations using high-order cumulants or non-polynomial functions are 
often applied (Murillo-Fuentes et al., 2004). 
The Mutual Information I(u1, u2, ..., um) between m random variables u1, u2 , ..., um is obtained 
through Equation 11. 
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and g(v), where f(.) and g(.) are differentiable functions, are also independent. So, it is clear 
that, without imposing some restrictions, there is an infinite number of solutions for the 
inverse mapping G in a given application (the problem is ill-posed). Considering this, an 
unique solution for the nonlinear independent component analysis (NLICA) can not be 
achieved without some prior information on the mixing model or the sources. A complete 
investigation on the uniqueness of nonlinear ICA solutions can be found in (Hyvärinen and 
Pajunen, 1999). NLICA algorithms have recently been applied in different problems such as 
speech processing (Rojas et al., 2003), (Wei et al., 2006), image denoising (Haritopoulos et al., 
2002), chemistry sensor array processing (Duarte et al., 2009). 
The minimization of statistical dependence is a main concern for any ICA/NLICA 
algorithm, as it leads to the estimation of the mixing system (and consequently the 
independent components). In addition, ICA often requires some pre-processing for data 
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2.1.1 Statistical Independence 
Considering two random vectors v1 and v2, they are statistically independent if and only if 
(Papoulis and Pillai, 2002): 
 

pv1 ,v 2 v1,v2  pv1 (v1)pv 2 (v2)    (5) 
 
where pv1(v1), pv2(v2) are, respectively, the probability density function (pdf) of v1 and v2 
and pv1,v2 (v1, v2) is their joint pdf. In typical ICA problems, there is very little information 
on the source signals and so, the pdf estimation is a very difficult task. Considering this, 
alternative independence measures are usually applied during the search for independent 
components (Hyvärinen et al., 2001) (Cichocki and Amari, 2002). They are defined next for 
reference. 

 
2.1.1.1 Nonlinear Decorrelation 
Two zero-mean random variables (u1 and u2) are said to be (linearly) uncorrelated if their 
cross-correlation Ru1u2 is zero (here, E{.} is the expectation operator): 
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Independent variables are uncorrelated, although, the reciprocal is not always true. Linear 
correlation is verified by second order statistics, while independence needs higher-order 
information too (requiring direct or indirect computation of higher-order moments). 
Considering g(u1) and f(u2) absolutely integrable functions of u1 and u2, respectively, it can be 
proved that if Equation 7 holds for all possible g(.) and f(.), than u1 and u2 are independent 

E g u1  f u2   E g u1  E f u2      (7) 
By choosing g(.) and f(.) as nonlinear functions, high-order statistical information is (indirectly) 
accessed. The statistical independence measure provided by Equation 7 is usually called the 
nonlinear decorrelation between u1 and u2 (Cichocki and Unbehauen, 1996).  

A practical limitation appears when trying to apply this measure in an ICA algorithm as it is 
not possible to check all integrable functions g(.) and f(.). Thus estimates of the independent 
components are usually obtained while guaranteeing nonlinear decorrelation between a 
finite set of nonlinear functions (Cichocki and Unbehauen, 1996). 

 
2.1.1.2 Higher-Order Statistics 
Another principle that can be used to estimate the dependence of variables comes from the 
central limit theorem (McClave et al., 2008): “The sum of two random variables is always 
closer to a Gaussian distribution than the original variable distributions”. As the measured 
signals (x) are considered to be a linear combination of independent sources (s), then the 
measured signals are closer to a Gaussian distribution than the original sources. Thus, the 
independent components can be obtained through maximization of non-gaussianity 
(Hyvärinen et al., 2001). 
It is known that, for Gaussian random variables, the cumulants of orders higher than two 
are all zero. Considering this, non-gaussianity (and consequently independence) measures 
can be obtained by using high-order cumulants, such as the kurtosis Κ4, which, for a zero-
mean, unit-variance random variable u is defined through (Papoulis and Pillai, 2002): 
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2.1.1.3 Information Theoretic Measures 

Alternative statistical independence measures can be obtained from information theory 
(Mackay, 2002). A basic definition in information theory is the entropy (H(.)), which, for a 
discrete random variable u, is defined as (Shannon, 1948): 
 

 H u   P u  i logP u  i 
i
            (9) 

 
Where κ1, κ2, ..., κ m are all the possible discrete values of u. is that the Gaussian variable 
has maximum entropy between the random variables of same variance (Hyvärinen et al., 
2001). Considering this, entropy can be used as gaussianity measure. 
The Negentropy J(u) of the random variable u is also applied in the ICA context:. 

     gaussJ u H u H u      (10) 

 
where ugauss is a Gaussian random variable with the same mean and variance of u. The 
advantage of using J(u), instead of H(u), is that it is always non-negative and zero when u is 
Gaussian. A problem with the computation of both J(.) and H(.) is the pdf estimation. To 
avoid this, approximations using high-order cumulants or non-polynomial functions are 
often applied (Murillo-Fuentes et al., 2004). 
The Mutual Information I(u1, u2, ..., um) between m random variables u1, u2 , ..., um is obtained 
through Equation 11. 
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It is known that the entropy of the vector v = [u1, u2, ..., um] is always smaller than the sum 
of H(ui), unless  the variables are independent. So, minimization of mutual information 
leads to independence (Hyvärinen et al., 2001). 

 
2.1.2 Signal Decorrelation 

The standard ICA model assumes a mixing system where the number of sources and 
observed signals is the same. In a practical problem, this assumption may not be always 
true. When there exist more sources than sensors (observed signals), the problem is under-
determined and the sources are only recovered approximately through algorithms derived 
for such situation (Syskind et al., 2006), (Natora et al., 2009). In the case where the number of 
sources (K) is smaller than the number of observed signals (N), the problem is over-
determined and thus some signal compaction algorithm is needed to reduce signal 
dimensionality. With this purpose, Principal Component Analysis (PCA) is usually applied 
as a pre-processing for ICA algorithms. Principal Components for Discrimination (PCD) 
analysis (Caloba et al., 1995) has been introduced as an alternative to PCA, when ICA is 
applied to classification problems (Simas Filho et al., 2009b). 

 
2.1.2.1 Principal Component Analysis 
Principal Component Analysis (PCA) (Jolliffe, 2002) is a statistical signal processing 
technique that searches for a new representation of the input signals where the energy is 
concentrated on a small number of components. Using second-order statistics, PCA 
transformation searches for a vector basis for which the projections yi=wi xi of a zero-mean 
random vector x (E{x}=0) are uncorrelated and have maximum variance (i.e. composing an 
orthonormal basis). 
The first principal direction w1 can be computed through the maximization of 
 

      PCA T
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where Cx is the covariance matrix of x and ||w1||=1. 
PCA transformation is very useful as a pre-processing for ICA as it eliminates second-order 
dependencies (correlation) between the signals, facilitating the search for independence. 

 
2.1.2.2 Whitening 
A zero-mean random vector z is said to be white if their components are uncorrelated and 
have unit variance (Hyvärinen et al., 2001). This implies that the covariance matrix (and also 
the correlation matrix) of z equals the identity matrix. Whitening is sometimes called 
sphering and is a slightly stronger operation than decorrelation. One popular method to 
perform whitening is the eigenvalue decomposition (EVD) of the covariance matrix (Strang, 

2009). In this approach, considering Z the matrix whose columns are the unit-norm 
eigenvectors of the covariance matrix Cx of a random vector x and D the diagonal matrix of 
the eigenvalues of Cx, the linear whitening transform V is given by: 
 

V D1/ 2ZT           (13) 

 
2.1.2.3 Principal Components of Discrimination 
Considering a classification problem, the purpose of PCD analysis is to determine the 
directions that maximize class separation (Caloba et al., 1995). Typically, PCD provides a 
higher compaction rate for classification problems with respect to PCA (Simas Filho et al., 
2009b). 
The PCD analysis can be performed through a Multilayer Perceptron (MLP) neural network  
(Haykin, 2008). For simplicity, considering binary discrimination, a network with a single 
hidden neuron, trained to maximize class discrimination, extracts the first discriminating 
component (see Fig. 1-a). By sequentially adding neurons to the hidden layer and restarting 
the training procedure, the next components are estimated. The hidden weights are trained 
only for the added neurons (highlighted synaptic lines in Fig. 1-b). The estimated weights 
from the previous steps are kept fixed, as they represent the directions of the principal 
components already extracted. The weights of the output layer are adjusted during the 
whole training procedure for optimal combination of principal components at each 
processing step. The PCD extraction continues up to the point where the classification 
efficiency does not improve significantly by adding more components. 
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Fig. 1. Neural models for estimating (a) the first and (b) the k-th principal discriminating 
component. 

 
2.1.3 ICA / NLICA algorithms 
Nowadays, there is a number of efficient ICA algorithms, which use, in general, the 
independence measures mentioned in Section 2.1.1. Among them, JADE (Cardoso and 
Souloumiac, 1993) is a very popular method. For NLICA, one way to address the ill-
posedness of the problem is to restrict the range of allowed nonlinearities, generating 
structural constrained models for the mixing system and thus unique solutions for the 
problem (Jutten and Karhunen, 2003). Among these models, we can mention the post-
nonlinear (PNL) mixture, which has met a significant practical applicability (Almeida, 2006). 
There is also a method closely related to the NLICA problem, known as Local ICA, which 
introduces nonlinear transformations by clustering the dataset into groups of similar 



Segmented	Online	Neural	Filtering	System	Based		
On	Independent	Components	Of	Pre-Processed	Information 343


I u1,u2,,um  H ui H v 

i1

m

    (11) 

 
It is known that the entropy of the vector v = [u1, u2, ..., um] is always smaller than the sum 
of H(ui), unless  the variables are independent. So, minimization of mutual information 
leads to independence (Hyvärinen et al., 2001). 

 
2.1.2 Signal Decorrelation 

The standard ICA model assumes a mixing system where the number of sources and 
observed signals is the same. In a practical problem, this assumption may not be always 
true. When there exist more sources than sensors (observed signals), the problem is under-
determined and the sources are only recovered approximately through algorithms derived 
for such situation (Syskind et al., 2006), (Natora et al., 2009). In the case where the number of 
sources (K) is smaller than the number of observed signals (N), the problem is over-
determined and thus some signal compaction algorithm is needed to reduce signal 
dimensionality. With this purpose, Principal Component Analysis (PCA) is usually applied 
as a pre-processing for ICA algorithms. Principal Components for Discrimination (PCD) 
analysis (Caloba et al., 1995) has been introduced as an alternative to PCA, when ICA is 
applied to classification problems (Simas Filho et al., 2009b). 

 
2.1.2.1 Principal Component Analysis 
Principal Component Analysis (PCA) (Jolliffe, 2002) is a statistical signal processing 
technique that searches for a new representation of the input signals where the energy is 
concentrated on a small number of components. Using second-order statistics, PCA 
transformation searches for a vector basis for which the projections yi=wi xi of a zero-mean 
random vector x (E{x}=0) are uncorrelated and have maximum variance (i.e. composing an 
orthonormal basis). 
The first principal direction w1 can be computed through the maximization of 
 

      PCA T
xJ w E v E w x w C w22

1 1 1 1 1      (12) 

 
where Cx is the covariance matrix of x and ||w1||=1. 
PCA transformation is very useful as a pre-processing for ICA as it eliminates second-order 
dependencies (correlation) between the signals, facilitating the search for independence. 

 
2.1.2.2 Whitening 
A zero-mean random vector z is said to be white if their components are uncorrelated and 
have unit variance (Hyvärinen et al., 2001). This implies that the covariance matrix (and also 
the correlation matrix) of z equals the identity matrix. Whitening is sometimes called 
sphering and is a slightly stronger operation than decorrelation. One popular method to 
perform whitening is the eigenvalue decomposition (EVD) of the covariance matrix (Strang, 

2009). In this approach, considering Z the matrix whose columns are the unit-norm 
eigenvectors of the covariance matrix Cx of a random vector x and D the diagonal matrix of 
the eigenvalues of Cx, the linear whitening transform V is given by: 
 

V D1/ 2ZT           (13) 

 
2.1.2.3 Principal Components of Discrimination 
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directions that maximize class separation (Caloba et al., 1995). Typically, PCD provides a 
higher compaction rate for classification problems with respect to PCA (Simas Filho et al., 
2009b). 
The PCD analysis can be performed through a Multilayer Perceptron (MLP) neural network  
(Haykin, 2008). For simplicity, considering binary discrimination, a network with a single 
hidden neuron, trained to maximize class discrimination, extracts the first discriminating 
component (see Fig. 1-a). By sequentially adding neurons to the hidden layer and restarting 
the training procedure, the next components are estimated. The hidden weights are trained 
only for the added neurons (highlighted synaptic lines in Fig. 1-b). The estimated weights 
from the previous steps are kept fixed, as they represent the directions of the principal 
components already extracted. The weights of the output layer are adjusted during the 
whole training procedure for optimal combination of principal components at each 
processing step. The PCD extraction continues up to the point where the classification 
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2.1.3 ICA / NLICA algorithms 
Nowadays, there is a number of efficient ICA algorithms, which use, in general, the 
independence measures mentioned in Section 2.1.1. Among them, JADE (Cardoso and 
Souloumiac, 1993) is a very popular method. For NLICA, one way to address the ill-
posedness of the problem is to restrict the range of allowed nonlinearities, generating 
structural constrained models for the mixing system and thus unique solutions for the 
problem (Jutten and Karhunen, 2003). Among these models, we can mention the post-
nonlinear (PNL) mixture, which has met a significant practical applicability (Almeida, 2006). 
There is also a method closely related to the NLICA problem, known as Local ICA, which 
introduces nonlinear transformations by clustering the dataset into groups of similar 
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characteristics. After that, linear ICA is applied to data belonging to each cluster producing 
local independent components. 

 
2.1.3.1 JADE 
In JADE (Joint Approximate Diagonalization of Eigenmatrices) algorithm, second and 
fourth-order statistics are applied for independent component estimation through a 
tensorial approach. The second-order cumulant (i.e. the covariance matrix) is used to ensure 
that data are white (uncorrelated). Fourth-order information (through the fourth-order 
cumulant tensor matrix) produces an independence criterion. 
Tensors are considered as a higher-dimensional generalization of matrices or linear 
operators (Michal, 2008). Cumulant tensors are matrices containing the cross-cumulants. 
Considering this, the second-order cumulant tensor is the covariance matrix and the fourth-
order tensor (T4) is formed by the fourth-order cross-cumulants cum(ui,uj,uk,ul), which, for 
zero-mean random variables, is defined as: 

               i j k l i j k l i j k l i k j l k j i lcum u u u u E u u u u E u u E u u E u u E u u E u u E u u, , , , , , , , , , , ,    (14) 

The fourth-order cumulant tensor T4 is a four-dimensional array, where, for each element 
qijkl= cum(ui,uj,uk,ul), the indexes i ,j ,k ,l vary from 1 to N (where N is the number of signals). 
The fourth-order cumulant tensor contains all fourth-order information of the data. 
JADE estimation criterion is derived through a procedure analogous to diagonalization of 
the covariance matrix, which produces signal decorrelation. As T4 is a fourth-order 
counterpart of the covariance matrix, independence can be achieved by diagonalizing T4, as 
for independent signals the unique non-zero fourth-order cross-cumulant appears when 
i=j=k=l. Analogous to the second-order case, diagonalization of the fourth-order tensor can 
be achieved through eigenvalue decomposition (EVD) (Strang, 2009). 
Using tensorial methods for ICA is theoretically simple, but computing EVD of four-
dimensional matrices by ordinary algorithms requires a very large amount of memory and 
may be computationally prohibitive in some cases. In order to avoid this limitation, methods 
like JADE were proposed in the literature. JADE algorithm searches for the matrix W that 
minimizes the sum of the squares of the non-diagonal elements of the output data of T4(y) 
(where T4(y) is the fourth-order cumulant tensor of the output data y). 

 
2.1.3.2 Post-Nonlinear ICA 
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Fig. 2. Post-Nonlinear mixing/de-mixing model. 
 
Post-Nonlinear (PNL) mixtures arise whenever, after a linear mixing process, the sensors 
present nonlinear behavior. The observed signals can be expressed as (Almeida, 2006): 
 

 i i ix f      (15) 

 

where α=As. As stated in Eq. 15, each observed signal xi is obtained through component-
wise nonlinear functions fi applied to the linearly mixed signals αi. The independent 
components are obtained by a mirror model: 

yi Wigi xi     (16) 

 
where W is the de-mixing matrix and gi the inverse nonlinearity (see Fig. 2). The nonlinear 
functions are usually estimated through neural networks (MLP) and the de-mixing matrix 
by a linear ICA algorithm (Taleb and Jutten, 1999). 
A limitation of the PNL algorithm is that the number of observed signals is assumed to be 
equal to the number of sources (square model). This prevents its application to high-
dimensional data problems as both the number of parameters and the computational 
complexity increase exponentially with problem dimensionality. 
In order to deal with high-dimensional data, a modified PNL model for the overdetermined 
case (when there exist more sensors N than sources K) was proposed in (Simas Filho et al., 
2009a). As illustrated in Fig. 3, a linear block B is added to the standard PLN mixing model, 
allowing K<N. Coefficients of matrix B are estimated through signal compaction methods 
such as PCA and PCD, described in Section 2.1.2. The inverse (demixing) algorithm is thus 
described using a mirror model: y=W G(Dx), where y are the estimated sources. 
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Fig. 3. Modified Post-Nonlinear mixing/de-mixing model. 

 
2.1.3.3 Local ICA 
Local ICA (Karhunen et al., 2000), (Jutten and Karhunen, 2003) can be viewed as a 
compromise between linear and nonlinear ICA. If the ICA model is used for feature 
extraction, better description of the data set can be obtained while exploring local 
characteristics. The purpose is to obtain better data representation when compared to linear 
ICA, while avoiding the high computational cost of the nonlinear models. 
In Local ICA model (see Equation 17), a N-dimensional input space Q  RN is divided into a 
finite number of subsets Ql, l=1,...,L, which satisfy: 
 

Q1Q2QL Q   (17) 

 
Clustering is responsible for the overall nonlinear representation. Linear ICA models are 
applied to data belonging to each cluster (x(l)) in order to estimate the local independent 
components s(l)=B(l)x(l), where B(l) is a local de-mixing matrix. 
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2.1.3.3 Local ICA 
Local ICA (Karhunen et al., 2000), (Jutten and Karhunen, 2003) can be viewed as a 
compromise between linear and nonlinear ICA. If the ICA model is used for feature 
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ICA, while avoiding the high computational cost of the nonlinear models. 
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Clustering is responsible for the overall nonlinear representation. Linear ICA models are 
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Fig. 4. Local ICA model. 

 
3. The Application 

As mentioned in Section 1, the LHC collision rate, together with ATLAS granularity, will 
result in a data stream of ~60 TB/s, requiring an efficient online filtering system for 
retrieving the interesting physics channels from dense background noise. This filtering 
system comprises three cascaded operation levels, applying successive cuts to the incoming 
data (Riu et al., 2008). 
The first level (L1) will receive full data and will reduce the input event rate to ~75 kHz. The 
first level is responsible for marking the regions in the detector that have effectively been 
excited. These regions are known as Region of Interest - RoI, and will be the only information 
passed over to the second level analysis. 
The second level (L2) will receive the regions of interest marked by the first level and will 
apply more specific analysis on them. For coping with an average processing time of 40 ms 
per event, a set of 500 off-the-shelf server processors will be employed, providing a multi-
processed environment. The third and last filtering level, also known as Event Filter - EF, 
will take the final decision on events approved by the previous levels. A highly parallel 
processing environment composed by ~1600 off-the-shelf server processors will be 
employed for coping with an average processing time of 4 sec. At the end, a rate of ~200 Hz 
events will be recorded in mass storage devices for further offline analysis by the physicists. 
One of the ATLAS main research goals is to experimentally prove the Higgs boson (Perkins, 
2000). Being the Higgs boson highly unstable, it soon decays into more stable particles. 
Therefore, the physicists will prove its existence not by detecting the Higgs boson directly, 
but by analyzing its decaying signatures. It is known (Perkins, 2000) that some of such 
signatures produce electrons at their final state. Therefore, the identification of electrons is 
of great importance. On the other hand, during proton-proton collisions, a cascade of quark 
and anti-quark pairs can be produced, which quickly merge into more stable particles, 
producing a pattern known as jet. These jets may interact with the detector in a manner very 
similar to electrons, making the correct identification of electrons a tricky process. 
Our analysis will focus on the electron / jet separation problem at the second level of the 
ATLAS filtering system, using calorimeter information. Calorimeters are total absorption 
detectors (Wigmans, 2000). Typically, they use a (passive) material (iron, lead, for instance) 
for absorbing entirely the energy of the incoming particle and sample the energy being 
deposited in the detector by using an active material (scintillating fibers, tiles, for instance).  

Calorimeters play a major role in collider experiments as they provide fast response, their 
energy resolution improves with increasing energy, and they interact with charged and non-
charged particles. In addition, they are highly-segmented detectors, so that it is possible to 
identify particle classes by their energy deposition profile. 
The ATLAS calorimetry system is composed by two calorimeter sections (The ATLAS 
Collaboration, 2008). The electromagnetic (EM) calorimeter is responsible for detecting 
electrons, positrons and photons. The hadronic calorimeter (HD) is responsible for detecting 
hadrons (kaons, pions, etc) and it is placed on top of the electromagnetic calorimeter. Both 
detectors comprise 3 sequential layers with distinct granularity and depth, providing 
detailed information of incoming particles. The electromagnetic calorimeter has, in addition, 
a very thin layer in front of it, which is called the pre-sampler (PS). Fig. 5 displays the 
energy deposition profile for an electron interaction. A region of interest selected by the 
first-level filtering system amounts, in average, to 1,000 calorimeter cells. 
Electrons have the property of depositing their energy in a very punctual way, differently 
from jets, which, for L2 data, tend to slightly spread their energy over multiple cells within a 
layer. Therefore, the relevant information relies not at the impact point center, but at its 
surrounding area. Aiming at exploiting this feature, a topological pre-processing based on 
ring sums has been tried by some L2 algorithms for data formatting (Torres et al., 2008). In 
this approach, the cell that samples the highest energy value (also known as the hottest cell) 
is considered the center of our region of interest in each calorimeter layer (seven in total). 
Then, a set of concentric rings are built around this hottest cell in a pattern similar to the one 
presented in Fig. 6. It can also be observed in Fig. 6 that, depending on the layer granularity, 
the rings might not close (incomplete) or even be composed only by strips. Finally, the cells 
belonging to a given ring are summed up, reducing the final event dimension, without 
jeopardizing their physics interpretation. This ring procedure is performed on a per layer 
basis, resulting, at the end, in a total of 100 rings, distributed as shown in Tab. 1. 
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energy deposition profile for an electron interaction. A region of interest selected by the 
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Fig. 5. Example of the segmented calorimeter information obtained from an incoming 
electron. 
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Fig. 6. Ring formatting for calorimetry. 
 

Layer PS EM1 EM2 EM3 HD1 HD2 HD3 Total

Rings 8 64 8 8 4 4 4 100
 

Table 1. Number of rings in each calorimeter layer. 
 
In the electron / jet separation problem, the dynamic range of the sampled energy is very 
large, therefore, an energy normalization procedure is applied, in order to focus, as much as 
possible, our analysis at the signal shape, rather than its energy nominal value, resulting in a 
steady detection efficiency over all the relevant energy spectrum. Also, since the relevant 
information from the discrimination point of view is known to be off-center, a sequential 
normalization is employed (dos Anjos et al., 2006). In this procedure, for each calorimeter 
layer, the normalized energy (EN) of each ring is given by 
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where El,i is the original energy of the i-th ring belonging to the l-th layer, and Etot l is the 
total sampled energy by the l-th layer. As a result, successively smaller attenuation factors 
are applied to the outer rings, but the normalization procedure is resilient enough to keep 
track of the signal-to-noise ratio, avoiding the amplification of irrelevant information. 

 
4. Results 

The available dataset was obtained through Monte Carlo simulation for proton-proton 
collisions and comprises approximately 470,000 electrons and 310,000 jet signatures. The 
simulation considers the detector characteristics and the first-level filtering operation. The 
available data set was approximately equally split into training, validation (stopping 
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criterion for neural network training based on mean-squared error) and testing 
(performance evaluation) sets. 
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Fig. 7. - Processing chain of the electron/jet separation system. 
 
It is shown in Fig. 7 the block diagram of the electron / jet discriminator. The raw 
calorimeter data is received and the topological processing based on ring sums is 
performed. Next, for the segmented case, the rings belonging to a given layer are pre-
processed individually and the pre-processed event obtained for each layer is concatenated, 
generating a single input, which is propagated to the neural network for the pattern 
recognition. For the non-segmented case, the generated rings are concatenated prior to the 
pre-processing phase, so that the pre-processing is performed in all 100 rings at once. For the 
ICA based pre-processing, the JADE algorithm was used, and the clustering algorithm used 
by local ICA was the k-mean (Duda et al., 2004). 
In this work, the Fisher Linear Discriminant (FLD) and supervised Multi-Layer Perceptron 
(MLP) neural classifiers (single hidden layer) (single hidden layer) were used to perform 
particle identification over calorimeter information. The neural networks were trained using 
the Resilient Backpropagation algorithm (Riedmiller and Braun, 1993). In order to compare the 
discrimination efficiency for the proposed classifiers, both the Receiver Operating 
Characteristics (ROC) and the SP index were applied. The ROC curve (Van Trees, 2003) shows 
how the detection probability PD and false alarm probability PF vary as the decision threshold 
changes. The SP index (dos Anjos et al., 2006) is computed through  
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where PJ is the efficiency for jets. The threshold value that maximizes the SP provides both 
high PD and low PF. 
 
As mentioned in previous sections, the available calorimeter signatures are topologically 
pre-processed, generating 100 rings for an incoming event. Considering this, the 
discrimination system may benefit from signal compaction algorithms as they reduce 
redundant information and signal dimensionality. Here, compaction was performed 
through both Principal Component Analysis (PCA) and Principal Components for 
Discrimination (PCD), using segmented (layer-level) and non-segmented approaches. As the 
calorimeter system provides highly-segmented information, segmented processing tries to 
exploit subtle differences in electron and jet energy deposition profiles, which are available 
at the layer level. 
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Fig. 8. ROC curves (and respective classifier topology) for segmented and non-segmented 
feature extraction through PCA and PCD. 

 
Fig. 8 illustrates the discrimination performance for different methods in terms of ROC 
curves. It can be observed that the segmented approach outperforms the non-segmented 
one, for both PCA and PCD. It can also be seen that PCD usually presents lower false-alarm 
when compared to PCA (for the same detection probability) and achieves higher 
compaction rates (31 components for PCD against 74 components for PCA in segmented 
processing mode). This is a result of the compaction strategies, as in PCA the purpose is to 
maximize the energy projection and in PCD the objective is to optimize the discrimination 
capability of the components. Moreover, PCD uses nonlinear processing to estimate its 
components, which proves to be efficient in terms of discrimination performance. As it can 
be seen from Fig. 8, using only 31 components, the PCD performance is even better than 
processing 100 rings without any further pre-processing. 
The (linear) Independent Component Analysis (ICA) model was without any further pre-
processingalso applied to ring signals, either without pre-processing or combined with 
segmented and non-segmented PCA and PCD compaction schemes. Fig. 9 illustrates the 
ROC curves for different ICA-based discriminators. It can be observed that the segmented 
feature extraction provides slightly higher discrimination performance when independent 
components are estimated. Other benefit observed with ICA is that the classifier training 
procedure usually converges in very few iterations, in contrast to PCA and PCD based 
discriminators, which, in general, require a larger number of training steps. From Fig. 9, it is 
also interesting to observe that ICA could be the only pre-processing technique, as the 
nonlinear decorrelation it provides allows the neural network to perform slightly better in 
terms of discrimination efficiency. 
Considering feature extraction through NLICA (using the modified PNL model) based on 
PCD projection, the nonlinearities which may arise are expected to be smooth. In a practical 
design, a calorimeter can exhibit small nonlinearities along the wide dynamic range it has to 
work on. In view of this, the neural networks used to estimate the inverse nonlinearities are 
restricted to have small number of hidden neurons and thus can only approximate smooth 
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discriminators, which, in general, require a larger number of training steps. From Fig. 9, it is 
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nonlinear functions. This also reduces the probability of reaching local minima during the 
training procedure.  

 
Fig. 9. ROC curves (and respective classifier topologies) for ICA-based discriminators. 
 
In the Local ICA approach, the training data set was initially clustered into two clusters (as 
there are two possible classes for the incoming particles). As illustrated in Fig. 10, cluster 1 
concentrates most of the electron signatures and cluster 2 the jets. After clustering, ICA and 
ICA with PCD pre-processing were both estimated for data belonging to each cluster. The 
classifiers were also trained locally, generating two ROCs (one for each cluster). A global 
optimization algorithm (Genetic Algorithm) (Haupt and Haupt, 2004) was used to search for 
the optimal combination of the local thresholds, which provides optimum global 
discrimination. 

0

0.2

0.4

0.6

0.8

1

Cluster 1

P
ro

ba
bi

lit
y

0

0.2

0.4

0.6

0.8

1

Cluster 2

Electron
Jet

 
Fig. 10. Concentration of electrons and jets in each cluster for Local ICA pre-processing 
approach. 

Fig. 11 illustrates the discrimination performance obtained through PNL and Local ICA 
approaches. It can be seen that, compared to the linear ICA model, PNL exhibits slightly 
poorer performance. On the other hand, Local ICA produces higher discrimination 
efficiency with respect to the other models when it is performed on PCD directions. For 
Local ICA, only the optimum point is shown in Fig. 11. 
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Fig. 11. ROC curves (and respective classifier topology) for NLICA and ICA discriminators. 
 
A summary of the results achieved for each approach can be observed in Tab. 2, where the 
maximum SP value obtained for each approach is presented. Furthermore, Tab. 3 presents 
the false alarm probability for a fixed 97% electron detection efficiency.  
The classifier complexity is shown in Tab. 4 for each approach. It can be depicted from this 
table that applying nonlinear decorrelation (PCD and ICA based algorithms) reduces the 
computational requirements for the classification task. The local ICA based on PCD 
projections not only achieves better classification efficiency, but it is also very efficient in 
terms of computational load (~33% reduction with respect to the rings only approach).  
 

Approach Non-segmented Segmented

Rings 96.10 ---

PCA 93.07 96.04

PCD 96.11 96.28

ICA 96.38 96.45

ICA + PCA 93.21 96.00

ICA + PCD 95.45 96.25

PNL + PCD 95.80 96.20

Local ICA 96.63 ---

Local ICA + PCD 97.32 ---  
Table 2. Maximum SP (× 100) obtained for segmented and non-segmented approaches. 
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Rings 96.10 ---

PCA 93.07 96.04

PCD 96.11 96.28
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Table 2. Maximum SP (× 100) obtained for segmented and non-segmented approaches. 
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Approach Non-segmented Segmented

Rings 1.75 ---

PCA 4.20 1.88

PCD 1.77 1.59

ICA 1.55 1.51

ICA + PCA 4.04 1.83

ICA + PCD 2.26 1.68

PNL + PCD 2.02 1.72

Local ICA 1.30 ---

Local ICA + PCD 0.82 ---  
Table 3. False alarm probability (%) for a detection efficiency of 97%. 
 

Approach Non-segmented Segmented

Rings 3636  ---

PCA 4242 5050

PCD 3636 2828

ICA 6868 8686

ICA + PCA 5454 9090

ICA + PCD 200 3030

PNL + PCD 3934 6768

Local ICA 4438  ---

Local ICA + PCD 2418  ---  
Table 4. Number of total floating point operations per approach. 
 
In order to verify whether a linear classifier suffices, the pre-processed signals were used to 
feed a linear Fisher Discriminant (FLD), which is proved to be optimal linear discriminators 
(Duda et al., 2004). Fig. 12 provides a comparison between the discrimination performance 
obtained through linear (FLD) and nonlinear (MLP) classifiers. It can be seen that the 
nonlinear decorrelation introduced by ICA was able to improve the discrimination obtained 
through FLD, providing more separated patterns for different types of particles. Through 
the proposed pre-processing chain, the results of the linear classifier got closer to the ones 
obtained by the MLP. However, the nonlinear decorrelation provided by PCD and ICA were 
still not sufficient to discard a nonlinear classifier in order to achieve optimal detection 
efficiency. Tab. 5 and Tab. 6 summarize the detection efficiency comparison between linear 
Fisher and neural discriminants. An important issue is the computational cost, which, for a 
linear classifier, is much smaller (see Tab. 7) with respect to the nonlinear counterpart. This 
might be a striking advantage for online filtering.  
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Fig. 12. ROC curves for the linear and neural discriminators. 
 

Approach Neural Fisher

Rings 96.10 95.12

Segm. PCD 96.28 95.35

Segm. ICA + PCD 96.25 95.43

Local ICA + PCD 97.32 94.40  
Table 5. Maximum SP (× 100) obtained for each approach considered for a linear classifier. 
 

Approach Neural Fisher

Rings 1.75 2.50

Segm. PCD 1.59 2.29

Segm. ICA + PCD 1.68 2.22

Local ICA + PCD 0.82 3.00  
Table 6. False alarm (%) for a detection efficiency of 97% for each approach considered for a 
linear classifier. 
 

Approach Neural Fisher

Rings 3636 200

Segm. PCD 2828 200

Segm. ICA + PCD 3030 200

Local ICA + PCD 2418 700  
Table 7. Number of total floating point operations per approach considered for a linear 
classifier. 
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Approach Non-segmented Segmented

Rings 1.75 ---

PCA 4.20 1.88

PCD 1.77 1.59

ICA 1.55 1.51

ICA + PCA 4.04 1.83

ICA + PCD 2.26 1.68

PNL + PCD 2.02 1.72

Local ICA 1.30 ---

Local ICA + PCD 0.82 ---  
Table 3. False alarm probability (%) for a detection efficiency of 97%. 
 

Approach Non-segmented Segmented

Rings 3636  ---

PCA 4242 5050

PCD 3636 2828

ICA 6868 8686

ICA + PCA 5454 9090

ICA + PCD 200 3030

PNL + PCD 3934 6768

Local ICA 4438  ---

Local ICA + PCD 2418  ---  
Table 4. Number of total floating point operations per approach. 
 
In order to verify whether a linear classifier suffices, the pre-processed signals were used to 
feed a linear Fisher Discriminant (FLD), which is proved to be optimal linear discriminators 
(Duda et al., 2004). Fig. 12 provides a comparison between the discrimination performance 
obtained through linear (FLD) and nonlinear (MLP) classifiers. It can be seen that the 
nonlinear decorrelation introduced by ICA was able to improve the discrimination obtained 
through FLD, providing more separated patterns for different types of particles. Through 
the proposed pre-processing chain, the results of the linear classifier got closer to the ones 
obtained by the MLP. However, the nonlinear decorrelation provided by PCD and ICA were 
still not sufficient to discard a nonlinear classifier in order to achieve optimal detection 
efficiency. Tab. 5 and Tab. 6 summarize the detection efficiency comparison between linear 
Fisher and neural discriminants. An important issue is the computational cost, which, for a 
linear classifier, is much smaller (see Tab. 7) with respect to the nonlinear counterpart. This 
might be a striking advantage for online filtering.  
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Fig. 12. ROC curves for the linear and neural discriminators. 
 

Approach Neural Fisher

Rings 96.10 95.12

Segm. PCD 96.28 95.35

Segm. ICA + PCD 96.25 95.43

Local ICA + PCD 97.32 94.40  
Table 5. Maximum SP (× 100) obtained for each approach considered for a linear classifier. 
 

Approach Neural Fisher

Rings 1.75 2.50

Segm. PCD 1.59 2.29

Segm. ICA + PCD 1.68 2.22

Local ICA + PCD 0.82 3.00  
Table 6. False alarm (%) for a detection efficiency of 97% for each approach considered for a 
linear classifier. 
 

Approach Neural Fisher

Rings 3636 200

Segm. PCD 2828 200

Segm. ICA + PCD 3030 200

Local ICA + PCD 2418 700  
Table 7. Number of total floating point operations per approach considered for a linear 
classifier. 
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5. Conclusions and Perspectives 

Online data filtering in high-dimensional input data space finds application in multiple 
areas. Depending on the accumulated knowledge about the target problem, combining what 
is known by experts with high-order stochastic signal processing techniques is being shown 
to be an efficient design approach. Among the benefits, high signal compaction rates, 
relevant feature extraction and reduced computational load are often accomplished. 
For a very demanding high-energy physics application, it was shown that we could benefit 
from topological pre-processing, which implements the expert part of the whole pre-
processing scheme. Then, adding decorrelation techniques to the signal processing chain 
provided efficient feature extraction. For this, only 30% of the original data components 
were required. Further knowledge about the problem pointed out that the segmented signal 
processing was the right approach. In addition, the overall computational load could 
significantly be reduced, which was attractive due to the low processing time required by 
the target application. 
Nonlinear independent component analysis achieved the best performance in this case 
study, which motivates further application investigations. A possibility is to implement it 
through SOM (Self-Organizing Maps) (Haykin, 2008). In detectors where the arising 
nonlinearities of practical designs are expected to be small deviations from the linear 
behavior, it would also be important to restrict the degrees of freedom of the nonlinear 
component extraction. The independent component analysis is also attractive in facing pile-
up effects (Knoll, 1989), which typically decreases discrimination efficiencies in high event 
rate applications. There is plenty of room for algorithm development in high demanding 
application scenarios.  
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to be an efficient design approach. Among the benefits, high signal compaction rates, 
relevant feature extraction and reduced computational load are often accomplished. 
For a very demanding high-energy physics application, it was shown that we could benefit 
from topological pre-processing, which implements the expert part of the whole pre-
processing scheme. Then, adding decorrelation techniques to the signal processing chain 
provided efficient feature extraction. For this, only 30% of the original data components 
were required. Further knowledge about the problem pointed out that the segmented signal 
processing was the right approach. In addition, the overall computational load could 
significantly be reduced, which was attractive due to the low processing time required by 
the target application. 
Nonlinear independent component analysis achieved the best performance in this case 
study, which motivates further application investigations. A possibility is to implement it 
through SOM (Self-Organizing Maps) (Haykin, 2008). In detectors where the arising 
nonlinearities of practical designs are expected to be small deviations from the linear 
behavior, it would also be important to restrict the degrees of freedom of the nonlinear 
component extraction. The independent component analysis is also attractive in facing pile-
up effects (Knoll, 1989), which typically decreases discrimination efficiencies in high event 
rate applications. There is plenty of room for algorithm development in high demanding 
application scenarios.  

 
6. Acknowledgements 

The authors would like to express their gratitude to CNPq, FINEP, CAPES, FAPERJ (Brazil) 
and CERN (Switzerland) for their financial support. We also thank the ATLAS collaboration 
at CERN for providing the simulated calorimeter data and for fruitful discussions 
concerning this work. 

 
7. References 

Almeida, L. B. (2006). Nonlinear Source Separation, Morgan and Claypool.  
Caloba, L., Seixas, J. and Pereira, F. (1995). Neural discriminating analysis for a second-level 

 trigger system, Proceedings of the International Conference on Computing in High 
 Energy Physics (CHEP95), Rio de Janeiro, Brazil.  

Cardoso, J. F. and Souloumiac, A. (1993). Blind beamforming for non-gaussian signals, IEEE 
 Proceedings- F 140(6): 362–370.  

CERN (2007). European organization for nuclear research. URL: http://www.cern.ch  
Choi, S., Cichocki, A., Park, H. and Lee, Y. (2005). Blind source separation and independent 

 component analysis - a review, Neural Information Processing - Letters and 
 Reviews 6(1).  

Cichocki, A. and Amari, S. (2002). Adaptive Blind Signal and Image Processing, Willey. 

Cichocki, A. and Unbehauen, R. (1996). Robust neural networks with on-line learning for 
 blind identication and blind separation of sources, IEEE Transactions on Circuits 
 and Systems-I: Fundamental Theory and Applications (11).  

dos Anjos, A., Torres, R. C., Seixas, J. M., Ferreira, B. C. and Xavier, T. C. (2006). Neural 
 triggering system operating on high resolution calorimetry information, Nuclear 
 Instruments and Methods in Physics Research 559: 134–138.  

Duarte, L. T., Jutten, C. and Moussaoui, S. (2009). Ion selective electrode array based on a 
 bayesian nonlinear source separation method, in T. Adali, C. Jutten, J. Romano and 
 A. Barros (eds), Independent Component Analysis And Signal Separation, 8th 
 International Conference, Lecture Notes In Computer Science, Springer, Paraty, 
 Brazil, pp. 662–669.  

Duda, R. O., Hart, P. E. and Stork, D. G. (2004). Pattern Classication, 2nd ed, Wiley-
Interscience.  

Evans, L. and Bryant, P. (2008). LHC machine, Journal of Instrumentation (2008 JINST 3 
 S08001).  

Haritopoulos, M., Yin, H. and Allinson, N. M. (2002). Image denoising using self-organizing 
 map-based nonlinear independent component analysis, Neural Networks 
 pp.  1085–1098.  

Haupt, R. L. and Haupt, S. E. (2004). Practical Genetic Algorithms, 2nd ed,Wiley-Interscience.  
Haykin, S. (2008). Neural Networks and Learning Machines, 3rd ed, Prentice Hall.  
Hyvärinen, A., Karhunen, J. and Oja, E. (2001). Independent Component Analysis, John 

 Wiley & Sons.  
Hyvärinen, A. and Pajunen, P. (1999). Nonlinear independent component analysis: 

 Existence and uniqueness results, Neural Networks 12(3): 429–439.  
Jolliffe, I. T. (2002). Principal Component Analysis, 2nd ed, Springer.  
Jutten, C. and Karhunen, J. (2003). Advances in nonlinear blind source separation, 

 Proceedings of the 4th Int. Symp. on Independent Component Analysis and Blind 
 Signal Separation (ICA2003) pp. 245–256.  

Karhunen, J., Malaroiu, S. and Ilmoniemi, M. (2000). Local linear independent component 
 analysis based on clustering, Int. Journal of Neural Systems 10: 439–451.  

Knoll, G. F. (1989). Radiation Detection and Measurement, 2nd ed, John Wiley & Sons.  
Mackay, D. J. C. (2002). Information Theory, Inference and Learning Algorithms, Cambridge 

 University Press.  
McClave, J. T., Sincich, T. and Mendenhall, W. (2008). Statistics, 11th ed, Prentice Hall.  
Michal, A. D. (2008). Matrix and Tensor Calculus With Applications to Mechanics, Elasticity 

 and Aeronautics, 1st ed, Dover.  
Moura, N. N., Simas Filho, E. F. and Seixas, J. M. (2009). Advances in Sonar Signal  Processing, 

In-Tech, Vienna, Austria, chapter Independent Component Analysis for  Passive 
Sonar Signal Processing, pp. 91–110.  

Murillo-Fuentes, J., Boloix-Tortosa, R., Hornillo-Mellado, S. and Zarzoso, V. (2004). 
 Independent component analysis based on marginal entropy approximations, 
 Proceedings of the World Automation Congress (16): 433–438. 

Natora, M., Franke, F., Munk, M. and Obermayer, K. (2009). Bss of sparse overcomplete 
 mixtures and application to neural recordings, in T. Adali, C. Jutten, J. Romano and 
 A. Barros (eds), Independent Component Analysis And Signal Separation, 8th 



Signal	Processing358

 International Conference, Lecture Notes In Computer Science, Springer, Paraty, 
 Brazil, pp. 459–467.  

Papoulis, A. and Pillai, S. U. (2002). Probability, Random Variables, and Stochastic Processes, 
 4th ed, McGraw-Hill.  

Perkins, D. H. (2000). Introduction to High Energy Physics, 4th ed, Cambridge University 
 Press.  

Riedmiller, M. and Braun, H. (1993). A direct adaptive method for faster backpropagation 
 learning: The RPROP algorithm, Proceedings of the IEEE International Conference 
 on Neural Networks, San Francisco, CA, pp. 586–591.  

Riu, I., Abolins, M., Adragna, et al. (2008). Integration of the trigger and data acquisition 
 systems in ATLAS, IEEE Transactions on Nuclear Science 55(1): 106–112.  

Rojas, F., Puntonet, C. G. and Rojas, I. (2003). Independent component analysis evolution 
 based method for nonlinear speech processing, Artificial Neural Nets Problem 
 Solving Methods, PT II 2687: 679–686.  

Shannon, C. E. (1948). A mathematical theory of communication, The Bell System Technical 
 Journal pp. 379–423.  

Simas Filho, E. F., Seixas, J. M. and Caloba, L. P. (2009a). High-energy particle online 
 discriminators based on nonlinear independent components, in T. Adali, C. Jutten, 
 J. Romano and A. Barros (eds), Independent Component Analysis And Signal 
 Separation, 8th International Conference, Lecture Notes In Computer Science, 
 Springer, Paraty, Brazil, pp. 718–725.  

Simas Filho, E. F., Seixas, J. M. and Caloba, L. P. (2009b). Optimized calorimeter signal 
 compaction for an independent component based ATLAS electron/jet second-level 
 trigger, Proceedings of Science - PoS ACAT08 102.  

Strang, G. (2009). Introduction to Linear Algebra, 4th ed, Wellesley Cambridge Press.  
Syskind, M., Wang, D. L., Larsen, J. and Kjem, U. (2006). Separating underdetermined 

 convolutive speech mixtures, in J. Rosca, D. Erdogmus, J. C. Principe and S. Haykin 
 (eds), Independent Component Analysis And Signal Separation, 8th International 
 Conference, Lecture Notes In Computer Science, Springer, Charleston, USA,               
 pp. 674–681.  

Taleb, A. and Jutten, C. (1999). Source separation in post-nonlinear mixtures, IEEE 
 Transactions on Signal Processing (47): 2807–2820.  

The ATLAS Collaboration (2008). The ATLAS experiment at the CERN large hadron 
collider,  Journal of Instrumentation (2008 JINST 3 S08003).  

Torres, R. C., Seixas, J. M., dos Anjos, A. and Cunha, D. V. (2008). Online electron/jet neural 
 high-level trigger over independent calorimetry information, Proceedings of 
 Science PoS(ACAT)039: 1–15. 

Van Trees, H. L. (2003). Detection, Estimation, and Modulation Theory, Part I, Wiley.  
Wei, C., Khor, L. C., Woo, W. L. and Dlay, S. S. (2006). Post-nonlinear underdetermined ICA 

 by bayesian statistics, in J. Rosca, D. Erdogmus, J. C. Principe and S. Haykin (eds), 
 Independent Component Analysis And Signal Separation, 8th International 
 Conference, Lecture Notes In Computer Science, Springer, Charleston, USA,          
 pp. 773–780.  

Wigmans, R. (2000). Calorimetry: Energy Measurement In Particle Physics, Oxford. 



Practical	Source	Coding	with	Side	Information 359

Practical	Source	Coding	with	Side	Information

Lorenzo	Cappellari

0

Practical Source Coding with Side Information
Lorenzo Cappellari

Dept. of Information Engineering, University of Padova
Italy

1. Introduction

The problem of coding the realizations of a random source when some other one, correlated
with the former, is available at the decoder but not at the encoder goes under the name of source
coding with side information. The minimum achievable transmission rates in this scenario were
already found about thirty years ago by means of a random coding analysis. Practical coding
schemes have been instead investigated only recently for enabling improved compression
performance in sensor networks and computationally light and robust source coding in video
applications.
Differently from the traditional source coding scenario, these schemes take advantage of both
a code that is good for channel coding and a code that is good for source coding. Practical ap-
proaches where these two codes are nested have been shown to be asymptotically optimal,
but schemes that use independent codes have also appeared that are easier to implement, in
particular in the dual context of channel coding with side information at the encoder.
In the first half of this chapter we will review the main theoretical results regarding both
this problem and, in general, the problem of distributed source coding (Section 2). The most
important coding schemes that have appeared in literature for achieving the promises of the
theoretical investigations are also described (Section 3); in particular, we discuss an approach
based on the principle of superposition coding that we also show to be optimal.
The second half of this chapter is more focused on practical coding schemes. In Section 4
we give an original factor graph-based interpretation of the decoding algorithms used in the
schemes for lossless reconstruction based on turbo codes. We also present a performance com-
parison between several of them. In Section 5 we discuss a solution to the lossy source
coding problem with side information based on continuous-valued syndromes. In particular,
this scheme embodies the superposition approach and uses independent channel and source
codes. In order to broad the range of applications of this coding scheme, model-aided statisti-
cal decoding of continuous-valued syndromes is also proposed for the case of coding Markov
sources. We compare the performance of this coding scheme against other systems both for
the case of coding purely Gaussian sources and for the case of coding natural video sequences,
both in the discrete cosine transform and in the discrete wavelet transform domain. We will con-
clude with a short discussion on the drawbacks of the proposed coding solutions and on the
future research (Section 6).
Throughout the chapter, we use the following notation. The random variable (r.v.) X takes
realizations x on the set � and has probability mass function p(x). Xn is an n-dimensional
random process with independent and identically distributed components; the realizations xn

are elements of � n. Matrices and random vectors are shown in bold face (e.g. X). Alphabets
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are usually discrete. P[⋅] and E[⋅] denote the probability of an event and the expected value
of a r.v., respectively; χ{⋅} is the indicator function of an event. H(⋅), H(⋅∣⋅) and I(⋅; ⋅) denote

entropy, relative entropy, and mutual information; 𝒜(n)
ε is the (strongly) typical set over which

n-dimensional processes distribute uniformly (Cover & Thomas, 2006). A variable X ∼ ℬ(p)
is a Bernoulli r.v. that equals one with probability p; H(p) is its entropy; addition of Bernoulli
variables is defined over the group GF(2). A variable X ∼ 𝒩 (µ, σ2) is a Gaussian r.v. with
mean µ and variance σ2. a ∘ b denotes function composition, ⋅T matrix transposition; the
notation 2nR usually means

⌊
2nR

⌋
. A good source/channel code is a code that achieves the

rate-distortion/channel capacity function asymptotically with its length.

2. Problem Statement and Theoretical Results

Suppose that we want to map some environmental parameter, e.g. the temperature, over a
certain space. Then, we place m ≥ 2 temperature sensors across that space, and have each
one communicate its measurement to a central unit; let Xi denote this measurement. Data
compression is employed at each sensor node in order to save transmission power. It is likely
that these measurements are somewhat correlated, i.e. that H(X1X2 . . . Xm) < ∑

m
i=1 H (Xi).

According to classical information theory results (Shannon, 1948), at least H(X1X2 . . . Xm)
bits must be received by the central node for describing exactly all measurements. But this is
achievable with traditional source coding means only if communication between the sensor
nodes is possible. The problem of distributed source coding (DSC) refers to the scenario in which
the sensor nodes are not allowed to communicate with each other.
Closely related to DSC is the problem of source coding with side information (at the decoder) (SCSI).
Suppose that the m − 1 measurements X2, X3, . . . , Xm are reconstructed at the central node
upon receiving data from the respective m − 1 sensor nodes. Again, the remaining sensor
node is not allowed to communicate with any of them. Then, the decoder has knowledge

about the side information (SI) Y ≜ (X2, X3, . . . , Xm), which is correlated with measurement
X1, but unavailable at the respective sensor node.
Answers to questions regarding the minimum transmission rates needed in the DSC/SCSI
problem for lossless or lossy (i.e. within a certain distortion) reconstruction have been mostly
given and are summarized in the following. Coding schemes achieving these rates have been
also inherently suggested while answering these questions, but they are in practice not useful.
Luckily, more structured coding schemes have been investigated in literature that achieve the
same performance, as described in Section 3.

2.1 Distributed Source Coding
Let X denote the source vector (X1, X2, . . . , Xm). A code of length n and rate (R1, R2, . . . , Rm)
for the DSC problem consists of the following functions:

fi : 𝒳 n
i →

[
1, 2nRi

]
, i = 1, 2, . . . , m , (1)

g :
m

∏
i=1

[
1, 2nRi

]
→

m

∏
i=1

𝒳 n
i . (2)

Its probability of error, once p(x) is known, is defined as

P
(n)
e ≜ P [g ∘ ( f1, f2, . . . , fm) (X

n) ∕= X
n] , (3)
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Fig. 1. Slepian-Wolf coding.

and the rate (R1, R2, . . . , Rm) is said to be achievable if there exist a sequence of codes at rate

(R1, R2, . . . , Rm) such that P
(n)
e → 0 as n → ∞. The achievable rate region is the closure of the

set of achievable rates.
Consider the DSC problem with two encoders (m = 2) shown in Fig. 1(a). The achievable rate
region for this problem (Slepian & Wolf, 1973) is given by

R1 ≥ H(X1∣X2) , (4)

R2 ≥ H(X2∣X1) , (5)

R1 + R2 ≥ H(X1X2) , (6)

and is shown in Fig. 1(b). Each internal point (R1, R2) of this region is shown to be achievable.
In particular it is shown that, among the random partitionings of the elements of 𝒳 n

i into 2nRi

bins each, there exist at least one such that if

• fi(x
n
i ) reveal the bin to which xn

i belongs, and

• g(j1, j2) returns the tuple1 (xn
1 , xn

2 ) ∈ 𝒜(n)
ε with xn

i belonging to the ji-th bin of 𝒳 n
i ,

the code defined by these functions has asymptotically a negligible probability of error.
If R1 > H(X1∣X2) and R2 > H(X2∣X1), a coding scheme is indeed given for achieving a sum
rate arbitrarily close to H(X1X2), i.e. to the achievable rate when the two encoders can com-
municate with each other. However, this scheme is not practical because (i) no constructive
procedures are given to find the needed code, and (ii) there is no structure to be exploited in
order to evaluate the functions fi and g without resorting to huge lookup tables. Similar re-
sults can be shown for jointly ergodic sources and for the case with m > 2 (Cover & Thomas,
2006).

2.2 Source Coding with Side Information
Assume that in Fig. 1(a) we have R2 > H(X2). Then, by classical results, the decoder can
already reconstruct X2 without receiving any data from the first encoder. We may then wonder

which is the minimum rate needed for reconstructing X ≜ X1 when the SI Y ≜ X2 is available
at the decoder, as in Fig. 2(a). From the analysis of the DSC problem, it can be inferred that
lossless reconstruction of X is possible at rates over H(X∣Y).

1 More precisely, if there are no tuples or there is more than one that satisfies this property, g assigns a
random tuple to (j1, j2). Similar strategies are also taken by the “theoretical” algorithms discussed in
the following.
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are usually discrete. P[⋅] and E[⋅] denote the probability of an event and the expected value
of a r.v., respectively; χ{⋅} is the indicator function of an event. H(⋅), H(⋅∣⋅) and I(⋅; ⋅) denote

entropy, relative entropy, and mutual information; 𝒜(n)
ε is the (strongly) typical set over which

n-dimensional processes distribute uniformly (Cover & Thomas, 2006). A variable X ∼ ℬ(p)
is a Bernoulli r.v. that equals one with probability p; H(p) is its entropy; addition of Bernoulli
variables is defined over the group GF(2). A variable X ∼ 𝒩 (µ, σ2) is a Gaussian r.v. with
mean µ and variance σ2. a ∘ b denotes function composition, ⋅T matrix transposition; the
notation 2nR usually means

⌊
2nR

⌋
. A good source/channel code is a code that achieves the

rate-distortion/channel capacity function asymptotically with its length.

2. Problem Statement and Theoretical Results

Suppose that we want to map some environmental parameter, e.g. the temperature, over a
certain space. Then, we place m ≥ 2 temperature sensors across that space, and have each
one communicate its measurement to a central unit; let Xi denote this measurement. Data
compression is employed at each sensor node in order to save transmission power. It is likely
that these measurements are somewhat correlated, i.e. that H(X1X2 . . . Xm) < ∑

m
i=1 H (Xi).

According to classical information theory results (Shannon, 1948), at least H(X1X2 . . . Xm)
bits must be received by the central node for describing exactly all measurements. But this is
achievable with traditional source coding means only if communication between the sensor
nodes is possible. The problem of distributed source coding (DSC) refers to the scenario in which
the sensor nodes are not allowed to communicate with each other.
Closely related to DSC is the problem of source coding with side information (at the decoder) (SCSI).
Suppose that the m − 1 measurements X2, X3, . . . , Xm are reconstructed at the central node
upon receiving data from the respective m − 1 sensor nodes. Again, the remaining sensor
node is not allowed to communicate with any of them. Then, the decoder has knowledge

about the side information (SI) Y ≜ (X2, X3, . . . , Xm), which is correlated with measurement
X1, but unavailable at the respective sensor node.
Answers to questions regarding the minimum transmission rates needed in the DSC/SCSI
problem for lossless or lossy (i.e. within a certain distortion) reconstruction have been mostly
given and are summarized in the following. Coding schemes achieving these rates have been
also inherently suggested while answering these questions, but they are in practice not useful.
Luckily, more structured coding schemes have been investigated in literature that achieve the
same performance, as described in Section 3.

2.1 Distributed Source Coding
Let X denote the source vector (X1, X2, . . . , Xm). A code of length n and rate (R1, R2, . . . , Rm)
for the DSC problem consists of the following functions:

fi : 𝒳 n
i →

[
1, 2nRi

]
, i = 1, 2, . . . , m , (1)

g :
m

∏
i=1

[
1, 2nRi

]
→

m

∏
i=1

𝒳 n
i . (2)

Its probability of error, once p(x) is known, is defined as

P
(n)
e ≜ P [g ∘ ( f1, f2, . . . , fm) (X

n) ∕= X
n] , (3)
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Fig. 1. Slepian-Wolf coding.

and the rate (R1, R2, . . . , Rm) is said to be achievable if there exist a sequence of codes at rate

(R1, R2, . . . , Rm) such that P
(n)
e → 0 as n → ∞. The achievable rate region is the closure of the

set of achievable rates.
Consider the DSC problem with two encoders (m = 2) shown in Fig. 1(a). The achievable rate
region for this problem (Slepian & Wolf, 1973) is given by

R1 ≥ H(X1∣X2) , (4)

R2 ≥ H(X2∣X1) , (5)

R1 + R2 ≥ H(X1X2) , (6)

and is shown in Fig. 1(b). Each internal point (R1, R2) of this region is shown to be achievable.
In particular it is shown that, among the random partitionings of the elements of 𝒳 n

i into 2nRi

bins each, there exist at least one such that if

• fi(x
n
i ) reveal the bin to which xn

i belongs, and

• g(j1, j2) returns the tuple1 (xn
1 , xn

2 ) ∈ 𝒜(n)
ε with xn

i belonging to the ji-th bin of 𝒳 n
i ,

the code defined by these functions has asymptotically a negligible probability of error.
If R1 > H(X1∣X2) and R2 > H(X2∣X1), a coding scheme is indeed given for achieving a sum
rate arbitrarily close to H(X1X2), i.e. to the achievable rate when the two encoders can com-
municate with each other. However, this scheme is not practical because (i) no constructive
procedures are given to find the needed code, and (ii) there is no structure to be exploited in
order to evaluate the functions fi and g without resorting to huge lookup tables. Similar re-
sults can be shown for jointly ergodic sources and for the case with m > 2 (Cover & Thomas,
2006).

2.2 Source Coding with Side Information
Assume that in Fig. 1(a) we have R2 > H(X2). Then, by classical results, the decoder can
already reconstruct X2 without receiving any data from the first encoder. We may then wonder

which is the minimum rate needed for reconstructing X ≜ X1 when the SI Y ≜ X2 is available
at the decoder, as in Fig. 2(a). From the analysis of the DSC problem, it can be inferred that
lossless reconstruction of X is possible at rates over H(X∣Y).

1 More precisely, if there are no tuples or there is more than one that satisfies this property, g assigns a
random tuple to (j1, j2). Similar strategies are also taken by the “theoretical” algorithms discussed in
the following.
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From a broader point of view, it is also interesting to investigate the rates needed for lossy
reconstruction with SI. If 𝒳 is the set over which the reconstruction X̂ of the source at the
decoder takes values, a (single-letter) distortion function d : 𝒳 ×𝒳 → R+ is usually defined that

is extended to n-dimensional realizations by assuming (with an abuse of notation) d(xn , x̂n) ≜
1
n ∑

n
i=1 d(xi, x̂i).

In the SCSI scenario, a code of length n and rate R consists of the following functions

f : 𝒳 n →
[
1, 2nR

]
, (7)

g :
[
1, 2nR

]
×𝒴n → 𝒳 n . (8)

Its distortion, once p(x, y) is known, is defined as

D(n)
≜ E [d (Xn , g ( f (Xn), Yn))] , (9)

and the pair (R, D) is said to be achievable if there exist a sequence of codes at rate R such

that limn→∞ D(n) ≤ D. The rate-distortion region is the closure of the set of these achievable
pairs; the rate-distortion function R∗(D) is the infimum of rates R such that the pair (R, D) is
achievable.
The rate-distortion function for SCSI equals (Wyner & Ziv, 1976)

R∗(D) = min
p(u∣x),p(x̂∣u,y)

I(X; U∣Y) , (10)

where the minimum2 is taken over all variables U and X̂ such that Y → X → U and
X → (U, Y) → X̂ form a Markov chain, and E[d(X, X̂)] ≤ D. It is interesting to note
that the rate-distortion function when both the encoder and the decoder have access to
the SI, i.e. RX∣Y(D) = min I(X; X̂∣Y) where the minimum is over all p(x̂∣x, y) such that

E[d(X, X̂)] ≤ D (Shannon, 1959), can be similarly expressed as

RX∣Y(D) = min
p(u∣x),p(x̂∣u,y)

I(X; X̂∣Y) , (11)

where the minimum is taken under the same conditions of equation (10) (Pradhan et al., 2003).
Since I(X; U∣Y) ≥ I(X; X̂∣Y), in general, R∗(D) ≥ RX∣Y(D), with equality if and only if at

optimality in (11) X → (X̂, Y) → U forms a Markov chain.
The rate loss with respect to the case where also the encoder knows the side information
is investigated in (Zamir, 1996). However, the Gaussian-quadratic scenario is an important

2 The search can be limited to p(x̂∣u, y) = χ{x̂ = h(u, y)}, where h is a deterministic function.

example in which R∗(D) = RX∣Y(D). In particular, if 𝒳 = 𝒳 = R and d(x, x̂) = (x − x̂)2,

there are no losses if (X, Y) ∼ 𝒩 (Wyner & Ziv, 1976) and also if X = Y + N, with N ∼ 𝒩
independent from Y, which in turn can have any distribution (Pradhan et al., 2003).
In SCSI, the coding scheme used in the proof of achievability of all rates over R∗(D) involves

the random generation of a set 𝒰 of 2nI(X;U) codewords distributed according to ∏
n
i=1 p∗(ui),

where p∗(u) is the marginal of the joint distribution achieving the minimum in (10), and the

random partitioning of them into 2nI(X;U∣Y) bins; each bin contains approximately 2nI(Y;U) ele-

ments. The encoder associates each xn to the element un ∈ 𝒰 such that (xn, un) ∈ 𝒜(n)
ε , and

sends the index j of the bin to which un belongs. The decoder looks for the element un in the

j-th bin such that (un, yn) ∈ 𝒜(n)
ε , and returns x̂i = h∗(ui, yi), where h∗(u, y) is the determin-

istic function achieving the minimum in (10). Note that the bins into which 𝒰 is partitioned
take the role of good channel codes for the channel between Y and U; in turn, 𝒰 takes the role
of a good source code, since via the function h it leads to a representation close to the source.
Again, this scheme is practically useless.
In many cases the decoder has perfect knowledge about the SI. One may however wonder if
it is possible to characterize a rate-distortion region assuming that both X1 = X and X2 = Y
are independently encoded at finite rates R1 and R2 and jointly decoded into representations
within distortions D1 and D2, respectively. In the general case, this rate region is currently
still unknown and only inner and outer bounds have been found. Recently, the problem has
been solved for the two-terminal Gaussian-quadratic case. We refer the interested reader to
(Wagner et al., 2008) and to the references therein.

3. Structured Codes for Binning

In practice, in order to achieve the performance claimed by the theory there must exist good
structured codes and feasible algorithms to search for jointly typical codewords over them. Trans-
mission rates involved in the DSC/SCSI problem are also finite. Lossless reconstruction is
therefore possible only when dealing with discrete source alphabets. All practical lossless
coding schemes treat essentially the binary case, that is the most simple; on the other hand,
the binary representation of a discrete r.v. can be always seen as a random vector with (corre-
lated) binary entries. Lossy reconstruction is instead possible with both binary and continuous
(real) variables; the Hamming distance

dH(x, x̂) ≜

{
0 , x = x̂
1 , x ∕= x̂

(12)

and the quadratic distance d(x, x̂) ≜ (x − x̂)2 are normally used as distortion function in the
two cases, respectively. In the following we will review some of the practical coding schemes
recently appeared in the literature for the DSC/SCSI problem.

3.1 Near Lossless Coding
In traditional binary lossless source coding there exist many exactly lossless codes with perfor-
mance close to the Shannon bound. On the other side, practical codes for binary channel coding
with rates close to the Shannon capacity bound, such as the turbo codes (Berrou & Glavieux,
1996), operate in a near lossless regime, i.e. with very low, but not zero, probability of error.
As observed in (Wyner, 1974), the problem of lossless SCSI is indeed a channel coding prob-
lem. Assume that the source and the SI are actually generated from two independent binary
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From a broader point of view, it is also interesting to investigate the rates needed for lossy
reconstruction with SI. If 𝒳 is the set over which the reconstruction X̂ of the source at the
decoder takes values, a (single-letter) distortion function d : 𝒳 ×𝒳 → R+ is usually defined that

is extended to n-dimensional realizations by assuming (with an abuse of notation) d(xn , x̂n) ≜
1
n ∑

n
i=1 d(xi, x̂i).

In the SCSI scenario, a code of length n and rate R consists of the following functions

f : 𝒳 n →
[
1, 2nR

]
, (7)

g :
[
1, 2nR

]
×𝒴n → 𝒳 n . (8)

Its distortion, once p(x, y) is known, is defined as

D(n)
≜ E [d (Xn , g ( f (Xn), Yn))] , (9)

and the pair (R, D) is said to be achievable if there exist a sequence of codes at rate R such

that limn→∞ D(n) ≤ D. The rate-distortion region is the closure of the set of these achievable
pairs; the rate-distortion function R∗(D) is the infimum of rates R such that the pair (R, D) is
achievable.
The rate-distortion function for SCSI equals (Wyner & Ziv, 1976)

R∗(D) = min
p(u∣x),p(x̂∣u,y)

I(X; U∣Y) , (10)

where the minimum2 is taken over all variables U and X̂ such that Y → X → U and
X → (U, Y) → X̂ form a Markov chain, and E[d(X, X̂)] ≤ D. It is interesting to note
that the rate-distortion function when both the encoder and the decoder have access to
the SI, i.e. RX∣Y(D) = min I(X; X̂∣Y) where the minimum is over all p(x̂∣x, y) such that

E[d(X, X̂)] ≤ D (Shannon, 1959), can be similarly expressed as

RX∣Y(D) = min
p(u∣x),p(x̂∣u,y)

I(X; X̂∣Y) , (11)

where the minimum is taken under the same conditions of equation (10) (Pradhan et al., 2003).
Since I(X; U∣Y) ≥ I(X; X̂∣Y), in general, R∗(D) ≥ RX∣Y(D), with equality if and only if at

optimality in (11) X → (X̂, Y) → U forms a Markov chain.
The rate loss with respect to the case where also the encoder knows the side information
is investigated in (Zamir, 1996). However, the Gaussian-quadratic scenario is an important

2 The search can be limited to p(x̂∣u, y) = χ{x̂ = h(u, y)}, where h is a deterministic function.

example in which R∗(D) = RX∣Y(D). In particular, if 𝒳 = 𝒳 = R and d(x, x̂) = (x − x̂)2,

there are no losses if (X, Y) ∼ 𝒩 (Wyner & Ziv, 1976) and also if X = Y + N, with N ∼ 𝒩
independent from Y, which in turn can have any distribution (Pradhan et al., 2003).
In SCSI, the coding scheme used in the proof of achievability of all rates over R∗(D) involves

the random generation of a set 𝒰 of 2nI(X;U) codewords distributed according to ∏
n
i=1 p∗(ui),

where p∗(u) is the marginal of the joint distribution achieving the minimum in (10), and the

random partitioning of them into 2nI(X;U∣Y) bins; each bin contains approximately 2nI(Y;U) ele-

ments. The encoder associates each xn to the element un ∈ 𝒰 such that (xn, un) ∈ 𝒜(n)
ε , and

sends the index j of the bin to which un belongs. The decoder looks for the element un in the

j-th bin such that (un, yn) ∈ 𝒜(n)
ε , and returns x̂i = h∗(ui, yi), where h∗(u, y) is the determin-

istic function achieving the minimum in (10). Note that the bins into which 𝒰 is partitioned
take the role of good channel codes for the channel between Y and U; in turn, 𝒰 takes the role
of a good source code, since via the function h it leads to a representation close to the source.
Again, this scheme is practically useless.
In many cases the decoder has perfect knowledge about the SI. One may however wonder if
it is possible to characterize a rate-distortion region assuming that both X1 = X and X2 = Y
are independently encoded at finite rates R1 and R2 and jointly decoded into representations
within distortions D1 and D2, respectively. In the general case, this rate region is currently
still unknown and only inner and outer bounds have been found. Recently, the problem has
been solved for the two-terminal Gaussian-quadratic case. We refer the interested reader to
(Wagner et al., 2008) and to the references therein.

3. Structured Codes for Binning

In practice, in order to achieve the performance claimed by the theory there must exist good
structured codes and feasible algorithms to search for jointly typical codewords over them. Trans-
mission rates involved in the DSC/SCSI problem are also finite. Lossless reconstruction is
therefore possible only when dealing with discrete source alphabets. All practical lossless
coding schemes treat essentially the binary case, that is the most simple; on the other hand,
the binary representation of a discrete r.v. can be always seen as a random vector with (corre-
lated) binary entries. Lossy reconstruction is instead possible with both binary and continuous
(real) variables; the Hamming distance

dH(x, x̂) ≜

{
0 , x = x̂
1 , x ∕= x̂

(12)

and the quadratic distance d(x, x̂) ≜ (x − x̂)2 are normally used as distortion function in the
two cases, respectively. In the following we will review some of the practical coding schemes
recently appeared in the literature for the DSC/SCSI problem.

3.1 Near Lossless Coding
In traditional binary lossless source coding there exist many exactly lossless codes with perfor-
mance close to the Shannon bound. On the other side, practical codes for binary channel coding
with rates close to the Shannon capacity bound, such as the turbo codes (Berrou & Glavieux,
1996), operate in a near lossless regime, i.e. with very low, but not zero, probability of error.
As observed in (Wyner, 1974), the problem of lossless SCSI is indeed a channel coding prob-
lem. Assume that the source and the SI are actually generated from two independent binary
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sources Y and Z ∼ ℬ(p) as in Fig. 2(b); then, a virtual “correlation” channel exists between Y
and X. This channel is a (memoryless) binary symmetric channel (BSC) for which linear codes and
closest neighbor search algorithms are asymptotically shown to achieve capacity.
Let H be a parity-check matrix of a good (n, k) code 𝒞 for the virtual channel. The code contains

all binary vectors cn whose syndrome sn−k ≜ Hcn is equal to zero, and partitions 𝒳 n into
2n−k cosets (bins) of 2k elements; elements in each coset 𝒞s have a distinctive syndrome sn−k.

The code 𝒞 can be used to reliably transmit information at its code rate R𝒞 ≜ k/n ≈ C bit
per channel use, where C = 1 − H(Z) is the channel capacity (Cover & Thomas, 2006). The

decoding function is defined by f𝒞(sn−k) ≜ arg mincn∈𝒞s
dH(cn, 0), and is such that P[ f (HZn) ∕=

Zn] is asymptotically negligible. Then, the code defined by (see equations (7) and (8))

f (xn) = Hxn , (13)

g(sn−k, yn) = yn + f𝒞(s
n−k + Hyn) (14)

is a good near lossless code for the SCSI problem. In fact, its rate is R = (n − k)/n = 1 − R𝒞 ≈
H(Z) = H(X∣Y), and

P[g ( f (Xn), Yn) ∕= Xn] = P[Yn + f𝒞(HZn) ∕= Xn] (15)

is asymptotically negligible.
Practically, the capacity of the BSC has been approached by turbo and low density parity check
(LDPC) codes (MacKay, 1999). These codes have been successfully used in SCSI too. The
evaluation of the syndrome in order to perform encoding is straightforward in the case of
LDPC codes and very easy in the case of turbo codes. SCSI approaches based on turbo and
LDPC codes are investigated in, among others, (Liveris et al., 2003; Roumy et al., 2007; Tu
et al., 2005) and in (Liveris et al., 2002), respectively. In all cases the decoding function is very
well approximated by means of iterative algorithms; we will give some more detail on these
algorithms in Section 4.
With reference to Fig. 2(b), if Y ∼ ℬ(1/2), then it turns out that Z is independent from X too,
such that a BSC is indeed also defined by Y = X + Z. SCSI approaches based on systematic
turbo codes use this interpretation to show that if the n − k parity bits relative to each encoded
k-tuple are sent to the decoder, then near lossless performance is achieved since the SI is indeed
a corrupted version of the systematic portion of a codeword (Aaron & Girod, 2002; Garcia-
Frias & Zhao, 2001).
Under the same condition, a coding scheme based on syndromes was also devised for the
two-terminal DSC problem that achieves all rates with the minimum sum rate. Let G and H

be a generator matrix and a parity-check matrix of a good (n, k) code 𝒞 for the virtual channel

between X2 ≜ Y and X1 ≜ X. Chose two subcodes 𝒞1 and 𝒞2 of 𝒞 that admit generator
matrices G1 and G2 constructed by taking k1 ≤ k and the remaining k2 = k − k1 rows of G,
respectively. Each cn ∈ 𝒞 has a unique factorization into the sum of two codewords belonging
to these two subcodes; denote with πi the function that gives the codeword relative to code

𝒞i. Denote with Hi a parity-check matrix for the code 𝒞i, and with ti(s
n−ki

i ) a deterministic
function that gives an n-tuple of 𝒞isi

. Define the function

h(sn−k1

1 , sn−k2
2 ) ≜

(
t1(s

n−k1

1 ) + t2(s
n−k2
2 )

)
+ f𝒞

(
H

(
t1(s

n−k1

1 ) + t2(s
n−k2
2 )

))
. (16)

Then, the code defined by (see equations (1) and (2))

fi(x
n
i ) = Hix

n
i , (17)

gi(s
n−k1

1 , sn−k2
2 ) = ti(s

n−ki

i ) + πi ∘ h(sn−k1

1 , sn−k2
2 ) (18)

has rate that satisfies Ri ≥ (n − k)/n ≈ H(X1∣X2) = H(X2∣X1) and R1 + R2 = (2n − k)/n =
2 − R𝒞 ≈ 1 + H(Z) = H(X1X2), and

P[gi ( f1(X
n
1 ), f2(X

n
2 )) ∕= Xn

i ] (19)

is asymptotically negligible. This is a direct consequence of the fact that, if cn
i ∈ 𝒞i is such

that ti(Hix
n
i ) = xn

i + cn
i , P[h(H1Xn

1 , H2Xn
2 ) ∕= Cn

1 + Cn
2 ] is asymptotically negligible since

X1 + X2 ∼ ℬ(p).
The scheme outlined above for encoding two sources was devised in (Pradhan & Ramchan-
dran, 2005) and essentially tested using convolutional codes. Convolutional codes are used in
(Pradhan & Ramchandran, 2003) too in the SCSI context. The extension to m ≥ 2 sources is
delineated in (Stanković et al., 2006), and it is shown to be optimal for uniform sources such
that ∑

m
i=1 Xi ∼ ℬ(p); tests conducted with more performing codes (e.g. turbo) show a very

good performance.

3.2 Lossy Coding
In case of reconstruction within a certain distortion, the search for practical SCSI algorithms is
more involved since both a good channel and a good source code are needed. In the seminal
work (Zamir et al., 2002), it is shown that nested linear codes and lattices achieve the theoretical
bounds in the binary-Hamming and in the Gaussian-quadratic case, respectively.
In practice, the suggested coding scheme requires that a fine linear/lattice code 𝒞1 is used that
is a good source code for the problem of coding the source without SI. Instead of sending
to the decoder the index of the codeword that is the closest to the actual realization of the
source (as in traditional source coding), the encoder sends the index of the coset to which
this closest codeword belongs. The codewords of 𝒞1 are in fact partitioned into cosets once a
coarse linear/lattice subcode 𝒞2 ⊂ 𝒞1 is defined. If 𝒞2 is a good channel code for the virtual
channel between the SI and this closest codeword, then the decoder can reconstruct the latter
with negligible probability of error, as shown in the previous section. From it, and using also
the SI, an estimate of the source is eventually obtained. The theoretical bounds are achieved
because, with good linear/lattice codes, (i) the closest codeword distributes as the variable
Un ∼ ∏

n
i=1 p∗(ui), (ii) at the decoder, once un is reconstructed, the distortion is minimized by

implementing the function h∗(u, y), and (iii) the number of cosets, i.e. the nesting ratio of the
two codes is approximately I(X; U∣Y).
In lossless SCSI the virtual channel considered for channel code design is between Y and X;
here, instead, it is between Y and U. But Y → X → U forms a Markov chain, so the channel
code must be actually more robust; this phenomenon is investigated in detail in (Zamir et al.,
2002) under the name of self-noise.
In particular, in the binary-Hamming case (Z ∼ ℬ(p)) optimality in (10) is achieved by U =
X + Q with Q ∼ ℬ(D) independent from X, and by h∗(u, y) = u (see Fig. 3(a)). In practice,
dithered quantization over a fine code guaranteeing distortion D achieves almost this U (Zamir
& Feder, 1996), but with a coarse channel code that is exponentially good for the BSC U =

Y + Ze, where Ze ≜ Z + Q ∼ ℬ(p ∗ D) with p ∗ D ≜ p(1 − D) + D(1 − p), the recovery of U
from the SI at the decoder is still successful (Zamir et al., 2002).
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LDPC codes and very easy in the case of turbo codes. SCSI approaches based on turbo and
LDPC codes are investigated in, among others, (Liveris et al., 2003; Roumy et al., 2007; Tu
et al., 2005) and in (Liveris et al., 2002), respectively. In all cases the decoding function is very
well approximated by means of iterative algorithms; we will give some more detail on these
algorithms in Section 4.
With reference to Fig. 2(b), if Y ∼ ℬ(1/2), then it turns out that Z is independent from X too,
such that a BSC is indeed also defined by Y = X + Z. SCSI approaches based on systematic
turbo codes use this interpretation to show that if the n − k parity bits relative to each encoded
k-tuple are sent to the decoder, then near lossless performance is achieved since the SI is indeed
a corrupted version of the systematic portion of a codeword (Aaron & Girod, 2002; Garcia-
Frias & Zhao, 2001).
Under the same condition, a coding scheme based on syndromes was also devised for the
two-terminal DSC problem that achieves all rates with the minimum sum rate. Let G and H

be a generator matrix and a parity-check matrix of a good (n, k) code 𝒞 for the virtual channel

between X2 ≜ Y and X1 ≜ X. Chose two subcodes 𝒞1 and 𝒞2 of 𝒞 that admit generator
matrices G1 and G2 constructed by taking k1 ≤ k and the remaining k2 = k − k1 rows of G,
respectively. Each cn ∈ 𝒞 has a unique factorization into the sum of two codewords belonging
to these two subcodes; denote with πi the function that gives the codeword relative to code

𝒞i. Denote with Hi a parity-check matrix for the code 𝒞i, and with ti(s
n−ki

i ) a deterministic
function that gives an n-tuple of 𝒞isi

. Define the function

h(sn−k1

1 , sn−k2
2 ) ≜

(
t1(s

n−k1

1 ) + t2(s
n−k2
2 )

)
+ f𝒞

(
H

(
t1(s

n−k1

1 ) + t2(s
n−k2
2 )

))
. (16)

Then, the code defined by (see equations (1) and (2))

fi(x
n
i ) = Hix

n
i , (17)

gi(s
n−k1

1 , sn−k2
2 ) = ti(s

n−ki

i ) + πi ∘ h(sn−k1

1 , sn−k2
2 ) (18)

has rate that satisfies Ri ≥ (n − k)/n ≈ H(X1∣X2) = H(X2∣X1) and R1 + R2 = (2n − k)/n =
2 − R𝒞 ≈ 1 + H(Z) = H(X1X2), and

P[gi ( f1(X
n
1 ), f2(X

n
2 )) ∕= Xn

i ] (19)

is asymptotically negligible. This is a direct consequence of the fact that, if cn
i ∈ 𝒞i is such

that ti(Hix
n
i ) = xn

i + cn
i , P[h(H1Xn

1 , H2Xn
2 ) ∕= Cn

1 + Cn
2 ] is asymptotically negligible since

X1 + X2 ∼ ℬ(p).
The scheme outlined above for encoding two sources was devised in (Pradhan & Ramchan-
dran, 2005) and essentially tested using convolutional codes. Convolutional codes are used in
(Pradhan & Ramchandran, 2003) too in the SCSI context. The extension to m ≥ 2 sources is
delineated in (Stanković et al., 2006), and it is shown to be optimal for uniform sources such
that ∑

m
i=1 Xi ∼ ℬ(p); tests conducted with more performing codes (e.g. turbo) show a very

good performance.

3.2 Lossy Coding
In case of reconstruction within a certain distortion, the search for practical SCSI algorithms is
more involved since both a good channel and a good source code are needed. In the seminal
work (Zamir et al., 2002), it is shown that nested linear codes and lattices achieve the theoretical
bounds in the binary-Hamming and in the Gaussian-quadratic case, respectively.
In practice, the suggested coding scheme requires that a fine linear/lattice code 𝒞1 is used that
is a good source code for the problem of coding the source without SI. Instead of sending
to the decoder the index of the codeword that is the closest to the actual realization of the
source (as in traditional source coding), the encoder sends the index of the coset to which
this closest codeword belongs. The codewords of 𝒞1 are in fact partitioned into cosets once a
coarse linear/lattice subcode 𝒞2 ⊂ 𝒞1 is defined. If 𝒞2 is a good channel code for the virtual
channel between the SI and this closest codeword, then the decoder can reconstruct the latter
with negligible probability of error, as shown in the previous section. From it, and using also
the SI, an estimate of the source is eventually obtained. The theoretical bounds are achieved
because, with good linear/lattice codes, (i) the closest codeword distributes as the variable
Un ∼ ∏

n
i=1 p∗(ui), (ii) at the decoder, once un is reconstructed, the distortion is minimized by

implementing the function h∗(u, y), and (iii) the number of cosets, i.e. the nesting ratio of the
two codes is approximately I(X; U∣Y).
In lossless SCSI the virtual channel considered for channel code design is between Y and X;
here, instead, it is between Y and U. But Y → X → U forms a Markov chain, so the channel
code must be actually more robust; this phenomenon is investigated in detail in (Zamir et al.,
2002) under the name of self-noise.
In particular, in the binary-Hamming case (Z ∼ ℬ(p)) optimality in (10) is achieved by U =
X + Q with Q ∼ ℬ(D) independent from X, and by h∗(u, y) = u (see Fig. 3(a)). In practice,
dithered quantization over a fine code guaranteeing distortion D achieves almost this U (Zamir
& Feder, 1996), but with a coarse channel code that is exponentially good for the BSC U =

Y + Ze, where Ze ≜ Z + Q ∼ ℬ(p ∗ D) with p ∗ D ≜ p(1 − D) + D(1 − p), the recovery of U
from the SI at the decoder is still successful (Zamir et al., 2002).



Signal	Processing366

X

Y
Y

Z
Q

U X̂

(a) binary-Hamming case

X

Y
Y

Z

U

Q

X̂αα

1 − α2

(b) Gaussian-quadratic case

Fig. 3. Relations among the random variables involved in lossy SCSI at optimality: Y, Z
and Q are independent Gaussian/Bernoulli random variables. U is not actually “sent” to the
decoder, but rather reconstructed relying on the knowledge of Y.

In the Gaussian-quadratic case (Z ∼ 𝒩 (0, σ2
z )) optimality in (10) is achieved by U = αX + Q

with Q ∼ 𝒩 (0, D) independent from X, and by h∗(u, y) = αu + (1 − α2)y; α ≜

√

1 − D/σ2
z <

1 guarantees that (i) h∗(u, y) gives the minimum mean square error estimate of X from Y and
U, and (ii) E[d(X, h∗(U, Y))] = D (see Fig. 3(b)). In this case, dithered quantization of αX over
a fine lattice guaranteeing distortion D achieves essentially this U (Zamir & Feder, 1996)3; if
the coarse sublattice is exponentially good for the additive white Gaussian noise (AWGN) channel

U = αY + Ze, where Ze ≜ αZ+ Q ∼ 𝒩 (0, σ2
z ), then U can be recovered from αY at the decoder

(Zamir et al., 2002).
The nested coding approach outlined above, for which the existence of good and nested codes
was actually showed in later papers, is surely more practical than random binning; practical
implementations of the Gaussian-quadratic case are indeed investigated in (Liu et al., 2006;
Servetto, 2007). However, there are still practical difficulties in its implementation due to the
fact that good performance is achieved only asymptotically with the length n of the code. In
practice, for finite n recovering of U is possible with the coarse code having a reduced code
rate with respect to the one achieving optimality, not only because the self-noise (Q) actually
introduced is not Bernoulli/Gaussian, but also because the nesting constraint does not permit
to efficiently randomize the channel code. This leads to a rate loss with respect to the achiev-
able rate, or, equivalently, to a distortion gap, which in particular increases for fixed n with the
rate of the SCSI scheme. This phenomenon was observed in (Liu et al., 2006), and a scheme
was proposed in which a second coding stage (based on schemes shown in the previous sec-
tion) on top of nested quantization with finite n is used to losslessly send the coset index
to the SI-aware decoder; the resulting scheme is probably the most performing appeared in
literature.
Other practical schemes for lossy SCSI of continuous sources are based on the observation
that once traditional (vector) quantization produces an index in a discrete domain, lossless
SCSI means could be used to send this index to the decoder. In this way, a good source code
and a good channel code are indeed individually designed. Channel codes that are essentially
based on convolutional codes are used in (Pradhan & Ramchandran, 1999; 2003; 2005); more
performing channel codes are used instead in (Yang et al., 2008), where the problem of lossy
distributed coding of many sources is tackled as well. As a remark, note that even if this
“separated” approach has indeed been shown to be optimal for the two-terminal Gaussian-
quadratic case (Wagner et al., 2008), in general it is not.

3 Note that, if Y ∼ 𝒩 , U ′
≜ αU assumes the conditional distribution p(u′∣x) which minimizes I(X; U ′)

under distortion D (Cover & Thomas, 2006).

3.2.1 Superposition Coding
It should be clear that the joint design of good source/channel codes for the lossy SCSI/DSC
problem is very hard. Coding schemes in which optimality is also achieved if the two codes
are designed independently are then preferable since they are more practical. One such
scheme has been proposed and investigated for the dual problem of channel coding with side
information (at the encoder) (CCSI) and is briefly discussed in the following. The SCSI approach
we propose in Section 5 is indeed dual to this approach; more details regarding this duality
can be found in (Cappellari, 2009).
Consider the additive channel X = X̂ + Y + Z, where X̂ is the input to the channel, Y is
an interference known to the encoder (but not to the decoder) and independent from X̂, Z is
an unknown noise independent from X̂ and Y, and X is the channel output. The goal is to
transfer the maximum amount of information to the decoder once a cost constraint is given
to X̂; usually this constraint is given as E[d(0, X̂)] ≤ W where d is a distortion function. A
capacity-cost function C∗(W) is then defined that gives this maximum amount; in particular, it
was evaluated (for the general, non-additive setting) in (Gel’fand & Pinsker, 1980).
A random coding scheme is suggested too as follows. Generate a set 𝒰 of codewords dis-
tributed according to a suitable distribution ∏

n
i=1 p∗(ui), and partition it into bins; associate

each bin to a different message to be sent. The encoder selects the un in the desired bin such

that (un, yn) ∈ 𝒜(n)
ε and inputs to the channel the codeword x̂i = h∗(ui, yi), for a suitable

choice of h∗ . The decoder looks for the element un in 𝒰 such that (xn , un) ∈ 𝒜(n)
ε , and returns

the message corresponding to the bin to which this element belongs. Now, the bins into which
𝒰 is partitioned take the role of good source codes, since via the function h a codeword satisfying
the cost constraint can be formed and transmitted; in turn, 𝒰 takes the role of a good channel
code.
In the additive setting, nested linear codes and lattices exist that achieve optimality both in
case of binary-noise Hamming-cost and in case of Gaussian-noise quadratic-cost, respectively
(Zamir et al., 2002). Nevertheless, optimality is also achieved with a superposition of two in-
dependent codes (Bennatan et al., 2006). In particular, a coarse code 𝒞2 which is a good source
code with respect to the distortion constraint W is used by the encoder for selecting the code-
word to be transmitted on the channel. The fine code 𝒞1 is generated as the sum of 𝒞2 and a
code 𝒞0 which is a good channel code with respect to the noise Z, i.e. 𝒞1 = 𝒞0 + 𝒞2. With a
proper generation of 𝒞0, 𝒞1 is partitioned into bins cn

0 + 𝒞2, for cn
0 ∈ 𝒞0, i.e. each cn

0 ∈ 𝒞0 is
in one-to-one correspondence with a bin of 𝒞1. At the encoder the message is then selected
in terms of a cn

0 ∈ 𝒞0. At the decoder a codeword of 𝒞1 plus some noise is received; upon
decoding this signal over the sum of 𝒞0 and 𝒞2, the best estimate of cn

0 is declared as the re-
ceived message. Details and implementation of this scheme with practical codes is discussed
in (Bennatan et al., 2006).
In the lossy SCSI problem, let us in principle generate a coarse code 𝒞2 which is a good channel
code with respect to the virtual channel between Y and U. Then, we generate 𝒞0 as a good
source code for Ze with respect to the distortion D, and obtain the fine code 𝒞1 = 𝒞0 + 𝒞2. In
particular, in the binary case (Z ∼ ℬ(p)) 𝒞2 and 𝒞0 are codes made of 2nR2 and 2nR0 code-
words with distribution ℬ(1/2) and ℬ(q), respectively. The encoder looks for cn

0 + cn
2 such

that (xn , cn
0 + cn

2 ) ∈ 𝒜(n)
ε and sends the index of cn

0 (in practice, dithered quantization can be
employed); there is an encoder error if dH(xn, cn

0 + cn
2 ) > D.
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In the Gaussian-quadratic case (Z ∼ 𝒩 (0, σ2
z )) optimality in (10) is achieved by U = αX + Q

with Q ∼ 𝒩 (0, D) independent from X, and by h∗(u, y) = αu + (1 − α2)y; α ≜

√

1 − D/σ2
z <

1 guarantees that (i) h∗(u, y) gives the minimum mean square error estimate of X from Y and
U, and (ii) E[d(X, h∗(U, Y))] = D (see Fig. 3(b)). In this case, dithered quantization of αX over
a fine lattice guaranteeing distortion D achieves essentially this U (Zamir & Feder, 1996)3; if
the coarse sublattice is exponentially good for the additive white Gaussian noise (AWGN) channel

U = αY + Ze, where Ze ≜ αZ+ Q ∼ 𝒩 (0, σ2
z ), then U can be recovered from αY at the decoder

(Zamir et al., 2002).
The nested coding approach outlined above, for which the existence of good and nested codes
was actually showed in later papers, is surely more practical than random binning; practical
implementations of the Gaussian-quadratic case are indeed investigated in (Liu et al., 2006;
Servetto, 2007). However, there are still practical difficulties in its implementation due to the
fact that good performance is achieved only asymptotically with the length n of the code. In
practice, for finite n recovering of U is possible with the coarse code having a reduced code
rate with respect to the one achieving optimality, not only because the self-noise (Q) actually
introduced is not Bernoulli/Gaussian, but also because the nesting constraint does not permit
to efficiently randomize the channel code. This leads to a rate loss with respect to the achiev-
able rate, or, equivalently, to a distortion gap, which in particular increases for fixed n with the
rate of the SCSI scheme. This phenomenon was observed in (Liu et al., 2006), and a scheme
was proposed in which a second coding stage (based on schemes shown in the previous sec-
tion) on top of nested quantization with finite n is used to losslessly send the coset index
to the SI-aware decoder; the resulting scheme is probably the most performing appeared in
literature.
Other practical schemes for lossy SCSI of continuous sources are based on the observation
that once traditional (vector) quantization produces an index in a discrete domain, lossless
SCSI means could be used to send this index to the decoder. In this way, a good source code
and a good channel code are indeed individually designed. Channel codes that are essentially
based on convolutional codes are used in (Pradhan & Ramchandran, 1999; 2003; 2005); more
performing channel codes are used instead in (Yang et al., 2008), where the problem of lossy
distributed coding of many sources is tackled as well. As a remark, note that even if this
“separated” approach has indeed been shown to be optimal for the two-terminal Gaussian-
quadratic case (Wagner et al., 2008), in general it is not.

3 Note that, if Y ∼ 𝒩 , U ′
≜ αU assumes the conditional distribution p(u′∣x) which minimizes I(X; U ′)

under distortion D (Cover & Thomas, 2006).

3.2.1 Superposition Coding
It should be clear that the joint design of good source/channel codes for the lossy SCSI/DSC
problem is very hard. Coding schemes in which optimality is also achieved if the two codes
are designed independently are then preferable since they are more practical. One such
scheme has been proposed and investigated for the dual problem of channel coding with side
information (at the encoder) (CCSI) and is briefly discussed in the following. The SCSI approach
we propose in Section 5 is indeed dual to this approach; more details regarding this duality
can be found in (Cappellari, 2009).
Consider the additive channel X = X̂ + Y + Z, where X̂ is the input to the channel, Y is
an interference known to the encoder (but not to the decoder) and independent from X̂, Z is
an unknown noise independent from X̂ and Y, and X is the channel output. The goal is to
transfer the maximum amount of information to the decoder once a cost constraint is given
to X̂; usually this constraint is given as E[d(0, X̂)] ≤ W where d is a distortion function. A
capacity-cost function C∗(W) is then defined that gives this maximum amount; in particular, it
was evaluated (for the general, non-additive setting) in (Gel’fand & Pinsker, 1980).
A random coding scheme is suggested too as follows. Generate a set 𝒰 of codewords dis-
tributed according to a suitable distribution ∏

n
i=1 p∗(ui), and partition it into bins; associate

each bin to a different message to be sent. The encoder selects the un in the desired bin such

that (un, yn) ∈ 𝒜(n)
ε and inputs to the channel the codeword x̂i = h∗(ui, yi), for a suitable

choice of h∗ . The decoder looks for the element un in 𝒰 such that (xn , un) ∈ 𝒜(n)
ε , and returns

the message corresponding to the bin to which this element belongs. Now, the bins into which
𝒰 is partitioned take the role of good source codes, since via the function h a codeword satisfying
the cost constraint can be formed and transmitted; in turn, 𝒰 takes the role of a good channel
code.
In the additive setting, nested linear codes and lattices exist that achieve optimality both in
case of binary-noise Hamming-cost and in case of Gaussian-noise quadratic-cost, respectively
(Zamir et al., 2002). Nevertheless, optimality is also achieved with a superposition of two in-
dependent codes (Bennatan et al., 2006). In particular, a coarse code 𝒞2 which is a good source
code with respect to the distortion constraint W is used by the encoder for selecting the code-
word to be transmitted on the channel. The fine code 𝒞1 is generated as the sum of 𝒞2 and a
code 𝒞0 which is a good channel code with respect to the noise Z, i.e. 𝒞1 = 𝒞0 + 𝒞2. With a
proper generation of 𝒞0, 𝒞1 is partitioned into bins cn

0 + 𝒞2, for cn
0 ∈ 𝒞0, i.e. each cn

0 ∈ 𝒞0 is
in one-to-one correspondence with a bin of 𝒞1. At the encoder the message is then selected
in terms of a cn

0 ∈ 𝒞0. At the decoder a codeword of 𝒞1 plus some noise is received; upon
decoding this signal over the sum of 𝒞0 and 𝒞2, the best estimate of cn

0 is declared as the re-
ceived message. Details and implementation of this scheme with practical codes is discussed
in (Bennatan et al., 2006).
In the lossy SCSI problem, let us in principle generate a coarse code 𝒞2 which is a good channel
code with respect to the virtual channel between Y and U. Then, we generate 𝒞0 as a good
source code for Ze with respect to the distortion D, and obtain the fine code 𝒞1 = 𝒞0 + 𝒞2. In
particular, in the binary case (Z ∼ ℬ(p)) 𝒞2 and 𝒞0 are codes made of 2nR2 and 2nR0 code-
words with distribution ℬ(1/2) and ℬ(q), respectively. The encoder looks for cn

0 + cn
2 such

that (xn , cn
0 + cn

2 ) ∈ 𝒜(n)
ε and sends the index of cn

0 (in practice, dithered quantization can be
employed); there is an encoder error if dH(xn, cn

0 + cn
2 ) > D.
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Theorem 1. The probability of having an encoder error is negligible with n → ∞ if

R2 > H(X)− H(q ∗ D) (20)

R0 + R2 > H(X)− H(D) . (21)

Sketch of proof : Asymptotically, xn takes values on a set of 2nH(X) elements, and for a fixed cn
2 ,

the code 𝒞0 + cn
2 covers at most 2nH(q∗D) of them within distortion D. Hence, there must be

at least 2nH(X)−nH(q∗D) codewords in code 𝒞2. Then, since each n-tuple approximates at most

2nH(D) elements within Hamming-distortion D, the superposition code must provide at least

2nH(X)−nH(D) codewords. Once we have these two conditions the probability that a typical
(cn

0 + cn
2 ) is within distortion D approaches one. This may be proved with an argument similar

to the one used in the standard proof of the achievability of the rate-distortion function (Cover
& Thomas, 2006). If both given bounds are approached, the test channel between C0 +C2 and X
is such that X = C0 + C2 − Q, with Q ∼ ℬ(D) independent from C0 and C2 (asymptotically);
for rates over the bounds a lower distortion can be achieved.
The decoder looks for cn

2 ∈ 𝒞2 such that (cn
0 + cn

2 , yn) ∈ 𝒜(n)
ε (in practice, a closest neighbor

search is conducted), and reconstructs the source as cn
0 + cn

2 ; there is a decoding error if cn
2

is not correctly recovered. But once cn
0 is known, the equivalent noise between Y and C2 =

Y + Z + Q − C0 is distributed as Ze. Hence, the following holds.

Theorem 2. The probability of having a decoder error is negligible with n → ∞ if

R2 < Cp∗D(W) , (22)

where Cp∗D(W) ≜ H(W ∗ p ∗ D) − H(p ∗ D) = H(X) − H(p ∗ D) is the capacity of the BSC
between Y and U, subject to a Hamming-cost constraint W such that Y + Z + Q distributes as X
(i.e. the balls related to codewords of 𝒞2 are packed only over the space in which xn lies).

The closure of the rate region where there are no errors is shown in Fig. 4; it is not empty for
any q such that H(q ∗ D) ≥ H(p ∗ D), and the minimum of R0 approaches the rate-distortion
function R∗(D) = H(p ∗ D)− H(D) for all distortions 0 ≤ D ≤ dC < p (Wyner & Ziv, 1976).
In the Gaussian case (Z ∈ 𝒩 (0, σ2

z )), 𝒞0 is generated from the distribution 𝒩 (0, σ2
q ) and again

the scale factor α =
√

1 − D/σ2
z is used. If R2 and R0 + R2 are high enough, dithered quan-

tization of αX over the superposition of codes 𝒞2 and 𝒞0 leads asymptotically to the rela-
tion αX = C0 + C2 − Q, with Q ∼ 𝒩 (0, D) independent from C0 and C2. At the decoder,
which knows cn

0 , the channel between αY and C2 satisfies C2 = αY + αZ + Q − C0, i.e. it

is Gaussian, with capacity C(W) ≜ (1/2) log(1 + W/(α2σ2
z + D)) = (1/2) log(1 + W/σ2

z )
under the quadratic cost constraint W. There are no decoding errors if the code rate R2 is

below this capacity, and, again, the best estimate of the source at the decoder can be found
by taking α(c0 + c2) + (1 − α2)y. The minimum achievable rate can be in this case com-
puted with a geometric argument: the goal is to cover the n-dimensional balls related to
codewords of 𝒞2 with as least as possible balls of average quadratic-distortion D. But the
quadratic-distortion of the formers cannot be smaller than σ2

z so that the minimum code rate
of code 𝒞0, provided that σ2

q + D ≥ σ2
z , equals the rate-distortion function of the SCSI problem

R∗(D) = (1/2) log(σ2
z /D) (Wyner & Ziv, 1976).

Despite in principle the decoder/encoder for a CCSI problem can be used as the en-
coder/decoder of a dual SCSI problem (Pradhan et al., 2003), from a practical point of view
CCSI and SCSI are very different. In CCSI source coding is done at the encoder; the code 𝒞2

must be structured such that exhaustive search can be employed in order to perform a closest
neighbor search (e.g. be a trellis code). Channel decoding is done at the decoder, and both
𝒞0 and 𝒞2 should be performing channel codes for which a good algorithm approximating
maximum likelihood search exist (e.g. turbo codes). In practice, no penalty is introduced in
having 𝒞2 not very good from a channel coding perspective (Bennatan et al., 2006).
In SCSI channel decoding is done at the decoder; 𝒞2 should be a performing channel code for
which a good algorithm approximating maximum likelihood search exist (e.g. turbo codes).
Source coding is done at the encoder, and the code 𝒞0 + 𝒞2 must be structured such that ex-
haustive search can be employed in order to perform a closest neighbor search (e.g. be a trellis
code). Unfortunately, there are currently no algorithms that perform similarly to a closest
neighbor search over good codes for channel coding. Hence, in Section 5 we will actually rely
on convolutional codes 𝒞2, paying in this case a penalty with respect to the theoretical bounds.

4. Practical Iterative Algorithms for Lossless Coding

Turbo codes are good practical channel codes, and hence are good tools for lossless (binary)
SCSI. In the following we discuss the utilization of standard and ready-available turbo encod-
ing and decoding algorithms for this problem. Differently from other contributions on this
subject, we use the factor graph-based approach commonly taken in the LDPC-codes-related
literature. For a useful tutorial article on factor graphs and message-passing algorithms, the
reader is referred to (Kschischang et al., 2001). Under a unified formulation, we describe in
principle the cases in which syndromes or parity bits are sent to the decoder, over binary or
non-binary, lossless or lossy transmission channels, with binary or non-binary side informa-
tion; more details can be found in (Cappellari & De Giusti, 2008).

4.1 Turbo Codes Review and the Parity-Based Approach
Turbo codes actually include different kinds of codes. In the most common case (parallel con-
catenated convolutional codes) they are systematic codes: in correspondence of a sequence of Nk
outcomes from X (x) the turbo encoder uses two systematic (n, k) convolutional codes to form
two sequences of parity bits of N(n − k) + zt bits each4 (p0 and p1), according to the following
algorithm.

1: function TRBENC(x)
2: p0 ← GETPARITY0(x)
3: x

′ ← INTERLEAVE(x)

4 The additional zt ≪ N(n − k) bits are emitted while terminating the encoding into the zero state (zero-
tailing).
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Fig. 4. Region in which there are no encoder nor decoder errors.

Theorem 1. The probability of having an encoder error is negligible with n → ∞ if

R2 > H(X)− H(q ∗ D) (20)

R0 + R2 > H(X)− H(D) . (21)

Sketch of proof : Asymptotically, xn takes values on a set of 2nH(X) elements, and for a fixed cn
2 ,

the code 𝒞0 + cn
2 covers at most 2nH(q∗D) of them within distortion D. Hence, there must be

at least 2nH(X)−nH(q∗D) codewords in code 𝒞2. Then, since each n-tuple approximates at most

2nH(D) elements within Hamming-distortion D, the superposition code must provide at least

2nH(X)−nH(D) codewords. Once we have these two conditions the probability that a typical
(cn

0 + cn
2 ) is within distortion D approaches one. This may be proved with an argument similar

to the one used in the standard proof of the achievability of the rate-distortion function (Cover
& Thomas, 2006). If both given bounds are approached, the test channel between C0 +C2 and X
is such that X = C0 + C2 − Q, with Q ∼ ℬ(D) independent from C0 and C2 (asymptotically);
for rates over the bounds a lower distortion can be achieved.
The decoder looks for cn

2 ∈ 𝒞2 such that (cn
0 + cn

2 , yn) ∈ 𝒜(n)
ε (in practice, a closest neighbor

search is conducted), and reconstructs the source as cn
0 + cn

2 ; there is a decoding error if cn
2

is not correctly recovered. But once cn
0 is known, the equivalent noise between Y and C2 =

Y + Z + Q − C0 is distributed as Ze. Hence, the following holds.

Theorem 2. The probability of having a decoder error is negligible with n → ∞ if

R2 < Cp∗D(W) , (22)

where Cp∗D(W) ≜ H(W ∗ p ∗ D) − H(p ∗ D) = H(X) − H(p ∗ D) is the capacity of the BSC
between Y and U, subject to a Hamming-cost constraint W such that Y + Z + Q distributes as X
(i.e. the balls related to codewords of 𝒞2 are packed only over the space in which xn lies).

The closure of the rate region where there are no errors is shown in Fig. 4; it is not empty for
any q such that H(q ∗ D) ≥ H(p ∗ D), and the minimum of R0 approaches the rate-distortion
function R∗(D) = H(p ∗ D)− H(D) for all distortions 0 ≤ D ≤ dC < p (Wyner & Ziv, 1976).
In the Gaussian case (Z ∈ 𝒩 (0, σ2

z )), 𝒞0 is generated from the distribution 𝒩 (0, σ2
q ) and again

the scale factor α =
√

1 − D/σ2
z is used. If R2 and R0 + R2 are high enough, dithered quan-

tization of αX over the superposition of codes 𝒞2 and 𝒞0 leads asymptotically to the rela-
tion αX = C0 + C2 − Q, with Q ∼ 𝒩 (0, D) independent from C0 and C2. At the decoder,
which knows cn

0 , the channel between αY and C2 satisfies C2 = αY + αZ + Q − C0, i.e. it

is Gaussian, with capacity C(W) ≜ (1/2) log(1 + W/(α2σ2
z + D)) = (1/2) log(1 + W/σ2

z )
under the quadratic cost constraint W. There are no decoding errors if the code rate R2 is

below this capacity, and, again, the best estimate of the source at the decoder can be found
by taking α(c0 + c2) + (1 − α2)y. The minimum achievable rate can be in this case com-
puted with a geometric argument: the goal is to cover the n-dimensional balls related to
codewords of 𝒞2 with as least as possible balls of average quadratic-distortion D. But the
quadratic-distortion of the formers cannot be smaller than σ2

z so that the minimum code rate
of code 𝒞0, provided that σ2

q + D ≥ σ2
z , equals the rate-distortion function of the SCSI problem

R∗(D) = (1/2) log(σ2
z /D) (Wyner & Ziv, 1976).

Despite in principle the decoder/encoder for a CCSI problem can be used as the en-
coder/decoder of a dual SCSI problem (Pradhan et al., 2003), from a practical point of view
CCSI and SCSI are very different. In CCSI source coding is done at the encoder; the code 𝒞2

must be structured such that exhaustive search can be employed in order to perform a closest
neighbor search (e.g. be a trellis code). Channel decoding is done at the decoder, and both
𝒞0 and 𝒞2 should be performing channel codes for which a good algorithm approximating
maximum likelihood search exist (e.g. turbo codes). In practice, no penalty is introduced in
having 𝒞2 not very good from a channel coding perspective (Bennatan et al., 2006).
In SCSI channel decoding is done at the decoder; 𝒞2 should be a performing channel code for
which a good algorithm approximating maximum likelihood search exist (e.g. turbo codes).
Source coding is done at the encoder, and the code 𝒞0 + 𝒞2 must be structured such that ex-
haustive search can be employed in order to perform a closest neighbor search (e.g. be a trellis
code). Unfortunately, there are currently no algorithms that perform similarly to a closest
neighbor search over good codes for channel coding. Hence, in Section 5 we will actually rely
on convolutional codes 𝒞2, paying in this case a penalty with respect to the theoretical bounds.

4. Practical Iterative Algorithms for Lossless Coding

Turbo codes are good practical channel codes, and hence are good tools for lossless (binary)
SCSI. In the following we discuss the utilization of standard and ready-available turbo encod-
ing and decoding algorithms for this problem. Differently from other contributions on this
subject, we use the factor graph-based approach commonly taken in the LDPC-codes-related
literature. For a useful tutorial article on factor graphs and message-passing algorithms, the
reader is referred to (Kschischang et al., 2001). Under a unified formulation, we describe in
principle the cases in which syndromes or parity bits are sent to the decoder, over binary or
non-binary, lossless or lossy transmission channels, with binary or non-binary side informa-
tion; more details can be found in (Cappellari & De Giusti, 2008).

4.1 Turbo Codes Review and the Parity-Based Approach
Turbo codes actually include different kinds of codes. In the most common case (parallel con-
catenated convolutional codes) they are systematic codes: in correspondence of a sequence of Nk
outcomes from X (x) the turbo encoder uses two systematic (n, k) convolutional codes to form
two sequences of parity bits of N(n − k) + zt bits each4 (p0 and p1), according to the following
algorithm.

1: function TRBENC(x)
2: p0 ← GETPARITY0(x)
3: x

′ ← INTERLEAVE(x)

4 The additional zt ≪ N(n − k) bits are emitted while terminating the encoding into the zero state (zero-
tailing).
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4: p1 ← GETPARITY1(x′)
5: return [x, p0, p1]
6: end function

Once x and pi are sent over a channel, they are received as r and ri respectively, and the turbo
decoder aims to maximize prr0r1(x) ∝ lrr0r1(x)p(x).5 The maximum likelihood (ML) decoding
procedure is approximated by a message-passing algorithm on the factor graph of lrr0r1(x). In
particular, lrr0r1(x) factorizes into lr(x)lr0(x)lr1(x), and lri

(x) = ∑pi
χi(pi∣x)lri

(pi), where pi

are the true parity sequences and χi(pi∣x) are the indicator functions that are unitary if and
only if pi is the parity of x (according to the i-th convolutional code, comprehensive of the
interleaver for i = 1). The traditional decoding algorithm operates (on the factor graph of
Fig. 5(a)) as follows, where the function FBAi(⋅) computes the APP function relative to the
i-th convolutional code, assuming q(x) as the prior probability and using the forward-backward
algorithm (Bahl et al., 1974). If the prior probability p(x) is known, it can be absorbed into lr(x)
in order to implement maximum a posteriori probability (MAP) decoding.

1: function TRBDEC(lr(x), lr0(p0), lr1(p1), M)
2: m ← 0, i ← 1, initialize q(x) ⊳ Initialization
3: repeat ⊳ Turbo loop
4: m ← m + 1, i ← 1 − i
5: ap(m)(x) ← FBAi(lr(x), lri

(pi), q(x))

6: q(x) ← ap(m)(x)/[lr(x)q(x)]
7: until m ≥ M
8: return ap(m)(x)
9: end function

The application of turbo codes to the SCSI problem X = Y + Z, with Z ∼ ℬ(p) and Y ∼
ℬ(1/2), is very straightforward. In particular, the parities are sent, and decoding is done
by simply invoking TRBDEC(ly(x), lr0(p0), lr1(p1), M) (Aaron & Girod, 2002; Garcia-Frias &
Zhao, 2001), where ly(x) = pZNk(x − y) takes into account for the virtual channel statistics
(see Fig. 5(a)). In addition, it is possible to jointly decode and estimate p with no performance
loss (Garcia-Frias & Zhao, 2001). Since puncturing (i.e. bit removal) can be employed at the
encoder before transmission (the decoder can take into account this fact by assuming uniform

likelihoods in correspondence of the punctured bits), any rate 0 ≤ R ≤ 2(n−k)
k is achievable.

4.2 Syndrome-Based Approach
A turbo code can be seen as a (N(2n − k) + 2zt , Nk) systematic block code whose generator
matrix is G = [INk∣P0∣P1], where Pi is the Nk × [N(n − k) + zt] parity formation matrix corre-
sponding to the i-th convolutional code (comprehensive of the possible interleaver). If punc-
turing is employed (exclusively on the parity bits), then the equivalent generator matrix is
G

′ = [INk∣P′
0∣P′

1], where P
′
i is the Nk × si matrix obtained removing from Pi the columns

corresponding to the punctured parity bits. Consequently,

H
′ =

[
P
′T
0 Is0 0s0×s1

P
′T
1 0s1×s0 Is1

]
(23)

5 Given two r.v. A and B, the likelihood and a posteriori probability (APP) functions will hereafter be denoted

by la(b) ≜ p(a∣b) and pa(b) ≜ p(b∣a) respectively.
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p(r0|p0) p(r1|p1)

(a) parity-based approach (with p(r∣x) = p(y∣x))

xx0 x1p0 p1

s0 s1

χ0(p0|x) χ1(p1|x)

p(x|y)p(x0|y0) p(x1|y1)

p(r0|s0) p(r1|s1)

(b) syndrome-based approach

Fig. 5. Factor graphs representing the APP functions in the SCSI problem using turbo codes.

is a parity-check matrix of the turbo code. In correspondence of a sequence of Nk + s0 + s1

outcomes from X (partitioned into the three sub-sequences x, x0, and x1 of length Nk, s0, and
s1 respectively), the syndrome is obtained according to the following algorithm. Eventually,

any rate 0 ≤ R ≤ 2(n−k)
2n−k < 1 bit/sample is achievable; for example, if (2, 1) constituent codes

are employed, 0 ≤ R ≤ 2/3 bit/sample.

1: function SYNENC(x, x0, x1)
2: [x, p0, p1] ← TRBENC(x)
3: for i ← 0, 1 do

4: p ← PUNCTUREi(pi)
5: si ← p + xi

6: end for

7: return [s0, s1]
8: end function

We now directly tackle the problem of optimal MAP syndrome decoding, assuming that si

are sent over a general channel and are received as ri. In particular, the decoding algo-
rithm is derived from examining the factor graph of the APP function pyy0y1r0r1(xx0x1) ∝

pyy0y1 (xx0x1)lr0r1 (xx0x1). But pyy0y1 (xx0x1) factorizes into py(x)py0 (x0)py1 (x1); similarly
lr0r1(xx0x1) = lr0(xx0)lr1(xx1), and lri

(xxi) = ∑si
lri
(si)∑pi

χi(pi∣x)χ{pi+xi=si}, where si and
pi are the true syndrome sequences and the parity sequences from which they are computed
respectively, and χ{pi+xi=si} is the indicator function of the condition in brackets. The corre-
sponding factor graph of the APP function is shown in Fig. 5(b).
This factor graph is an extension without additional cycles of the factor graph relative to the
parity-based approach. MAP decoding can be achieved by reusing the turbo decoding algo-
rithm presented above; in particular, it is only necessary to form the correct input likelihoods
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4: p1 ← GETPARITY1(x′)
5: return [x, p0, p1]
6: end function

Once x and pi are sent over a channel, they are received as r and ri respectively, and the turbo
decoder aims to maximize prr0r1(x) ∝ lrr0r1(x)p(x).5 The maximum likelihood (ML) decoding
procedure is approximated by a message-passing algorithm on the factor graph of lrr0r1(x). In
particular, lrr0r1(x) factorizes into lr(x)lr0(x)lr1(x), and lri

(x) = ∑pi
χi(pi∣x)lri

(pi), where pi

are the true parity sequences and χi(pi∣x) are the indicator functions that are unitary if and
only if pi is the parity of x (according to the i-th convolutional code, comprehensive of the
interleaver for i = 1). The traditional decoding algorithm operates (on the factor graph of
Fig. 5(a)) as follows, where the function FBAi(⋅) computes the APP function relative to the
i-th convolutional code, assuming q(x) as the prior probability and using the forward-backward
algorithm (Bahl et al., 1974). If the prior probability p(x) is known, it can be absorbed into lr(x)
in order to implement maximum a posteriori probability (MAP) decoding.

1: function TRBDEC(lr(x), lr0(p0), lr1(p1), M)
2: m ← 0, i ← 1, initialize q(x) ⊳ Initialization
3: repeat ⊳ Turbo loop
4: m ← m + 1, i ← 1 − i
5: ap(m)(x) ← FBAi(lr(x), lri

(pi), q(x))

6: q(x) ← ap(m)(x)/[lr(x)q(x)]
7: until m ≥ M
8: return ap(m)(x)
9: end function

The application of turbo codes to the SCSI problem X = Y + Z, with Z ∼ ℬ(p) and Y ∼
ℬ(1/2), is very straightforward. In particular, the parities are sent, and decoding is done
by simply invoking TRBDEC(ly(x), lr0(p0), lr1(p1), M) (Aaron & Girod, 2002; Garcia-Frias &
Zhao, 2001), where ly(x) = pZNk(x − y) takes into account for the virtual channel statistics
(see Fig. 5(a)). In addition, it is possible to jointly decode and estimate p with no performance
loss (Garcia-Frias & Zhao, 2001). Since puncturing (i.e. bit removal) can be employed at the
encoder before transmission (the decoder can take into account this fact by assuming uniform

likelihoods in correspondence of the punctured bits), any rate 0 ≤ R ≤ 2(n−k)
k is achievable.

4.2 Syndrome-Based Approach
A turbo code can be seen as a (N(2n − k) + 2zt , Nk) systematic block code whose generator
matrix is G = [INk∣P0∣P1], where Pi is the Nk × [N(n − k) + zt] parity formation matrix corre-
sponding to the i-th convolutional code (comprehensive of the possible interleaver). If punc-
turing is employed (exclusively on the parity bits), then the equivalent generator matrix is
G

′ = [INk∣P′
0∣P′

1], where P
′
i is the Nk × si matrix obtained removing from Pi the columns

corresponding to the punctured parity bits. Consequently,

H
′ =

[
P
′T
0 Is0 0s0×s1

P
′T
1 0s1×s0 Is1

]
(23)

5 Given two r.v. A and B, the likelihood and a posteriori probability (APP) functions will hereafter be denoted

by la(b) ≜ p(a∣b) and pa(b) ≜ p(b∣a) respectively.
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Fig. 5. Factor graphs representing the APP functions in the SCSI problem using turbo codes.

is a parity-check matrix of the turbo code. In correspondence of a sequence of Nk + s0 + s1

outcomes from X (partitioned into the three sub-sequences x, x0, and x1 of length Nk, s0, and
s1 respectively), the syndrome is obtained according to the following algorithm. Eventually,

any rate 0 ≤ R ≤ 2(n−k)
2n−k < 1 bit/sample is achievable; for example, if (2, 1) constituent codes

are employed, 0 ≤ R ≤ 2/3 bit/sample.

1: function SYNENC(x, x0, x1)
2: [x, p0, p1] ← TRBENC(x)
3: for i ← 0, 1 do

4: p ← PUNCTUREi(pi)
5: si ← p + xi

6: end for

7: return [s0, s1]
8: end function

We now directly tackle the problem of optimal MAP syndrome decoding, assuming that si

are sent over a general channel and are received as ri. In particular, the decoding algo-
rithm is derived from examining the factor graph of the APP function pyy0y1r0r1(xx0x1) ∝

pyy0y1 (xx0x1)lr0r1 (xx0x1). But pyy0y1 (xx0x1) factorizes into py(x)py0 (x0)py1 (x1); similarly
lr0r1(xx0x1) = lr0(xx0)lr1(xx1), and lri

(xxi) = ∑si
lri
(si)∑pi

χi(pi∣x)χ{pi+xi=si}, where si and
pi are the true syndrome sequences and the parity sequences from which they are computed
respectively, and χ{pi+xi=si} is the indicator function of the condition in brackets. The corre-
sponding factor graph of the APP function is shown in Fig. 5(b).
This factor graph is an extension without additional cycles of the factor graph relative to the
parity-based approach. MAP decoding can be achieved by reusing the turbo decoding algo-
rithm presented above; in particular, it is only necessary to form the correct input likelihoods
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to the function TRBDEC(⋅) and post-process the output APP function ap(x), for example using
the following algorithm (hard syndrome decoding).6

1: function HSYNDEC(py(x), py0 (x0), py1 (x1), lr0(s0), lr1(s1), M)
2: for i ← 0, 1 do ⊳ Pre-processing
3: li(pi) ← ∑si

lri
(si)∑xi

pyi
(xi)χ{pi+xi=si}

4: end for

5: ap(x) ← TRBDEC(py(x), l0(p0), l1(p1), M)
6: x̂ ← arg maxx ap(x)
7: [x̂, p̂0, p̂1] ← TRBENC(x̂)
8: for i ← 0, 1 do ⊳ Post-processing
9: x̂i ← arg maxxi

pyi
(xi)lri

(p̂i + xi)
10: end for

11: return [x̂, x̂0, x̂1]
12: end function

Using the log-likelihood ratio and the log-APP ratio defined as

la ≜ log
la(1)

la(0)
, pa ≜ log

pa(1)

pa(0)
, (24)

the j-th factor computed by the pre-processing operation (line 3) is li,j = lri,j
∗ pyi,j

, where the

log-likelihood ratio convolution operator is defined as l1 ∗ l2 ≜ log el1+el2

1+el1+l2
. Post-processing (line

9) yields x̂i,j = ri,j + p̂i,j; maximization translates into thresholding.
The thresholding and parity formation operations permit the reutilization of the traditional
turbo algorithms. Nevertheless, they prevent the computation of the correct messages across
the nodes pi, so the hard syndrome decoding algorithm is not optimal. But if a full turbo
decoding function FTRBDEC(⋅) is used that outputs the APP functions ap(pi) for the parity
bits as well, the post-processing can be improved as follows (soft syndrome decoding).

1: function SSYNDEC(py(x), py0 (x0), py1 (x1), lr0(s0), lr1(s1), M)
2: for i ← 0, 1 do ⊳ Pre-processing
3: li(pi) ← ∑si

lri
(si)∑xi

pyi
(xi)χ{pi+xi=si}

4: end for

5: [ap(x), ap(p0), ap(p1)] ← FTRBDEC(py(x), l0(p0), l1(p1), M)
6: for i ← 0, 1 do ⊳ Post-processing

7: ap′(xi) ← ∑si
lri
(si) ∑pi

ap(pi)
li(pi)

χ{pi+xi=si}
8: ap(xi) ← pyi

(xi)ap′(xi)
9: end for

10: return [ap(x), ap(x0), ap(x1)]
11: end function

Now, in order to estimate xi,j thresholding will be applied to apxi,j
= pyi,j

+ lri,j
∗ (appi,j

− li,j),
which is certainly more accurate than before. If the transmission channel is error-free

6 The operations in the pre- and post-processing (that do not involve the punctured parity bits) are writ-
ten in the most general fashion, but in practice they are symbol-wise operations between marginal func-
tions.

(i.e. ∣lri,j
∣ = ∞) it is easy to show that apxi,j

equals appi,j
or −appi,j

if ri,j is 0 or 1 respectively,
because in either case the contributions of pyi,j

and li,j cancel out; then, xi,j can be again esti-
mated by x̂i,j = ri,j + p̂i,j, where p̂i,j is the estimate of the corresponding parity bit obtained
thresholding appi,j

rather than the one obtained invoking the function TRBENC(x̂). On the
contrary, if the TC is not error-free ∣lri,j

∣ < ∞, and hence apxi,j
must be actually computed in

order to correctly estimate xi,j.

4.3 Experimental Results and Comparisons
A virtual channel has been simulated with Y ∼ ℬ(1/2) and Z ∼ ℬ(p), for different values of p;
error-free transmission has been considered for comparison purposes with previous literature
on this subject. Both parity- and syndrome-based approaches have been simulated. The turbo
code uses two identical (n, k) = (2, 1), 16-state, systematic constituent codes with generator

matrix G(D) =
[
1 1+D+D2+D4

1+D3+D4

]
; ⌊LR⌋ parity/syndrome bits are sent in correspondence to

each data frame of L = 216 = 65536 samples. Puncturing is performed such that rates R of 2/3
or 1/2 bit/samples are achieved. 213 = 8192 frames have been generated for each p, such that
the average bit error ratio (BER) is eventually estimated over 229 ≃ 5 ⋅ 108 bits. The decoding
routines TRBDEC and SSYNDEC are set for a number of runs of the FBA algorithm M equal to
40.
Comparisons are given in Fig. 6, in which the BER is shown as a function of H(p). When
R = 2/3, the proposed method 65536-SSYNDEC outperforms the coding performance of the
“SF+ISF” method given in (Tu et al., 2005). Despite the different syndrome formation proce-
dure used in the latter (which does not rely on a standard turbo encoding engine), these two
methods are very similar in the way they work. Hence, it is reasonable to think that the dif-
ferent performance is the result of better coding parameters (i.e. frame length, convolutional
code, interleaver and puncturer). Despite the very large interleaver length, the “Syn. trellis”
method proposed in (Roumy et al., 2007) has very poor performance, which is even worse
than the performance of the parity-based method 65536-TRBDEC. When R = 1/2, the pro-
posed method 65536-SSYNDEC has again a good performance, which are surpassed only by
the LDPC-based systems reported in (Liveris et al., 2002) (which employ a longer frame size)
and by the “P&C trellis” method proposed in (Liveris et al., 2003), which makes use of longer
frames and of different 16-state constituent codes (specifically tailored for heavy data punctur-
ing). Again, despite its smart formulation and very long frame size, the “Syn. trellis” method
(Roumy et al., 2007) has very poor performance.

5. Continuous-Valued Syndromes for Lossy Coding

Traditional (discrete) syndromes of a linear code are good for lossless SCSI. In this section
we discuss a coding method based on continuous-valued syndromes of a lattice for lossy SCSI
of continuous sources with quadratic distortion (Cappellari & Mian, 2006b). This method
embodies the superposition coding approach described in Section 3.2.1.
Consider a lattice Λ ⊂ Rn. Being a subgroup of Rn, it induces the partition of Rn into the
cosets of Rn/Λ. Each coset is uniquely identified by one of its elements; in particular we

assume as coset leader of L ∈ Rn/Λ the element l(L) ≜ arg minλ∈L d(λ, 0). We call continuous-

valued syndrome (CVS) of xn ∈ Rn, relative to Λ, the element sΛ(x
n) ≜ l(L) such that xn ∈

L. If we define the quantizer QΛ(x
n) ≜ arg minλ∈Λ d(xn, λ) (with the further condition λ +

sΛ(x
n) = xn in case of ambiguity), the CVS satisfies sΛ(x

n) = xn − QΛ(x
n).
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to the function TRBDEC(⋅) and post-process the output APP function ap(x), for example using
the following algorithm (hard syndrome decoding).6

1: function HSYNDEC(py(x), py0 (x0), py1 (x1), lr0(s0), lr1(s1), M)
2: for i ← 0, 1 do ⊳ Pre-processing
3: li(pi) ← ∑si

lri
(si)∑xi

pyi
(xi)χ{pi+xi=si}

4: end for

5: ap(x) ← TRBDEC(py(x), l0(p0), l1(p1), M)
6: x̂ ← arg maxx ap(x)
7: [x̂, p̂0, p̂1] ← TRBENC(x̂)
8: for i ← 0, 1 do ⊳ Post-processing
9: x̂i ← arg maxxi

pyi
(xi)lri

(p̂i + xi)
10: end for

11: return [x̂, x̂0, x̂1]
12: end function

Using the log-likelihood ratio and the log-APP ratio defined as

la ≜ log
la(1)

la(0)
, pa ≜ log

pa(1)

pa(0)
, (24)

the j-th factor computed by the pre-processing operation (line 3) is li,j = lri,j
∗ pyi,j

, where the

log-likelihood ratio convolution operator is defined as l1 ∗ l2 ≜ log el1+el2

1+el1+l2
. Post-processing (line

9) yields x̂i,j = ri,j + p̂i,j; maximization translates into thresholding.
The thresholding and parity formation operations permit the reutilization of the traditional
turbo algorithms. Nevertheless, they prevent the computation of the correct messages across
the nodes pi, so the hard syndrome decoding algorithm is not optimal. But if a full turbo
decoding function FTRBDEC(⋅) is used that outputs the APP functions ap(pi) for the parity
bits as well, the post-processing can be improved as follows (soft syndrome decoding).

1: function SSYNDEC(py(x), py0 (x0), py1 (x1), lr0(s0), lr1(s1), M)
2: for i ← 0, 1 do ⊳ Pre-processing
3: li(pi) ← ∑si

lri
(si)∑xi

pyi
(xi)χ{pi+xi=si}

4: end for

5: [ap(x), ap(p0), ap(p1)] ← FTRBDEC(py(x), l0(p0), l1(p1), M)
6: for i ← 0, 1 do ⊳ Post-processing

7: ap′(xi) ← ∑si
lri
(si) ∑pi

ap(pi)
li(pi)

χ{pi+xi=si}
8: ap(xi) ← pyi

(xi)ap′(xi)
9: end for

10: return [ap(x), ap(x0), ap(x1)]
11: end function

Now, in order to estimate xi,j thresholding will be applied to apxi,j
= pyi,j

+ lri,j
∗ (appi,j

− li,j),
which is certainly more accurate than before. If the transmission channel is error-free

6 The operations in the pre- and post-processing (that do not involve the punctured parity bits) are writ-
ten in the most general fashion, but in practice they are symbol-wise operations between marginal func-
tions.

(i.e. ∣lri,j
∣ = ∞) it is easy to show that apxi,j

equals appi,j
or −appi,j

if ri,j is 0 or 1 respectively,
because in either case the contributions of pyi,j

and li,j cancel out; then, xi,j can be again esti-
mated by x̂i,j = ri,j + p̂i,j, where p̂i,j is the estimate of the corresponding parity bit obtained
thresholding appi,j

rather than the one obtained invoking the function TRBENC(x̂). On the
contrary, if the TC is not error-free ∣lri,j

∣ < ∞, and hence apxi,j
must be actually computed in

order to correctly estimate xi,j.

4.3 Experimental Results and Comparisons
A virtual channel has been simulated with Y ∼ ℬ(1/2) and Z ∼ ℬ(p), for different values of p;
error-free transmission has been considered for comparison purposes with previous literature
on this subject. Both parity- and syndrome-based approaches have been simulated. The turbo
code uses two identical (n, k) = (2, 1), 16-state, systematic constituent codes with generator

matrix G(D) =
[
1 1+D+D2+D4

1+D3+D4

]
; ⌊LR⌋ parity/syndrome bits are sent in correspondence to

each data frame of L = 216 = 65536 samples. Puncturing is performed such that rates R of 2/3
or 1/2 bit/samples are achieved. 213 = 8192 frames have been generated for each p, such that
the average bit error ratio (BER) is eventually estimated over 229 ≃ 5 ⋅ 108 bits. The decoding
routines TRBDEC and SSYNDEC are set for a number of runs of the FBA algorithm M equal to
40.
Comparisons are given in Fig. 6, in which the BER is shown as a function of H(p). When
R = 2/3, the proposed method 65536-SSYNDEC outperforms the coding performance of the
“SF+ISF” method given in (Tu et al., 2005). Despite the different syndrome formation proce-
dure used in the latter (which does not rely on a standard turbo encoding engine), these two
methods are very similar in the way they work. Hence, it is reasonable to think that the dif-
ferent performance is the result of better coding parameters (i.e. frame length, convolutional
code, interleaver and puncturer). Despite the very large interleaver length, the “Syn. trellis”
method proposed in (Roumy et al., 2007) has very poor performance, which is even worse
than the performance of the parity-based method 65536-TRBDEC. When R = 1/2, the pro-
posed method 65536-SSYNDEC has again a good performance, which are surpassed only by
the LDPC-based systems reported in (Liveris et al., 2002) (which employ a longer frame size)
and by the “P&C trellis” method proposed in (Liveris et al., 2003), which makes use of longer
frames and of different 16-state constituent codes (specifically tailored for heavy data punctur-
ing). Again, despite its smart formulation and very long frame size, the “Syn. trellis” method
(Roumy et al., 2007) has very poor performance.

5. Continuous-Valued Syndromes for Lossy Coding

Traditional (discrete) syndromes of a linear code are good for lossless SCSI. In this section
we discuss a coding method based on continuous-valued syndromes of a lattice for lossy SCSI
of continuous sources with quadratic distortion (Cappellari & Mian, 2006b). This method
embodies the superposition coding approach described in Section 3.2.1.
Consider a lattice Λ ⊂ Rn. Being a subgroup of Rn, it induces the partition of Rn into the
cosets of Rn/Λ. Each coset is uniquely identified by one of its elements; in particular we

assume as coset leader of L ∈ Rn/Λ the element l(L) ≜ arg minλ∈L d(λ, 0). We call continuous-

valued syndrome (CVS) of xn ∈ Rn, relative to Λ, the element sΛ(x
n) ≜ l(L) such that xn ∈

L. If we define the quantizer QΛ(x
n) ≜ arg minλ∈Λ d(xn, λ) (with the further condition λ +

sΛ(x
n) = xn in case of ambiguity), the CVS satisfies sΛ(x

n) = xn − QΛ(x
n).
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Fig. 6. Comparison between different SCSI methods. The label “SF+ISF” refers to the
syndrome-based method in (Tu et al., 2005) (results for two different convolutional codes are
shown); the label “Syn. trellis” refers to the syndrome-based method in (Roumy et al., 2007),
where 16-state constituent codes are employed. The label “Turbo parity” refers to the parity-
based method in (Aaron & Girod, 2002), that uses two (5, 4) 16-state constituent codes. The
label “LDPC” refers to the syndrome-based method in (Liveris et al., 2002) (results relative to
two irregular LDPC codes are shown); the label “P&C trellis” refers to the syndrome-based
method in (Liveris et al., 2003) that uses 16-state constituent codes. The frame length is re-
ported too.

We consider the additive virtual channel X = Y + Z. If P[QΛ(Z
n) ∕= 0] is asymptotically

negligible (i.e. the realizations of Zn lie in the fundamental Voronoi region of Λ), then sΛ(x
n)

permits near lossless reconstruction at the decoder; in fact

xn = yn + zn (1)
= yn + sΛ(z

n)
(2)
= yn + sΛ (sΛ(x

n) + sΛ(−yn)) , (25)

where (1) holds with high probability and (2) follows from linear properties of the CVS. In
practice, the reconstruction from sΛ(x

n) and yn is obtained by a single quantization as

xn = sΛ(x
n)− QΛ (sΛ(x

n)− yn) . (26)

Of course, we would need a channel with infinite capacity in order to transmit the CVS to
the decoder. Hence, we assume that a quantized version ŝβΛ(x

n) of the syndrome sβΛ(x
n),

such that SβΛ = ŜβΛ − Q with Q independent from ŜβΛ, is actually transmitted by the en-

coder.7 For β ≥ 1, the realizations of Zn and, reasonably, the ones of the error Qn, lie in the
fundamental Voronoi region of βΛ. The reconstruction, according to (25), satisfies

x̃n = yn + sβΛ

(
sβΛ(x

n) + sβΛ(q
n) + sβΛ(−yn)

)
= yn + sβΛ (zn + qn) (27)

= xn +
(

qn − QβΛ (zn + qn)
)
≜ xn + (qn + qn

ol) , (28)

7 If the Voronoi regions of βΛ are asymptotically spherical, ŜβΛ and Q exist that are approximately Gaus-
sian.
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Fig. 7. Wyner-Ziv coding using continuous-valued syndromes.

where Qol is the overload error. If Qt ≜ Q + Qol is independent from Y and Z (and the mean
of all random variables is zero), Y → X → X̃ forms a Markov chain, such that the minimum
mean square error linear estimate for X computed at the decoder is eventually given by

X̂ =
σ2

z

σ2
z + σ2

qt

X̃ +
σ2

qt

σ2
z + σ2

qt

Y , (29)

and the achieved distortion D satisfies 1/D = 1/σ2
z + 1/σ2

qt
, where σ2

z ≜ E[Z2] and σ2
qt

≜

E[Q2
t ]. This coding scheme is shown in Fig. 7.

For a fixed transmission rate R the best possible syndrome is sent, and the parameter β is
experimentally tuned in order to minimize the variance of D. In theory, in the Gaussian case
(Z ∼ 𝒩 (0, σ2

z )) with Λ being a good channel code for the virtual AWGN channel between

Y and X, β = 1/α = 1/
√

1 − D∗(R)/σ2
z guarantees that the rate-distortion function R∗(D)

is achieved (D∗(R) = σ2
z 2−2R is its inverse). In fact, in this case, (i) since the syndrome dis-

tributes uniformly over the fundamental Voronoi region of βΛ and Λ is a good channel code
for the noise Z, SβΛ ∼ 𝒩 (0, β2σ2

z ), (ii) the minimum distortion in sending the syndrome at

rate R is such that E[Q2] = β2σ2
z 2−2R = β2D∗(R), (iii) since σ2

z + E[Q2] = β2σ2
z and βΛ is a

good channel code for an AWGN of power β2σ2
z , there is no overload error, i.e. σ2

qt
= E[Q2],

(iv) D = σ2
z E[Q2]/(σ2

z + E[Q2]) = E[Q2]/β2 = D∗(R).
A superposition of two codes is indeed used where the coarse code is the lattice code βΛ and
the additive code is the source code used for quantization of SβΛ. The encoder is dual to
the decoder of a multiple access channel problem that operates by interference cancellation: first,
the codeword of the code with the lower code rate (the coarse one) is computed; then, this
is subtracted from the source and the codeword to be transmitted to the decoder is formed
according to the additive code. In practice, since we must be able to conduct an exact closest
neighbor search on the coarse code, it cannot be a very performing channel code, i.e. we must
cope in general with an overload error Qol (which corresponds to having a decoder error, as
defined in Section 3.2.1). The parameter β permits to balance the contributions of the two
errors. The higher is β, the lower is the overload error; but, for fixed transmission rate R, the
higher is β, the higher is the variance of the granular error Q.

5.1 Experimental Results and Comparisons
We simulated the AWGN channel X = Y + Z with a Gaussian input Y ∼ 𝒩 (0, σ2

y = 1) and

a noise Z with various variances σ2
z . We employ trellis-coded quantization (TCQ) based on the

partition aZ/4aZ for syndrome formation (Marcellin & Fisher, 1990), which defines the lattice
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Fig. 6. Comparison between different SCSI methods. The label “SF+ISF” refers to the
syndrome-based method in (Tu et al., 2005) (results for two different convolutional codes are
shown); the label “Syn. trellis” refers to the syndrome-based method in (Roumy et al., 2007),
where 16-state constituent codes are employed. The label “Turbo parity” refers to the parity-
based method in (Aaron & Girod, 2002), that uses two (5, 4) 16-state constituent codes. The
label “LDPC” refers to the syndrome-based method in (Liveris et al., 2002) (results relative to
two irregular LDPC codes are shown); the label “P&C trellis” refers to the syndrome-based
method in (Liveris et al., 2003) that uses 16-state constituent codes. The frame length is re-
ported too.

We consider the additive virtual channel X = Y + Z. If P[QΛ(Z
n) ∕= 0] is asymptotically

negligible (i.e. the realizations of Zn lie in the fundamental Voronoi region of Λ), then sΛ(x
n)

permits near lossless reconstruction at the decoder; in fact

xn = yn + zn (1)
= yn + sΛ(z

n)
(2)
= yn + sΛ (sΛ(x

n) + sΛ(−yn)) , (25)

where (1) holds with high probability and (2) follows from linear properties of the CVS. In
practice, the reconstruction from sΛ(x

n) and yn is obtained by a single quantization as

xn = sΛ(x
n)− QΛ (sΛ(x

n)− yn) . (26)

Of course, we would need a channel with infinite capacity in order to transmit the CVS to
the decoder. Hence, we assume that a quantized version ŝβΛ(x

n) of the syndrome sβΛ(x
n),

such that SβΛ = ŜβΛ − Q with Q independent from ŜβΛ, is actually transmitted by the en-

coder.7 For β ≥ 1, the realizations of Zn and, reasonably, the ones of the error Qn, lie in the
fundamental Voronoi region of βΛ. The reconstruction, according to (25), satisfies

x̃n = yn + sβΛ

(
sβΛ(x

n) + sβΛ(q
n) + sβΛ(−yn)

)
= yn + sβΛ (zn + qn) (27)

= xn +
(

qn − QβΛ (zn + qn)
)
≜ xn + (qn + qn

ol) , (28)

7 If the Voronoi regions of βΛ are asymptotically spherical, ŜβΛ and Q exist that are approximately Gaus-
sian.
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where Qol is the overload error. If Qt ≜ Q + Qol is independent from Y and Z (and the mean
of all random variables is zero), Y → X → X̃ forms a Markov chain, such that the minimum
mean square error linear estimate for X computed at the decoder is eventually given by

X̂ =
σ2

z

σ2
z + σ2

qt

X̃ +
σ2

qt

σ2
z + σ2

qt

Y , (29)

and the achieved distortion D satisfies 1/D = 1/σ2
z + 1/σ2

qt
, where σ2

z ≜ E[Z2] and σ2
qt

≜

E[Q2
t ]. This coding scheme is shown in Fig. 7.

For a fixed transmission rate R the best possible syndrome is sent, and the parameter β is
experimentally tuned in order to minimize the variance of D. In theory, in the Gaussian case
(Z ∼ 𝒩 (0, σ2

z )) with Λ being a good channel code for the virtual AWGN channel between

Y and X, β = 1/α = 1/
√

1 − D∗(R)/σ2
z guarantees that the rate-distortion function R∗(D)

is achieved (D∗(R) = σ2
z 2−2R is its inverse). In fact, in this case, (i) since the syndrome dis-

tributes uniformly over the fundamental Voronoi region of βΛ and Λ is a good channel code
for the noise Z, SβΛ ∼ 𝒩 (0, β2σ2

z ), (ii) the minimum distortion in sending the syndrome at

rate R is such that E[Q2] = β2σ2
z 2−2R = β2D∗(R), (iii) since σ2

z + E[Q2] = β2σ2
z and βΛ is a

good channel code for an AWGN of power β2σ2
z , there is no overload error, i.e. σ2

qt
= E[Q2],

(iv) D = σ2
z E[Q2]/(σ2

z + E[Q2]) = E[Q2]/β2 = D∗(R).
A superposition of two codes is indeed used where the coarse code is the lattice code βΛ and
the additive code is the source code used for quantization of SβΛ. The encoder is dual to
the decoder of a multiple access channel problem that operates by interference cancellation: first,
the codeword of the code with the lower code rate (the coarse one) is computed; then, this
is subtracted from the source and the codeword to be transmitted to the decoder is formed
according to the additive code. In practice, since we must be able to conduct an exact closest
neighbor search on the coarse code, it cannot be a very performing channel code, i.e. we must
cope in general with an overload error Qol (which corresponds to having a decoder error, as
defined in Section 3.2.1). The parameter β permits to balance the contributions of the two
errors. The higher is β, the lower is the overload error; but, for fixed transmission rate R, the
higher is β, the higher is the variance of the granular error Q.

5.1 Experimental Results and Comparisons
We simulated the AWGN channel X = Y + Z with a Gaussian input Y ∼ 𝒩 (0, σ2

y = 1) and

a noise Z with various variances σ2
z . We employ trellis-coded quantization (TCQ) based on the

partition aZ/4aZ for syndrome formation (Marcellin & Fisher, 1990), which defines the lattice
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Fig. 8. Optimization of the volumetric parameter β2.

Λ; the length of each input data frame is n = 1000; a is tuned such that the experimental
second moment per dimension of the Voronoi regions of Λ equals σ2

z . Any suitable source
coding algorithm can be used to code the n-dimensional CVS; again, we employ TCQ, based
on the partition bZ/4bZ and on 8-state trellises. For each rate R, b is tuned such that the
normalized volume of the Voronoi regions induced by this quantizer is 22R times less than the
corresponding parameter of βΛ. Actually, in the following, R denotes the average entropy
for describing the quantized syndrome, measured with the 2-supersets context-based method
proposed in (Marcellin, 1994).
The effect of β2 on the variances of the granular and of the overload error is shown in Fig. 8(a),
for σ2

y /σ2
z = 14.0 dB and at two different target rates. At low β2, the total error (solid curves)

is approximated by the overload error (dashed curves); at high β2, the total error is approxi-
mated by the granular error (dot-dashed curves). The circles indicate the optimum value of
β2 and the corresponding distortion. The optimum β2 does not depend on the variance ratio
σ2

y /σ2
z but only on the coding rate R of the system. In particular, this optimum is shown in

Fig. 8(b) and it is decreasing with the rate. By increasing the number of states of the trellis, Λ

gets closer to a good channel code and consequently β2 decreases; for comparison, the figure
also shows 1/α2, i.e. the lower bound for β2.
The experimental performance loss with respect to the distortion-rate function D∗(R) is shown
in Fig. 9(a). More precisely, the measurements are relative to a CVS-based system in which the
TCQ used for syndrome quantization has been optimized with an algorithm adapted from
(Chou et al., 1989). Similarly to the optimum value of β, the performance loss does not de-
pend on σ2

y /σ2
z ; for each rate, the value shown is the average over the various values of σ2

z

(σ2
y /σ2

z is in the range 9 ÷ 19 dB). The error bars show the average of the 95 % confidence

intervals; for each value of σ2
z the confidence interval is estimated over 5000 independent sim-

ulations. The experiments show that the performance of the proposed system is within 3 ÷ 4
dB from the theoretical bound at rates between 0.5 and 3.0 bit/sample. A comparison is given
in Fig. 9(b) against another practical SCSI system, namely the “DISCUS” system (Pradhan &
Ramchandran, 2003). By simply choosing the right scaling factor a, tuned with respect to σ2

z ,
the proposed system adapts to any correlation and gives the same performance loss, while
the “DISCUS” system should be optimized for different correlations. This would not be an
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Fig. 9. Experimental performance of CVS-based SCSI.

easy task since it would involve the redesign of a source and of a channel code. Moreover,
while only integer rates can be achieved by the “DISCUS” system, any rate can be achieved
by SCSI based on CVS. This can be simply obtained by choosing the right value of b in case of
syndrome coding with TCQ or using another ad-hoc source coding method for transmitting
SβΛ.
The proposed coding method turns out to be competitive with the SCSI methods in which the
channel code component is a convolutional code; in addition, it allows for easy adaptation to
the virtual channel statistics and to the desired transmission rate. More involved decoding
algorithms for the actual case in which the virtual channel is not exactly known, and appli-
cations of this coding scheme in the video coding scenario have been proposed too and are
briefly discussed in the following.

5.2 Iterative Algorithms for Unknown Virtual Channels
The factor graph approach used in Section 4 for lossless SCSI turns out to be useful for op-
timized CVS decoding too, in place of the simple operation given in (26). In particular, in
(Cappellari, 2008) a factor graph-based decoding method is discussed for the case where the
virtual channel statistics is time-varying and not exactly known at the encoder. More precisely,

with the hypothesis of a negligible overload error such that X̃ ≈ Y + Z̃, where Z̃ ≜ Z + Q
is independent from Y, a doubly stochastic hidden Markov model (HMM) (Rabiner, 1989) is as-
sumed for Z̃. The model has L states and the distribution corresponding to the j-th state is the
generalized Gaussian distribution (GGD) 𝒢α(µj, σ2

j ). The simulated n-dimensional realizations

of Zn are identified within another HMM with possibly different number of states and state
variances in order to simulate a partial knowledge regarding the virtual channel; this infor-
mation is used by the encoder and transmitted to the decoder (the required bit-rate is taken
into account) for syndrome formation and decoding, respectively.
Since Ŝ = S+ Q (we will omit subscripts for clarity) is with good approximation the syndrome
corresponding to X̃ = X + Q, Y → X̃ → Ŝ forms a Markov chain, and optimal MAP decoding
amounts to maximizing

f (x̃n∣yn, ŝn) ∝ f (x̃n∣yn) f (ŝn∣x̃n) , (30)
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Λ; the length of each input data frame is n = 1000; a is tuned such that the experimental
second moment per dimension of the Voronoi regions of Λ equals σ2

z . Any suitable source
coding algorithm can be used to code the n-dimensional CVS; again, we employ TCQ, based
on the partition bZ/4bZ and on 8-state trellises. For each rate R, b is tuned such that the
normalized volume of the Voronoi regions induced by this quantizer is 22R times less than the
corresponding parameter of βΛ. Actually, in the following, R denotes the average entropy
for describing the quantized syndrome, measured with the 2-supersets context-based method
proposed in (Marcellin, 1994).
The effect of β2 on the variances of the granular and of the overload error is shown in Fig. 8(a),
for σ2
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z = 14.0 dB and at two different target rates. At low β2, the total error (solid curves)

is approximated by the overload error (dashed curves); at high β2, the total error is approxi-
mated by the granular error (dot-dashed curves). The circles indicate the optimum value of
β2 and the corresponding distortion. The optimum β2 does not depend on the variance ratio
σ2
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z but only on the coding rate R of the system. In particular, this optimum is shown in

Fig. 8(b) and it is decreasing with the rate. By increasing the number of states of the trellis, Λ

gets closer to a good channel code and consequently β2 decreases; for comparison, the figure
also shows 1/α2, i.e. the lower bound for β2.
The experimental performance loss with respect to the distortion-rate function D∗(R) is shown
in Fig. 9(a). More precisely, the measurements are relative to a CVS-based system in which the
TCQ used for syndrome quantization has been optimized with an algorithm adapted from
(Chou et al., 1989). Similarly to the optimum value of β, the performance loss does not de-
pend on σ2

y /σ2
z ; for each rate, the value shown is the average over the various values of σ2

z

(σ2
y /σ2

z is in the range 9 ÷ 19 dB). The error bars show the average of the 95 % confidence

intervals; for each value of σ2
z the confidence interval is estimated over 5000 independent sim-

ulations. The experiments show that the performance of the proposed system is within 3 ÷ 4
dB from the theoretical bound at rates between 0.5 and 3.0 bit/sample. A comparison is given
in Fig. 9(b) against another practical SCSI system, namely the “DISCUS” system (Pradhan &
Ramchandran, 2003). By simply choosing the right scaling factor a, tuned with respect to σ2

z ,
the proposed system adapts to any correlation and gives the same performance loss, while
the “DISCUS” system should be optimized for different correlations. This would not be an
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Fig. 9. Experimental performance of CVS-based SCSI.

easy task since it would involve the redesign of a source and of a channel code. Moreover,
while only integer rates can be achieved by the “DISCUS” system, any rate can be achieved
by SCSI based on CVS. This can be simply obtained by choosing the right value of b in case of
syndrome coding with TCQ or using another ad-hoc source coding method for transmitting
SβΛ.
The proposed coding method turns out to be competitive with the SCSI methods in which the
channel code component is a convolutional code; in addition, it allows for easy adaptation to
the virtual channel statistics and to the desired transmission rate. More involved decoding
algorithms for the actual case in which the virtual channel is not exactly known, and appli-
cations of this coding scheme in the video coding scenario have been proposed too and are
briefly discussed in the following.

5.2 Iterative Algorithms for Unknown Virtual Channels
The factor graph approach used in Section 4 for lossless SCSI turns out to be useful for op-
timized CVS decoding too, in place of the simple operation given in (26). In particular, in
(Cappellari, 2008) a factor graph-based decoding method is discussed for the case where the
virtual channel statistics is time-varying and not exactly known at the encoder. More precisely,

with the hypothesis of a negligible overload error such that X̃ ≈ Y + Z̃, where Z̃ ≜ Z + Q
is independent from Y, a doubly stochastic hidden Markov model (HMM) (Rabiner, 1989) is as-
sumed for Z̃. The model has L states and the distribution corresponding to the j-th state is the
generalized Gaussian distribution (GGD) 𝒢α(µj, σ2

j ). The simulated n-dimensional realizations

of Zn are identified within another HMM with possibly different number of states and state
variances in order to simulate a partial knowledge regarding the virtual channel; this infor-
mation is used by the encoder and transmitted to the decoder (the required bit-rate is taken
into account) for syndrome formation and decoding, respectively.
Since Ŝ = S+ Q (we will omit subscripts for clarity) is with good approximation the syndrome
corresponding to X̃ = X + Q, Y → X̃ → Ŝ forms a Markov chain, and optimal MAP decoding
amounts to maximizing

f (x̃n∣yn, ŝn) ∝ f (x̃n∣yn) f (ŝn∣x̃n) , (30)
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where the terms f (x̃n∣yn) = fZ̃(x̃
n − yn) and f (ŝn∣x̃n) take account of the virtual channel

structure and of the syndrome formation algorithm, respectively. Once we define the hidden
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The (TCQ-based) syndrome formation is instead a deterministic transformation, i.e. f (ŝn∣x̃n)
is a Dirac’s delta function that, given x̃n, reveals its syndrome. Equivalently, it is a delta
function that reveals the event {x̃n − ŝn ∈ βΛ}; by introducing the trellis state variables σC

k ,
f (ŝn∣x̃n) is found marginalizing

f
(

ŝn; σC∣x̃n
)
=

m−1

∏
k=0

χ
σC

k

σC
k−1

∑
b∈ℬσC

k

σC
k−1

δ (x̃k − ŝk − b) , (32)

where χl
j and ℬl

j are the indicator function and the set of reconstruction values relative to the

transition from state j to l, respectively.
In order to increase the independence between the information about X̃ brought by Y and by
Ŝ, the syndrome formation algorithm is operated on a randomly scrambled version of xn, such
that the actual factor graph used in CVS decoding is similar to the one sketched in Fig. 10. At

the m-th iteration, model messages µ
(m)

Z̃
(x̃i) and code messages µ

(m)
C (x̃k) are exchanged between

the upper and the lower part of the factor-graph and viceversa, until they converge to a fixed
value. The final estimate x̂n for xn is given by

x̂i = arg max
x̃i

f (x̃i∣yn) f (ŝn∣x̃i) . (33)

We report some experimental results for the case where Y ∼ 𝒩 (0, σ2
y = 1) and Z is a 3-state

Gaussian Markov process (α = 2). The distortion-rate function obtained with traditional ML
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Fig. 11. Experimental results for factor graph-based CVS decoding; DL(R) is an estimate of
the theoretical distortion-rate function of the considered SCSI problem.

decoding, with MAP decoding (i.e. considering only one iteration in the decoding process),
and with TURBO decoding (i.e. at convergence) are measured. The syndrome is uniformly
quantized and entropy coded for transmission at the decoder; 1000 sequences of n = 1000
samples each are generated. If the encoder has knowledge about the virtual channel statistics
(i.e. the same model is artificially used for hidden state identification8), the TURBO decoding
algorithm does not perform any better than the MAP decoding algorithm, that in turn was
shown to perform like the ML decoding (at least in the Gaussian case). If a single-state HMM
is used for hidden state identification (i.e. the encoder only knows the average variance of Z),
the MAP decoding performs again like the ML decoding, but TURBO decoding leads to about
one order of magnitude less reconstruction errors, which translate into an up to 3 dB decrease
of the mean error variance (see Fig. 11) at bit-rates R = 3 ÷ 4 bit/sample.

5.3 Video Coding Applications
Traditional video coding standards, e.g. H.264/AVC (ITU-T & ISO/IEC: JTC1/SC29/WG11,
2007), are based on predictive coding for exploiting the high temporal correlation between ad-
jacent frames. This implies that (i) the algorithms used during encoding are computationally
heavy with respect to the ones used at the decoder, and (ii) the coded representation is very
sensible to possible packet losses on the transmission channel. To alleviate these problems, in
order to permit effective video encoding and transmission on wireless and battery-operated
devices, several research groups have recently explored SCSI-based methods for video com-
pression. A review on these methods can be found in (Girod et al., 2005).
In practice, a frame is encoded assuming that some adjacent frames are already available as
SI at the decoder. Hence, (i) the encoding algorithm is more light since it does not exploit the
inter-frame correlation, and (ii) packet losses are not so bad as long as several adjacent frames
are stored at the decoder that can be used as SI.
The CVS method has been applied to video coding in (Cappellari, 2007; Cappellari & Mian,
2006a). In particular, it has been tested in both the discrete cosine transform (DCT) and the dis-
crete wavelet transform (DWT) domain. In both cases, every other frame is sent as an intra-frame
(without referencing any adjacent frame); the remaining ones are sent as inter-frames. The
decoder performs motion compensated interpolation for each couple of consecutive intra-frames

8 There may be still uncertainties about the actual hidden states.
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The (TCQ-based) syndrome formation is instead a deterministic transformation, i.e. f (ŝn∣x̃n)
is a Dirac’s delta function that, given x̃n, reveals its syndrome. Equivalently, it is a delta
function that reveals the event {x̃n − ŝn ∈ βΛ}; by introducing the trellis state variables σC

k ,
f (ŝn∣x̃n) is found marginalizing
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where χl
j and ℬl

j are the indicator function and the set of reconstruction values relative to the

transition from state j to l, respectively.
In order to increase the independence between the information about X̃ brought by Y and by
Ŝ, the syndrome formation algorithm is operated on a randomly scrambled version of xn, such
that the actual factor graph used in CVS decoding is similar to the one sketched in Fig. 10. At

the m-th iteration, model messages µ
(m)

Z̃
(x̃i) and code messages µ

(m)
C (x̃k) are exchanged between

the upper and the lower part of the factor-graph and viceversa, until they converge to a fixed
value. The final estimate x̂n for xn is given by

x̂i = arg max
x̃i

f (x̃i∣yn) f (ŝn∣x̃i) . (33)

We report some experimental results for the case where Y ∼ 𝒩 (0, σ2
y = 1) and Z is a 3-state

Gaussian Markov process (α = 2). The distortion-rate function obtained with traditional ML
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decoding, with MAP decoding (i.e. considering only one iteration in the decoding process),
and with TURBO decoding (i.e. at convergence) are measured. The syndrome is uniformly
quantized and entropy coded for transmission at the decoder; 1000 sequences of n = 1000
samples each are generated. If the encoder has knowledge about the virtual channel statistics
(i.e. the same model is artificially used for hidden state identification8), the TURBO decoding
algorithm does not perform any better than the MAP decoding algorithm, that in turn was
shown to perform like the ML decoding (at least in the Gaussian case). If a single-state HMM
is used for hidden state identification (i.e. the encoder only knows the average variance of Z),
the MAP decoding performs again like the ML decoding, but TURBO decoding leads to about
one order of magnitude less reconstruction errors, which translate into an up to 3 dB decrease
of the mean error variance (see Fig. 11) at bit-rates R = 3 ÷ 4 bit/sample.

5.3 Video Coding Applications
Traditional video coding standards, e.g. H.264/AVC (ITU-T & ISO/IEC: JTC1/SC29/WG11,
2007), are based on predictive coding for exploiting the high temporal correlation between ad-
jacent frames. This implies that (i) the algorithms used during encoding are computationally
heavy with respect to the ones used at the decoder, and (ii) the coded representation is very
sensible to possible packet losses on the transmission channel. To alleviate these problems, in
order to permit effective video encoding and transmission on wireless and battery-operated
devices, several research groups have recently explored SCSI-based methods for video com-
pression. A review on these methods can be found in (Girod et al., 2005).
In practice, a frame is encoded assuming that some adjacent frames are already available as
SI at the decoder. Hence, (i) the encoding algorithm is more light since it does not exploit the
inter-frame correlation, and (ii) packet losses are not so bad as long as several adjacent frames
are stored at the decoder that can be used as SI.
The CVS method has been applied to video coding in (Cappellari, 2007; Cappellari & Mian,
2006a). In particular, it has been tested in both the discrete cosine transform (DCT) and the dis-
crete wavelet transform (DWT) domain. In both cases, every other frame is sent as an intra-frame
(without referencing any adjacent frame); the remaining ones are sent as inter-frames. The
decoder performs motion compensated interpolation for each couple of consecutive intra-frames

8 There may be still uncertainties about the actual hidden states.
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Fig. 12. Scheme of the proposed DWT-domain CVS-based video coding method and perfor-
mance of different video codecs, averaged on the first 100 frames of the sequence foreman
(QCIF resolution) at 25 frames per second (data relative to intra frames are not taken into
account).

in order to construct the SI for decoding the inter-frame between them. In the DCT case, inter-
frames are partitioned into 8× 8 blocks of pixels and the DCT coefficients corresponding to the
lower spatial frequencies of each block form the signal to be coded relying on co-positioned
coefficients of the SI; the remaining coefficients are sent in intra mode. In the DWT case (see
Fig. 12(a)), the DWT coefficients are classified into the classes intra, inter, and skip, for coef-
ficients that are expected to have little, medium and high correlation with the co-positioned
coefficients of the SI, respectively. Intra coefficients are sent in intra mode, no information is
sent for the skip coefficients (the corresponding SI is taken directly as reconstruction), and the
remaining ones form the signal to be coded using SI.
Classification and correlation estimation are in both cases performed using the block-based
MSE between the inter-frame to be coded and the previous one. These estimates are used
for proper TCQ-based syndrome formation and decoding. Syndromes are quantized with an
embedded uniform quantizer, such that quality scalable reconstruction is achieved at the decoder.
The typical performance of the proposed coders is shown in Fig. 12(b) and compared with
results from (Aaron et al., 2004); the average peak signal-to-noise ratio (PSNR) is reported as a
function of the average transmission rate. The DWT-CVS coder outperforms both the DCT-
CVS coder and one of the coders (Ave-I) from (Aaron et al., 2004), while being very close to the
other solution (MC-I). The superiority of this (turbo code-based) method is probably due to
the utilization of a feedback channel between decoder and encoder for estimation of the actual
SI-source correlation. This solution is very good for this purpose, but also highly unpractical
with respect to correlation estimation at the encoder only.

6. Conclusion and Future Research

In this chapter, we presented the SCSI problem and discussed several practical solutions. Our
main contribution is the coding method based on continuous-valued syndromes, which is an
embodiment of the theoretically optimal superposition coding approach. We showed that this
coding method is very practical due to the separation between channel and source coding.

In particular, we showed that it can be quite performing in the actual scenarios, where for
example the actual source-SI correlation is not exactly known and/or very complex, as in the
case of video coding.
In practice, despite its optimality, the superposition coding approach for SCSI suffers some
performance loss because there are currently no efficient algorithms for source coding over
codes with a “random structure”. Indeed, a good channel code should be used as coarse code,
but all good channel codes have this “random structure” (e.g. turbo codes rely on random
interleaving). Convolutional codes are less performing but are still the best ones for which a
good closest neighbor search algorithm exists. In the future, it may be possible that message-
passing algorithms will be developed that permit quantization over sparse codes that are good
for channel coding; some effort in this direction is discussed in (Ciliberti et al., 2005; Martinian
& Yedidia, 2003).
In the near future, we plan to be more concerned with the problem of correlation estimation
in the actual SCSI scenarios. In fact, all SCSI schemes proposed in literature are usually in-
vestigated under the hypothesis of a toy virtual channel Y = X + Z in which the statistics of
Z is known at the encoder and at the decoder. But in practice the source-SI correlation is not
known and is more complex, so that by using these simple assumptions we incur into some
performance degradation. For example, the performance of the SCSI-based video coders is
still under the one of the traditional coders, at least in the scenarios with no losses on the
transmission channel. We hope that our investigative efforts into statistical model aided de-
coding could be eventually used towards improving the efficacy of SCSI-based coding not
only in video coding applications, but also in several other practical cases.
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in order to construct the SI for decoding the inter-frame between them. In the DCT case, inter-
frames are partitioned into 8× 8 blocks of pixels and the DCT coefficients corresponding to the
lower spatial frequencies of each block form the signal to be coded relying on co-positioned
coefficients of the SI; the remaining coefficients are sent in intra mode. In the DWT case (see
Fig. 12(a)), the DWT coefficients are classified into the classes intra, inter, and skip, for coef-
ficients that are expected to have little, medium and high correlation with the co-positioned
coefficients of the SI, respectively. Intra coefficients are sent in intra mode, no information is
sent for the skip coefficients (the corresponding SI is taken directly as reconstruction), and the
remaining ones form the signal to be coded using SI.
Classification and correlation estimation are in both cases performed using the block-based
MSE between the inter-frame to be coded and the previous one. These estimates are used
for proper TCQ-based syndrome formation and decoding. Syndromes are quantized with an
embedded uniform quantizer, such that quality scalable reconstruction is achieved at the decoder.
The typical performance of the proposed coders is shown in Fig. 12(b) and compared with
results from (Aaron et al., 2004); the average peak signal-to-noise ratio (PSNR) is reported as a
function of the average transmission rate. The DWT-CVS coder outperforms both the DCT-
CVS coder and one of the coders (Ave-I) from (Aaron et al., 2004), while being very close to the
other solution (MC-I). The superiority of this (turbo code-based) method is probably due to
the utilization of a feedback channel between decoder and encoder for estimation of the actual
SI-source correlation. This solution is very good for this purpose, but also highly unpractical
with respect to correlation estimation at the encoder only.

6. Conclusion and Future Research

In this chapter, we presented the SCSI problem and discussed several practical solutions. Our
main contribution is the coding method based on continuous-valued syndromes, which is an
embodiment of the theoretically optimal superposition coding approach. We showed that this
coding method is very practical due to the separation between channel and source coding.

In particular, we showed that it can be quite performing in the actual scenarios, where for
example the actual source-SI correlation is not exactly known and/or very complex, as in the
case of video coding.
In practice, despite its optimality, the superposition coding approach for SCSI suffers some
performance loss because there are currently no efficient algorithms for source coding over
codes with a “random structure”. Indeed, a good channel code should be used as coarse code,
but all good channel codes have this “random structure” (e.g. turbo codes rely on random
interleaving). Convolutional codes are less performing but are still the best ones for which a
good closest neighbor search algorithm exists. In the future, it may be possible that message-
passing algorithms will be developed that permit quantization over sparse codes that are good
for channel coding; some effort in this direction is discussed in (Ciliberti et al., 2005; Martinian
& Yedidia, 2003).
In the near future, we plan to be more concerned with the problem of correlation estimation
in the actual SCSI scenarios. In fact, all SCSI schemes proposed in literature are usually in-
vestigated under the hypothesis of a toy virtual channel Y = X + Z in which the statistics of
Z is known at the encoder and at the decoder. But in practice the source-SI correlation is not
known and is more complex, so that by using these simple assumptions we incur into some
performance degradation. For example, the performance of the SCSI-based video coders is
still under the one of the traditional coders, at least in the scenarios with no losses on the
transmission channel. We hope that our investigative efforts into statistical model aided de-
coding could be eventually used towards improving the efficacy of SCSI-based coding not
only in video coding applications, but also in several other practical cases.
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1. Introduction

Sensor array technique has been widely used for measuring various types of wavefields such
as acoustic waves, mechanical vibrations, and electromagnetic waves (1). A common goal of
array signal processing is estimating locations of sources or separating source signals based
on multiple observations. For obtaining efficient spatial information, the geometrical arrange-
ment of sensors is one of the significant issues in this field. An uniform linear array is the most
popular and fundamental one (2; 3), and suiting with purposes, various types of arrays have
been considered such as circular, planar, cross-shaped, cylindrical, and spherical arrays.
In this chapter, we discuss the sensor arrangements from a new viewpoint: correlation be-
tween channels. Generally, multiply-observed signals have correlation each other, and it be-
comes larger especially in a small-sized array. In the case, observed signals themselves are
not efficient representation due to redundancy between channels. Although they are uncor-
related by appropriate basis transformation, which is corresponding to the diagonalization of
the covariance matrix, it depends on the observed wavefield.
However, in isotropic wavefield, there exist special geometrical sensor arrangements, and
observed signals by them are commonly uncorrelated by a fixed basis transform. The signifi-
cances of isotropic wavefield decorrelation are as follows.

• If there is no a priori knowledge to wavefield, the isotropic assumption is simple and
natural. It means spatial stationarity.

• It is well known that Fourier coefficients of a temporally stationary periodic signal are
uncorrelated each other. The isotropic wavefield decorrelation can be considered as
a spatial version of it and decorrelated components represent something like spatial
spectra.

• The decorrelated representation are also useful for encoding because redundancy be-
tween channels is removed.

• It can be applied for several kinds of estimation methods in isotropic noise field such as
power spectrum estimation (4), noise reduction (5), and inverse filtering (6).

• The isotropy assumption can be valid even if wavefield is disturbed by sensor array
itself. Suppose that microphone array is mounted on a rigid sphere. Although the rigid
sphere disturbs acoustic field, due to the symmetry of sphere, the isotropy is still hold.
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Although our main concern lies on microphone array, this technique can be applied for differ-
ent kinds of wavefield sensing. In the following, we mathematically discuss possible sensor
arrangements for blind decorrelation.

2. Problem Formulation

Let’s consider isotropic wavefield is observed by M sensors. Let xm(t) be a signal observed
by the mth sensor, Xm(ω) be its Fourier transform, and X(ω) = (X1(ω) X2(ω) ⋅ ⋅ ⋅ XM(ω))t

be the vector representation, respectively, where t denotes transpose operation. The isotropic
assumption leads: 1) the power spectrum is the same on each sensor, and 2) the cross spectrum
is determined by only a distance between sensors. Under them, by normalizing diagonal
elements to unit, the covariance matrix V(ω) of the observation vector X(ω) is represented as

V(ω) = E[X(ω)X(ω)h] =

⎛
⎜⎜⎜⎝

1 Γ(r12, ω) ⋅ ⋅ ⋅ Γ(r1n, ω)
Γ(r21, ω) 1 ⋅ ⋅ ⋅ Γ(r2n, ω)

...
...

. . .
...

Γ(rn1, ω) Γ(rn2, ω) ⋅ ⋅ ⋅ 1

⎞
⎟⎟⎟⎠ , (1)

where E[⋅] denotes expectation operation, h denotes Hermite transpose, rij is the distance be-
tween sensor i and j, and Γ(r, ω) represents the spatial coherence function of the wavefield
(3). Under the isotropic assumption, V(ω) is a symmetry matrix since rij = rji. Then, there
exist an orthogonal matrix U for diagonalizing V(ω). Our goal here is to find special sensor
arrangements and corresponding unitary matrices U such that UtV(ω)U is constantly diag-
onal for any coherence function Γ(r, ω). We call this kind of decorrelation blind decorrelation
because we don’t have to know each element of V(ω) and the diagonalization matrix U is
determined by only sensor arrangements. For simplicity, we hereafter omit ω and represents
the covariance matrix of the observation vector by just V.
Intuitively, it seems to be impossible since a diagonalization matrix U generally depends on
the elements of V. But suppose that four sensors are arrayed at vertices of a square. There
are only two distances among the vertices in a square: one is the length of a line L, another is
the length of a diagonal

√
2L. Then, numbering sensors circularly shown in Fig. 1 and letting

a = Γ(L, ω) and b = Γ(
√

2L, ω), the covariance matrix is represented as the following form

V =

⎛
⎜⎜⎝

1 a b a
a 1 a b
b a 1 a
a b a 1

⎞
⎟⎟⎠ (2)

for any ω and any coherence function Γ(r, ω). Since it is a circulant matrix, it is diagonalized
by the fourth order DFT matrix Z4 or its real-valued version Z̃4 defined by

Z̃4 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1
2

cos
2π ⋅ 0 ⋅ 0

4
1√
2

cos
2π ⋅ 1 ⋅ 0

4
1√
2

sin
2π ⋅ 1 ⋅ 0

4
1
2

cos
2π ⋅ 2 ⋅ 0

4
1
2

cos
2π ⋅ 0 ⋅ 1

4
1√
2

cos
2π ⋅ 1 ⋅ 1

4
1√
2

sin
2π ⋅ 1 ⋅ 1

4
1
2

cos
2π ⋅ 2 ⋅ 1

4
1
2

cos
2π ⋅ 0 ⋅ 2

4
1√
2

cos
2π ⋅ 1 ⋅ 2

4
1√
2

sin
2π ⋅ 1 ⋅ 2

4
1
2

cos
2π ⋅ 2 ⋅ 2

4
1
2

cos
2π ⋅ 0 ⋅ 3

4
1√
2

cos
2π ⋅ 1 ⋅ 3

4
1√
2

sin
2π ⋅ 1 ⋅ 3

4
1
2

cos
2π ⋅ 2 ⋅ 3

4

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(3)

=

⎛
⎜⎜⎝

1/2 1/
√

2 0 1/2
1/2 0 1/

√
2 −1/2

1/2 −1/
√

2 0 1/2
1/2 0 −1/

√
2 −1/2

⎞
⎟⎟⎠ (4)

such as

Z̃t
4VZ̃4 =

⎛
⎜⎜⎝

2a + b + 1 0 0 0
0 −b + 1 0 0
0 0 −b + 1 0
0 0 0 −2a + b + 1

⎞
⎟⎟⎠ . (5)

This diagonalization can be performed at any frequency ω because Z̃4 is independent of a and
b. It means the following basis-transformed observations:

y1(t) = x1(t) + x2(t) + x3(t) + x4(t) (6)

y2(t) = x1(t)− x3(t) (7)

y3(t) = x2(t)− x4(t) (8)

y4(t) = x1(t)− x2(t) + x3(t)− x4(t) (9)

are uncorrelated each other in any isotropic field. The problem we concern here is a general-
ization of it.
If UtVU is diagonalized as

UtVU =

⎛
⎜⎜⎜⎝

γ1 0 ⋅ ⋅ ⋅ 0
0 γ2 ⋅ ⋅ ⋅ 0
...

...
. . .

...
0 0 ⋅ ⋅ ⋅ γM

⎞
⎟⎟⎟⎠ , (10)

V is represented as

V = U

⎛
⎜⎜⎜⎝

γ1 0 ⋅ ⋅ ⋅ 0
0 γ2 ⋅ ⋅ ⋅ 0
...

...
. . .

...
0 0 ⋅ ⋅ ⋅ γM

⎞
⎟⎟⎟⎠Ut. (11)

Then, for blind decorrelation, one of the necessary conditions is that V is represented by only
M parameters (γ1 ⋅ ⋅ ⋅ γM) at most. It means there should exist at most M kinds of distances be-
tween sensors. Generally, when sensor arrangement has some symmetry, the number of kinds
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Although our main concern lies on microphone array, this technique can be applied for differ-
ent kinds of wavefield sensing. In the following, we mathematically discuss possible sensor
arrangements for blind decorrelation.

2. Problem Formulation

Let’s consider isotropic wavefield is observed by M sensors. Let xm(t) be a signal observed
by the mth sensor, Xm(ω) be its Fourier transform, and X(ω) = (X1(ω) X2(ω) ⋅ ⋅ ⋅ XM(ω))t

be the vector representation, respectively, where t denotes transpose operation. The isotropic
assumption leads: 1) the power spectrum is the same on each sensor, and 2) the cross spectrum
is determined by only a distance between sensors. Under them, by normalizing diagonal
elements to unit, the covariance matrix V(ω) of the observation vector X(ω) is represented as

V(ω) = E[X(ω)X(ω)h] =

⎛
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1 Γ(r12, ω) ⋅ ⋅ ⋅ Γ(r1n, ω)
Γ(r21, ω) 1 ⋅ ⋅ ⋅ Γ(r2n, ω)
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. . .
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Γ(rn1, ω) Γ(rn2, ω) ⋅ ⋅ ⋅ 1

⎞
⎟⎟⎟⎠ , (1)

where E[⋅] denotes expectation operation, h denotes Hermite transpose, rij is the distance be-
tween sensor i and j, and Γ(r, ω) represents the spatial coherence function of the wavefield
(3). Under the isotropic assumption, V(ω) is a symmetry matrix since rij = rji. Then, there
exist an orthogonal matrix U for diagonalizing V(ω). Our goal here is to find special sensor
arrangements and corresponding unitary matrices U such that UtV(ω)U is constantly diag-
onal for any coherence function Γ(r, ω). We call this kind of decorrelation blind decorrelation
because we don’t have to know each element of V(ω) and the diagonalization matrix U is
determined by only sensor arrangements. For simplicity, we hereafter omit ω and represents
the covariance matrix of the observation vector by just V.
Intuitively, it seems to be impossible since a diagonalization matrix U generally depends on
the elements of V. But suppose that four sensors are arrayed at vertices of a square. There
are only two distances among the vertices in a square: one is the length of a line L, another is
the length of a diagonal

√
2L. Then, numbering sensors circularly shown in Fig. 1 and letting

a = Γ(L, ω) and b = Γ(
√

2L, ω), the covariance matrix is represented as the following form

V =

⎛
⎜⎜⎝

1 a b a
a 1 a b
b a 1 a
a b a 1

⎞
⎟⎟⎠ (2)

for any ω and any coherence function Γ(r, ω). Since it is a circulant matrix, it is diagonalized
by the fourth order DFT matrix Z4 or its real-valued version Z̃4 defined by
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√

2 0 1/2
1/2 0 −1/

√
2 −1/2

⎞
⎟⎟⎠ (4)

such as

Z̃t
4VZ̃4 =

⎛
⎜⎜⎝

2a + b + 1 0 0 0
0 −b + 1 0 0
0 0 −b + 1 0
0 0 0 −2a + b + 1

⎞
⎟⎟⎠ . (5)

This diagonalization can be performed at any frequency ω because Z̃4 is independent of a and
b. It means the following basis-transformed observations:

y1(t) = x1(t) + x2(t) + x3(t) + x4(t) (6)

y2(t) = x1(t)− x3(t) (7)

y3(t) = x2(t)− x4(t) (8)

y4(t) = x1(t)− x2(t) + x3(t)− x4(t) (9)

are uncorrelated each other in any isotropic field. The problem we concern here is a general-
ization of it.
If UtVU is diagonalized as

UtVU =

⎛
⎜⎜⎜⎝

γ1 0 ⋅ ⋅ ⋅ 0
0 γ2 ⋅ ⋅ ⋅ 0
...

...
. . .

...
0 0 ⋅ ⋅ ⋅ γM

⎞
⎟⎟⎟⎠ , (10)

V is represented as

V = U

⎛
⎜⎜⎜⎝

γ1 0 ⋅ ⋅ ⋅ 0
0 γ2 ⋅ ⋅ ⋅ 0
...

...
. . .

...
0 0 ⋅ ⋅ ⋅ γM

⎞
⎟⎟⎟⎠Ut. (11)

Then, for blind decorrelation, one of the necessary conditions is that V is represented by only
M parameters (γ1 ⋅ ⋅ ⋅ γM) at most. It means there should exist at most M kinds of distances be-
tween sensors. Generally, when sensor arrangement has some symmetry, the number of kinds
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of distances between sensors is smaller. But what kind of symmetry the sensor arrangement
should have for blind decorrelation is not trivial. For instance, suppose an argyle arrangement
shown in Fig. 2. An argyle is one of symmetrical shapes and there are three kinds of distances
among sensors. In arranging sensors shown in Fig. 2, the covariance matrix has the following
form:

V =

⎛
⎜⎜⎝

1 a b a
a 1 a c
b a 1 a
a c a 1

⎞
⎟⎟⎠ . (12)

Despite of the symmetry of argyle, there are no matrices U for diagonalizing V in eq. (12)
independent of a, b and c. It can be easily checked as the following (7). V in eq. (12) is
decomposed as

V = I + aP1 + bP2 + cP3 (13)

where I is an identity matrix and

P1 =

⎛
⎜⎜⎝

0 1 0 1
1 0 1 0
0 1 0 1
1 0 1 0

⎞
⎟⎟⎠ , (14)

P2 =

⎛
⎜⎜⎝

0 0 1 0
0 0 0 0
1 0 0 0
0 0 0 0

⎞
⎟⎟⎠ , (15)

P3 =

⎛
⎜⎜⎝

0 0 0 0
0 0 0 1
0 0 0 0
0 1 0 0

⎞
⎟⎟⎠ . (16)

For diagonalizing V by an unitary matrix U independently of a, b and c, it is necessary that
P1, P2 and P3 have to be jointly diagonalized, which is equivalent to the condition that P1, P2
and P3 are commutative each other. However,

P1P2 − P2P1 =

⎛
⎜⎜⎝

0 1 0 1
−1 0 −1 0
0 1 0 1
−1 0 −1 0

⎞
⎟⎟⎠ , (17)

which means P1 and P2 are not commutative. Therefore, there are no matrices U to jointly
diagonalize P1 and P2. More rigorous mathematical discussion is described in (7).

Note that the finding possible sensor arrangements for blind decorrelation includes two kinds
of problems. One is what a matrix represented by several parameters is diagonalized inde-
pendently of the values of the parameters, and the other is whether a corresponding sensor
arrangement to the matrix exists or not. For example,

V =

⎛
⎜⎜⎜⎜⎝

1 a a a a
a 1 a a a
a a 1 a a
a a a 1 a
a a a a 1

⎞
⎟⎟⎟⎟⎠

(18)

is diagonalized by the DFT matrix Z5 independently of a since V in eq. (18) is a kind of
circulant matrix. However, eq. (18) means that each different pair of five sensors has the same
distance, which cannot be realized in 3-D space.

3. Crystal Arrays

3.1 Necessary Condition
First, we begin with the following lemma.

Lemma 1. A necessary condition for V defined by eq. (1) to be diagonalized by an unitary matrix
U for any function Γ(r, ω), is that a set of distances from the sensor i to others: {ri1, ri2, ⋅ ⋅ ⋅ , rin} is
identical for any i.

Proof: If V is diagonalized by an unitary matrix U without dependence on Γ(r, ω), the matrix
In, of which all elements are identical to 1, is also diagonalized by U since In is obtained by
letting Γ(r, ω) = 1. Then, V and In are commutative. From (i, j) element of VIn = InV, we see
that

n

∑
k=1

Γ(ω, rik) =
n

∑
k=1

Γ(ω, rjk) (19)

has to be an identical equation of rijs. It means that a distance set: {rij∣ j = 1, 2, ⋅ ⋅ ⋅ n} must be
identical for any i.

A square arrangement surely satisfies Lemma 1 since a set of distances from the sensor i to
others is represented as {0, L, L,

√
2L}, which is identical to any i (i = 1, 2, 3, 4). While, in an

argyle arrangement, a set of distances is {0, L, L, D1} from the sensor 1, and it is {0, L, L, D2}
from the sensor 2. Thus, an argyle arrangement does’t satisfy Lemma 1.
Lemma 1 directly gives a necessary condition of sensor arrangements for the blind decorre-
lation, but it is not a sufficient condition. Actually, there exist arrangements which satisfies
Lemma 1 but cannot be used for the blind decorrelation. An example is shown in Fig. 3. The
shape is obtained by merging vertices of two triangles with the same center and a different
angle in the same plane, denoted as a bi-triangle.
In a bi-triangle arrangement, there are four kinds of distances between sensors: a short and a
long line, and two kind of diagonals. The corresponding covariance matrix V is represented
by

V =

⎛
⎜⎜⎜⎜⎜⎜⎝

1 a a b c d
a 1 a d b c
a a 1 c d b
b d c 1 a a
c b d a 1 a
d c b a a 1

⎞
⎟⎟⎟⎟⎟⎟⎠

. (20)
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of distances between sensors is smaller. But what kind of symmetry the sensor arrangement
should have for blind decorrelation is not trivial. For instance, suppose an argyle arrangement
shown in Fig. 2. An argyle is one of symmetrical shapes and there are three kinds of distances
among sensors. In arranging sensors shown in Fig. 2, the covariance matrix has the following
form:

V =

⎛
⎜⎜⎝

1 a b a
a 1 a c
b a 1 a
a c a 1

⎞
⎟⎟⎠ . (12)

Despite of the symmetry of argyle, there are no matrices U for diagonalizing V in eq. (12)
independent of a, b and c. It can be easily checked as the following (7). V in eq. (12) is
decomposed as

V = I + aP1 + bP2 + cP3 (13)

where I is an identity matrix and

P1 =

⎛
⎜⎜⎝

0 1 0 1
1 0 1 0
0 1 0 1
1 0 1 0

⎞
⎟⎟⎠ , (14)

P2 =

⎛
⎜⎜⎝

0 0 1 0
0 0 0 0
1 0 0 0
0 0 0 0

⎞
⎟⎟⎠ , (15)

P3 =

⎛
⎜⎜⎝

0 0 0 0
0 0 0 1
0 0 0 0
0 1 0 0

⎞
⎟⎟⎠ . (16)

For diagonalizing V by an unitary matrix U independently of a, b and c, it is necessary that
P1, P2 and P3 have to be jointly diagonalized, which is equivalent to the condition that P1, P2
and P3 are commutative each other. However,

P1P2 − P2P1 =

⎛
⎜⎜⎝

0 1 0 1
−1 0 −1 0
0 1 0 1
−1 0 −1 0

⎞
⎟⎟⎠ , (17)

which means P1 and P2 are not commutative. Therefore, there are no matrices U to jointly
diagonalize P1 and P2. More rigorous mathematical discussion is described in (7).

Note that the finding possible sensor arrangements for blind decorrelation includes two kinds
of problems. One is what a matrix represented by several parameters is diagonalized inde-
pendently of the values of the parameters, and the other is whether a corresponding sensor
arrangement to the matrix exists or not. For example,

V =

⎛
⎜⎜⎜⎜⎝

1 a a a a
a 1 a a a
a a 1 a a
a a a 1 a
a a a a 1

⎞
⎟⎟⎟⎟⎠

(18)

is diagonalized by the DFT matrix Z5 independently of a since V in eq. (18) is a kind of
circulant matrix. However, eq. (18) means that each different pair of five sensors has the same
distance, which cannot be realized in 3-D space.

3. Crystal Arrays

3.1 Necessary Condition
First, we begin with the following lemma.

Lemma 1. A necessary condition for V defined by eq. (1) to be diagonalized by an unitary matrix
U for any function Γ(r, ω), is that a set of distances from the sensor i to others: {ri1, ri2, ⋅ ⋅ ⋅ , rin} is
identical for any i.

Proof: If V is diagonalized by an unitary matrix U without dependence on Γ(r, ω), the matrix
In, of which all elements are identical to 1, is also diagonalized by U since In is obtained by
letting Γ(r, ω) = 1. Then, V and In are commutative. From (i, j) element of VIn = InV, we see
that

n

∑
k=1

Γ(ω, rik) =
n

∑
k=1

Γ(ω, rjk) (19)

has to be an identical equation of rijs. It means that a distance set: {rij∣ j = 1, 2, ⋅ ⋅ ⋅ n} must be
identical for any i.

A square arrangement surely satisfies Lemma 1 since a set of distances from the sensor i to
others is represented as {0, L, L,

√
2L}, which is identical to any i (i = 1, 2, 3, 4). While, in an

argyle arrangement, a set of distances is {0, L, L, D1} from the sensor 1, and it is {0, L, L, D2}
from the sensor 2. Thus, an argyle arrangement does’t satisfy Lemma 1.
Lemma 1 directly gives a necessary condition of sensor arrangements for the blind decorre-
lation, but it is not a sufficient condition. Actually, there exist arrangements which satisfies
Lemma 1 but cannot be used for the blind decorrelation. An example is shown in Fig. 3. The
shape is obtained by merging vertices of two triangles with the same center and a different
angle in the same plane, denoted as a bi-triangle.
In a bi-triangle arrangement, there are four kinds of distances between sensors: a short and a
long line, and two kind of diagonals. The corresponding covariance matrix V is represented
by

V =

⎛
⎜⎜⎜⎜⎜⎜⎝

1 a a b c d
a 1 a d b c
a a 1 c d b
b d c 1 a a
c b d a 1 a
d c b a a 1

⎞
⎟⎟⎟⎟⎟⎟⎠

. (20)
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This arrangement obviously satisfies Lemma 1 since a set of distances from a sensor to others is
identically represented as {0, L1, L2, L2, D1, D2, D2}, but there is no matrices for diagonalizing
U in eq. (20).
Although it is not straightforward from lemma 1 to a specific sensor arrangement, we have
found five classes of sensor arrangements for blind decorrelation up to now (4; 8). According
to the geometrical resemblance with crystals, we call them crystal arrays.

3.2 Five classes of crystal arrays
1) Regular polygons
Let circ denote a circulant matrix as

circ(1, a, b) =

⎛
⎝

1 a b
b 1 a
a b 1

⎞
⎠ . (21)

In arraying sensors on vertices of a n-sided regular polygon, circularly numbering them as
shown in Fig. 4 yields a circulant V = circ(1 a1 a2 ⋅ ⋅ ⋅ a2 a1). As well known, it is diagonalized
by n-th order DFT matrix Zn (9). Note that as a matrix to diagonalize V, we can choose a
real-valued version of Zn as shown in eq. (4), instead of Zn itself, which leads simple basis
transform in time domain discussed in section 2.
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Fig. 4. Regular polygons

2) Rectangular
The second class consists of only a rectangular. Under numbering sensors as shown in Fig. 5,
V has a block-circulant structure as

V =

(
F1 F2
F2 F1

)
, (22)

where F1 and F2 are 2 × 2 circulant matrices. It is diagonalized by U = Z2 ⊗ Z2.

32
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Fig. 5. Rectangular

3) Regular polygonal prisms
The regular polygonal prism arrangement is given by merging vertices of two parallel n-sided
polygons with the same center axis. As the rectangular case, V has a block-circulant structure
as

V =

(
F1 F2
F2 F1

)
, (23)

where F1 and F2 are n × n circulant matrices. It is diagonalized by

U = Zn ⊗ Z2 =

(
Zn Zn
Zn −Zn

)
. (24)

The two parallel n-sided polygon may have a certain different angle, which yields a twisted
prism as shown in Fig. 6. In n = 2, any angles are allowable, which the matrix structure is
invariant for. In n ≥ 3, only the rotation with π/n is allowable, where V becomes simply
circular by alternative numbering in the top and the bottom n-sided polygon as shown in Fig.
6.
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4) Rectangular solid
In related to a rectangular, a rectangular solid forms another class. By numbering sensors
shown in Fig. 7, V has the following structure:

V =

⎛
⎜⎜⎝

F1 F2 F3 F4
F2 F1 F4 F3
F3 F4 F1 F2
F4 F3 F2 F1

⎞
⎟⎟⎠ , (25)
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This arrangement obviously satisfies Lemma 1 since a set of distances from a sensor to others is
identically represented as {0, L1, L2, L2, D1, D2, D2}, but there is no matrices for diagonalizing
U in eq. (20).
Although it is not straightforward from lemma 1 to a specific sensor arrangement, we have
found five classes of sensor arrangements for blind decorrelation up to now (4; 8). According
to the geometrical resemblance with crystals, we call them crystal arrays.

3.2 Five classes of crystal arrays
1) Regular polygons
Let circ denote a circulant matrix as

circ(1, a, b) =

⎛
⎝

1 a b
b 1 a
a b 1

⎞
⎠ . (21)

In arraying sensors on vertices of a n-sided regular polygon, circularly numbering them as
shown in Fig. 4 yields a circulant V = circ(1 a1 a2 ⋅ ⋅ ⋅ a2 a1). As well known, it is diagonalized
by n-th order DFT matrix Zn (9). Note that as a matrix to diagonalize V, we can choose a
real-valued version of Zn as shown in eq. (4), instead of Zn itself, which leads simple basis
transform in time domain discussed in section 2.
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The second class consists of only a rectangular. Under numbering sensors as shown in Fig. 5,
V has a block-circulant structure as

V =

(
F1 F2
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)
, (22)

where F1 and F2 are 2 × 2 circulant matrices. It is diagonalized by U = Z2 ⊗ Z2.
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3) Regular polygonal prisms
The regular polygonal prism arrangement is given by merging vertices of two parallel n-sided
polygons with the same center axis. As the rectangular case, V has a block-circulant structure
as

V =

(
F1 F2
F2 F1

)
, (23)

where F1 and F2 are n × n circulant matrices. It is diagonalized by

U = Zn ⊗ Z2 =

(
Zn Zn
Zn −Zn

)
. (24)

The two parallel n-sided polygon may have a certain different angle, which yields a twisted
prism as shown in Fig. 6. In n = 2, any angles are allowable, which the matrix structure is
invariant for. In n ≥ 3, only the rotation with π/n is allowable, where V becomes simply
circular by alternative numbering in the top and the bottom n-sided polygon as shown in Fig.
6.
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4) Rectangular solid
In related to a rectangular, a rectangular solid forms another class. By numbering sensors
shown in Fig. 7, V has the following structure:

V =

⎛
⎜⎜⎝

F1 F2 F3 F4
F2 F1 F4 F3
F3 F4 F1 F2
F4 F3 F2 F1

⎞
⎟⎟⎠ , (25)
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where Fi (i = 1, 2, 3, 4) are 2× 2 circulant matrices. V itself is not circulant but it has recursively
circulant structure. Hence, it is diagonalized by U = Z2 ⊗ Z2 ⊗ Z2.
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Fig. 7. A rectangular solid

5) Regular polyhedrons
As well known, there are only five polyhedrons in a 3D space: tetrahedron, octahedron, hex-
ahedron, icosahedron, and dodecahedron, and they form the last class. From the viewpoint
of the covariance matrix form, the tetrahedron is a special case of a twisted 2-sided polygo-
nal prism, while the octahedron and the hexahedron are a special case of twisted 3-sided and
4-sided polygonal prisms, respectively. The most difficult cases are given by the icosahedron
and the dodecahedron arrangements.
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Fig. 8. Polyhedrons

An icosahedron has twenty equilateral triangular faces. Let two opposed triangles be the
top and the bottom faces. Then, all vertices lie in four parallel planes. Numbering vertices
circularly in the top plane, and then, from the top to the bottom in order as shown in Fig. 8,
we have

V =

⎛
⎜⎜⎝

F1 F2 F3 F4
F2 F5 F6 F3
F3 F6 F5 F2
F4 F3 F2 F1

⎞
⎟⎟⎠ , (26)

where

F1 = circ(1 a a), F2 = circ(b a a), (27)

F3 = circ(a b b), F4 = circ(c b b), (28)

F5 = circ(1 b b), F6 = circ(c a a). (29)

Unlike the other cases, V doesn’t have the circulant structure. Taking into consideration that
1) Fi (1 ≤ i ≤ 6) is diagonalized by Z3 (the 3rd order DFT matrix) and 2) the block structure is
different between the first, fourth columns and the second, third columns, we assume that U
has the following form:

U =

⎛
⎜⎜⎝

Z3 Z3 Z3 Z3
Z3P3 Z3Q3 −Z3R3 −Z3S3
Z3P3 Z3Q3 Z3R3 Z3S3

Z3 Z3 −Z3 −Z3

⎞
⎟⎟⎠ , (30)

where P3, Q3, R3, and S3 are diagonal matrices. Eq. (30) yields

ZHVZ =

⎛
⎜⎜⎝

K1 A O O
A K2 O O
O O K3 B
O O B K4

⎞
⎟⎟⎠ , (31)

where Ki (1 ≤ i ≤ 4) are diagonal matrices with the size of 3 × 3 and

A = (G1 + G2Q3 + G3Q3 + G4) + P3(G2 + G5Q3 + G6Q3 + G3)

+P3(G3 + G6Q3 + G5Q3 + G2) + (G4 + G3Q3 + G2Q3 + G1), (32)

B = (G1 − G2S3 + G3S3 − G4)− R3(G2 − G5S3 + G6S3 − G3)

+R3(G3 − G6S3 + G5S3 − G2)− (G4 − G3S3 + G2S3 − G1), (33)

G1 = diag(1 + 2a 1 − a 1 − a), (34)

G2 = diag(2a + b b − a b − a), (35)

G3 = diag(a + 2b a − b a − b), (36)

G4 = diag(2b + c c − b c − b), (37)

G5 = diag(1 + 2b 1 − b 1 − b), (38)

G6 = diag(2a + c c − a c − a), (39)

where diag denote a diagonal matrix as

diag(a, b, c) =

⎛
⎝

a 0 0
0 b 0
0 0 c

⎞
⎠ . (40)

From A=0, we have

2(1 + c)(1 + p1q1) + 2(a + b)(2 + 3(p1 + q1) + 2p1q1) = 0, (41)

2(1 + c − a − b)(1 + p2q2) = 0, (42)

2(1 + c − a − b)(1 + p3q3) = 0, (43)
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5) Regular polyhedrons
As well known, there are only five polyhedrons in a 3D space: tetrahedron, octahedron, hex-
ahedron, icosahedron, and dodecahedron, and they form the last class. From the viewpoint
of the covariance matrix form, the tetrahedron is a special case of a twisted 2-sided polygo-
nal prism, while the octahedron and the hexahedron are a special case of twisted 3-sided and
4-sided polygonal prisms, respectively. The most difficult cases are given by the icosahedron
and the dodecahedron arrangements.
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An icosahedron has twenty equilateral triangular faces. Let two opposed triangles be the
top and the bottom faces. Then, all vertices lie in four parallel planes. Numbering vertices
circularly in the top plane, and then, from the top to the bottom in order as shown in Fig. 8,
we have

V =

⎛
⎜⎜⎝

F1 F2 F3 F4
F2 F5 F6 F3
F3 F6 F5 F2
F4 F3 F2 F1

⎞
⎟⎟⎠ , (26)

where

F1 = circ(1 a a), F2 = circ(b a a), (27)

F3 = circ(a b b), F4 = circ(c b b), (28)

F5 = circ(1 b b), F6 = circ(c a a). (29)

Unlike the other cases, V doesn’t have the circulant structure. Taking into consideration that
1) Fi (1 ≤ i ≤ 6) is diagonalized by Z3 (the 3rd order DFT matrix) and 2) the block structure is
different between the first, fourth columns and the second, third columns, we assume that U
has the following form:

U =

⎛
⎜⎜⎝

Z3 Z3 Z3 Z3
Z3P3 Z3Q3 −Z3R3 −Z3S3
Z3P3 Z3Q3 Z3R3 Z3S3

Z3 Z3 −Z3 −Z3

⎞
⎟⎟⎠ , (30)

where P3, Q3, R3, and S3 are diagonal matrices. Eq. (30) yields

ZHVZ =

⎛
⎜⎜⎝

K1 A O O
A K2 O O
O O K3 B
O O B K4

⎞
⎟⎟⎠ , (31)

where Ki (1 ≤ i ≤ 4) are diagonal matrices with the size of 3 × 3 and

A = (G1 + G2Q3 + G3Q3 + G4) + P3(G2 + G5Q3 + G6Q3 + G3)

+P3(G3 + G6Q3 + G5Q3 + G2) + (G4 + G3Q3 + G2Q3 + G1), (32)

B = (G1 − G2S3 + G3S3 − G4)− R3(G2 − G5S3 + G6S3 − G3)

+R3(G3 − G6S3 + G5S3 − G2)− (G4 − G3S3 + G2S3 − G1), (33)

G1 = diag(1 + 2a 1 − a 1 − a), (34)

G2 = diag(2a + b b − a b − a), (35)

G3 = diag(a + 2b a − b a − b), (36)

G4 = diag(2b + c c − b c − b), (37)

G5 = diag(1 + 2b 1 − b 1 − b), (38)

G6 = diag(2a + c c − a c − a), (39)

where diag denote a diagonal matrix as

diag(a, b, c) =

⎛
⎝

a 0 0
0 b 0
0 0 c

⎞
⎠ . (40)

From A=0, we have

2(1 + c)(1 + p1q1) + 2(a + b)(2 + 3(p1 + q1) + 2p1q1) = 0, (41)

2(1 + c − a − b)(1 + p2q2) = 0, (42)

2(1 + c − a − b)(1 + p3q3) = 0, (43)
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where pi and qi (i = 1, 2, 3) are diagonal components of P3 and Q3, respectively. For satisfy-
ing them for any aĄCbĄCand c, there are ambiguities on determining p2, q2, p3, q3 since the
conditions for them are only p2q2 = p3q3 = 1, Determining them the most simply, we choose

p1 = p2 = p3 = 1, (44)

q1 = q2 = q3 = −1. (45)

While, B = 0 yields

2(1 − c)(1 + r1s1) + 2(a − b)(2 − (r1 + s1)− 2r1s1) = 0, (46)

2(1 − c)(1 + r2s2)− 2(a − b)(1 − 2(r2 + s2)− r2s2) = 0, (47)

2(1 − c)(1 + r3s3)− 2(a − b)(1 − 2(r3 + s3)− r3s3) = 0, (48)

where ri and si (i = 1, 2, 3) are diagonal components of R3 and S3, respectively. In the same
way as pi and qi, we have

r1s1 = −1, r1 + s1 = 4, (49)

r2s2 = −1, r2 + s2 = 1, (50)

r3s3 = −1, r3 + s3 = 1. (51)

Solving them,

r1 = γ2
+ + γ+, s1 = γ2

− + γ−, (52)

r2 = r3 = γ+, s2 = s3 = γ−, (53)

where ri and si (i = 1, 2, 3) are diagonal components of R3 and S3, respectively, and

γ+ = (1 +
√

5)/2, γ− = (1 −
√

5)/2. (54)

Consequently,

P3 = diag(1 1 1), (55)

Q3 = −diag(1 1 1), (56)

R3 = diag(γ2
+ + γ+ γ+ γ+), (57)

S3 = diag(γ2
− + γ− γ− γ−), (58)

in eq. (30) gives us U to diagonalize eq. (26).
By the similar numbering to the icosahedron shown in Fig. 8, V in the dodecahedron has the
same block structure as eq. (26) where

F1 = circ(1 a b b a), F2 = circ(a b c c b), (59)

F3 = circ(d c b b c), F4 = circ(e d c c d), (60)

F5 = circ(1 b d d b), F6 = circ(e c a a c). (61)

The form of U is also the same structure as eq. (30), just replacing the subscript 3 by 5, where

P5 = diag(1 γ2
− γ2

+ γ2
+ γ2

−), (62)

Q5 = −diag(1 γ2
+ γ2

− γ2
− γ2

+), (63)

R5 = diag(γ2
+ + γ+ γ+ γ+ γ+ γ+), (64)

S5 = diag(γ2
− + γ− γ− γ− γ− γ−). (65)

4. Conclusions

In this paper, we discussed geometrical sensor arrangements for the blind decorrelation of
isotropic wavefield. Based on a necessary condition, we showed specific five classes of sensor
arrangements: 1) regular polygons, 2) rectangular, 3) regular polygonal prisms, 4) rectangular
solid, and 5) polyhedrons, the first two of which have two dimensional, and other three have
three dimensional geometries, respectively. Specific orthogonal matrices corresponding to the
sensor arrangements are also derived.
Finding all possible sensor arrangements for blind decorrelation is still an open problem and
we are investigating the relationship with the group theory in mathematics, especially, a point
group (10).
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1. Introduction

In recent years, signal matching has been required in many fields. A number of matching
methods have been developed, and an appropriate method should be selected for each ap-
plication in order to obtain the desired performance (1)(2). Phase-only correlation (POC),
phase correlation or PHAse Transform (PHAT) (3)-(17), which is referred to herein as POC,
is a phase-based correlation that is used for various applications, such as delay estimation
(3)(4), motion estimation (5), registration (6)(7), video detection (8)(9), and biometrics authen-
tication (10)(11). Phase-only correlation with Fourier transform was developed as PHAT in
sound/sonar processing literature (3), and POC with discrete Fourier transform was proposed
by Kuglin and Hines (12). The concept of POC is based on the fact that the information related
to the displacement of two signals resides in the phase of the cross spectrum. Combining POC
with various techniques, such as interpolation and curve fitting, provides highly accurate es-
timation (13)-(17). In special cases, the normalized cross spectrum corresponds to the product
of the signs of discrete cosine transform (DCT) coefficients. Previously, we derived this rela-
tionship mathematically and proposed DCT sign phase correlation (DCT-SPC) based on this
relationship (18). DCT-SPC is a phase-based correlation and has properties that are similar to
those of POC.
Images, particularly in the fields of biometrics, medicine, and surveillance camera require
extreme security in order to avoid the risk of identity theft and invasion of privacy (19). Gen-
erally, encrypting and scrambling are used to protect information (20) (21). However, these
protected images require decrypting or descrambling before image matching. In other words,
neither POC nor DCT-SPC can be directly applied to conventional encrypted and scrambled
images. Based on privacy concerns, secure multi-party techniques were applied to vision
algorithms such as Blind Vision in (22). However, in (22), neither the registration nor the
estimation of the geometric relationship between two images was discussed.
In this chapter, for POC and DCT-SPC, we present phase-scrambled signals and a match-
ing method that can be directly applied to phase-scrambled signals without descrambling.
The presented methods are motivated by secure data management. The phase scrambling
distorts only the phase information, which contains significant information of signals. Phase
scrambling protects against the exposure of the information in the signal. Synchronized phase
scrambling yields the relationship between non-scrambled signals. Therefore, POC and DCT-
SPC can be directly applied to phase-scrambled signals. Moreover, the presented scrambling
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(a) conventional templates (b) secure templates by phase scrambling.
Fig. 1. Stored templates for phase-based correlation. (a) Conventional templates: If the tem-
plates in a database were to be stolen, information about the original images would be vulner-
able. (b) Secure templates: A template is stored in either a phase-scrambled coefficients form
or a scrambled phase information form in order to guarantee secure data management. Phase
scrambling prevents templates from putting at risk the information about the original images.

has no effect on image matching. That is, the same accuracy is obtained from phase-scrambled
signals without descrambling (23)(24).
This chapter is organized as follows. In Section 2, we describe the motivations and impor-
tant considerations of the present study. In Section 3, POC and DCT-SPC are explained. In
Section 4, the phase-scrambled signals and image matching for POC are described. We ex-
plain the reason why the POC between phase-scrambled signals has the same accuracy as
that between the non-scrambled signals. In Section 5, the sign phase-scrambled signals and
image matching for DCT-SPC are described. In Section 6, various simulations are presented
for the purpose of confirming the effectiveness and appropriateness of the scrambled signals
and image matching. Finally, Section 7 concludes this chapter.

2. Image matching between visually protected images

Image matching for authentication requires several templates that have been registered previ-
ously. Generally, the management of these templates requires a great deal of labor. Counter-
measures to prevent theft and refusal of cross-references 1 are required. Phase-based correla-
tion uses the phase information of signals. Specifically, POC and DCT-SPC require the phase

1 Templates registered in a particular system being diverted to another system without the permission of
a registrant.
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Fig. 2. Model of template-generation and matching algorithms for secure data management

factors of DFT coefficients (DFT phase factors) and the signs of DCT coefficients (DCT signs)
respectively, for translation estimation. In addition, both correlations require the magnitude
of DFT coefficients for rotation and scaling estimation (6). When the effect of rotation and
scaling are small and can be ignored, only phase information is used for matching. Therefore,
the conventional template for phase-based correlation is stored in either the coefficients in the
transformed domain or in a phase information form. If the template stored in the coefficients
were to be stolen, the information in the original signal may be compromised. Even in the case
of the templates stored in the phase information form, the information in the original signal
may be exposed by the inverse transform of the phase information, as shown in Fig. 1 (a). In
addition, neither the templates stored in the coefficients form nor the phase information form
is considered for cross-referencing. Moreover, the templates stored in either the coefficients
form or the phase information form may be modified or removed. Alternately, new templates
may be introduced to the database. In order to address these problems, we focus on secure
data management.
In this chapter, we present phase-scrambled signals and a matching method for these sig-
nals using POC and DCT-SPC. The presented method is motivated by the need to guarantee
secure data management. The template is stored in either phase-scrambled coefficients or
a scrambled phase information form, as shown in Fig. 1 (b), and the complete information
about the original signal is protected by phase scrambling. In addition, the templates are
used for image matching without descrambling. Synchronized scrambling by the same key
allows estimation of the translated, rotated, and scaled values between an image and the tem-
plate by phase-based correlation. Desynchronized scrambling using different keys prevents
cross-referencing of templates, thereby guaranteeing secure data management. Note that, in
the presented method, phase scrambling has no effect on matching using POC and DCT-SPC.
That is, the estimation value between the phase-scrambled signals is obtained with the same
accuracy as that between non-scrambled signals.
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has no effect on image matching. That is, the same accuracy is obtained from phase-scrambled
signals without descrambling (23)(24).
This chapter is organized as follows. In Section 2, we describe the motivations and impor-
tant considerations of the present study. In Section 3, POC and DCT-SPC are explained. In
Section 4, the phase-scrambled signals and image matching for POC are described. We ex-
plain the reason why the POC between phase-scrambled signals has the same accuracy as
that between the non-scrambled signals. In Section 5, the sign phase-scrambled signals and
image matching for DCT-SPC are described. In Section 6, various simulations are presented
for the purpose of confirming the effectiveness and appropriateness of the scrambled signals
and image matching. Finally, Section 7 concludes this chapter.

2. Image matching between visually protected images

Image matching for authentication requires several templates that have been registered previ-
ously. Generally, the management of these templates requires a great deal of labor. Counter-
measures to prevent theft and refusal of cross-references 1 are required. Phase-based correla-
tion uses the phase information of signals. Specifically, POC and DCT-SPC require the phase

1 Templates registered in a particular system being diverted to another system without the permission of
a registrant.






































key : αi

key : αi

Fig. 2. Model of template-generation and matching algorithms for secure data management

factors of DFT coefficients (DFT phase factors) and the signs of DCT coefficients (DCT signs)
respectively, for translation estimation. In addition, both correlations require the magnitude
of DFT coefficients for rotation and scaling estimation (6). When the effect of rotation and
scaling are small and can be ignored, only phase information is used for matching. Therefore,
the conventional template for phase-based correlation is stored in either the coefficients in the
transformed domain or in a phase information form. If the template stored in the coefficients
were to be stolen, the information in the original signal may be compromised. Even in the case
of the templates stored in the phase information form, the information in the original signal
may be exposed by the inverse transform of the phase information, as shown in Fig. 1 (a). In
addition, neither the templates stored in the coefficients form nor the phase information form
is considered for cross-referencing. Moreover, the templates stored in either the coefficients
form or the phase information form may be modified or removed. Alternately, new templates
may be introduced to the database. In order to address these problems, we focus on secure
data management.
In this chapter, we present phase-scrambled signals and a matching method for these sig-
nals using POC and DCT-SPC. The presented method is motivated by the need to guarantee
secure data management. The template is stored in either phase-scrambled coefficients or
a scrambled phase information form, as shown in Fig. 1 (b), and the complete information
about the original signal is protected by phase scrambling. In addition, the templates are
used for image matching without descrambling. Synchronized scrambling by the same key
allows estimation of the translated, rotated, and scaled values between an image and the tem-
plate by phase-based correlation. Desynchronized scrambling using different keys prevents
cross-referencing of templates, thereby guaranteeing secure data management. Note that, in
the presented method, phase scrambling has no effect on matching using POC and DCT-SPC.
That is, the estimation value between the phase-scrambled signals is obtained with the same
accuracy as that between non-scrambled signals.
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3. Phase-based correlation

Two phase-based correlations, POC and DCT-SPC, are explained. Single-dimensional nota-
tion is used for the sake of brevity. Let C, R, and Z denote the sets of complex, real, and
integer numbers, respectively.

3.1 Phase-only correlation (POC)
Let the N-point DFT of the N-point real signal gi(n), (i = 1, 2) (n = 0, 1, · · · N − 1) be Gi(k),
(k = 0, 1, · · · , N − 1). Gi(k) is expressed in polar form as

Gi(k) = |Gi(k)|ejθik (1)

= |Gi(k)|φGi (k) (2)

where j =
√
−1. The quantities |Gi(k)| and θik are the magnitude and phase, respectively.

φGi (k) = ejθik is referred to as the phase factor.
The normalized cross spectrum is given as

Rφ(k) = φG1 (k) · φ∗
G2
(k), (3)

where φ∗
G2
(k) denotes the complex conjugate of φG2 (k).

The POC is defined as the inverse DFT of Rφ(k) in (10)-(12), i.e.,

rφ(n) =
1
N

N−1

∑
k=0

Rφ(k)W−nk
N , n=0, 1, · · · , N−1, (4)

where WN denotes e−j2π/N . The integer displacement value between signals is estimated
using (4).

3.2 DCT sign phase correlation (DCT-SPC)
Let the N-point DCT of the N-point real signal gi(n) be GiC(k). The DCT-II is defined as

GiC(k) =

√

2
N

Ck

N−1

∑
n=0

gi(n) cos
(

π(n + 1/2)k
N

)

(5)

where

Ck =

{

1/
√

2, k = 0
1, k �= 0

. (6)

GiC(k) is expressed as the absolute value, |GiC(k)|, and the sign, σGi(k), i.e.,

GiC(k) = |GiC(k)|σGi(k). (7)

The DCT sign product is given as

Rσ(k) = σG1 (k) · σG2 (k), k=0, 1, · · · , N−1, (8)

where σGi (k) is the sign of GiC(k). If GiC(k) is zero, σGi (k) is replaced by zero. DCT-SPC is
defined in (18) as

rσ(n) =
1
N

N−1

∑
k=0

KkRσ(k) cos
(

πnk
N

)

, n=0, 1, · · · , N−1 (9)

scrambled
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DFT DFT
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Fig. 3. Images derived from a non-scrambled image and their relationships: The non-
scrambled image is composed of the magnitude |Gi(k1, k2)| and the phase factor φGi (k1, k2),
while the phase-scrambled image is composed of the magnitude | ˜Gi(k1, k2)|, which is identical
to |Gi(k1, k2)|, and the scrambled phase factor ˜φGi (k1, k2).

where Kk is the weight, which is generally given as

Kk = (Ck)
2. (10)

The integer displacement value is estimated using (9). The advantages of DCT-SPC over POC
are computational complexity and memory complexity, because the DCT-SPC uses only the
DCT signs to estimate translation between signals. The translation with non-integer numbers
can be estimated by DCT-SPC with fitting function as well as POC (25).

4. Phase-scrambled signals and matching using POC

4.1 Template-generation and matching algorithms for secure data management
Figure 2 shows a model of the template-generation and matching algorithms. In the template-
generation algorithms, either the DFT or the DCT coefficients of an input image are calculated
and multiplied by the synchronized signs in order to generate the phase-scrambled coeffi-
cients. Either the phase-scrambled coefficients or the scrambled phase information, which
is extracted from the phase-scrambled coefficients, is stored as a template in a database. In
the secure matching algorithms, when a query image, which is not scrambled, is input, the
DFT or the DCT coefficients of the query image are calculated and multiplied by the synchro-
nized signs to generate the phase-scrambled coefficients. The matcher executes phase-based
correlation between the phase-scrambled coefficients and templates.
In this section, we explain scrambled signals for POC and an image-matching method using
POC. We demonstrate that scrambling has no effect on the accuracy of matching.



Phase	Scrambling	for	Image	Matching	in	the	Scrambled	Domain 401

3. Phase-based correlation

Two phase-based correlations, POC and DCT-SPC, are explained. Single-dimensional nota-
tion is used for the sake of brevity. Let C, R, and Z denote the sets of complex, real, and
integer numbers, respectively.

3.1 Phase-only correlation (POC)
Let the N-point DFT of the N-point real signal gi(n), (i = 1, 2) (n = 0, 1, · · · N − 1) be Gi(k),
(k = 0, 1, · · · , N − 1). Gi(k) is expressed in polar form as

Gi(k) = |Gi(k)|ejθik (1)

= |Gi(k)|φGi (k) (2)

where j =
√
−1. The quantities |Gi(k)| and θik are the magnitude and phase, respectively.

φGi (k) = ejθik is referred to as the phase factor.
The normalized cross spectrum is given as

Rφ(k) = φG1 (k) · φ∗
G2
(k), (3)

where φ∗
G2
(k) denotes the complex conjugate of φG2 (k).

The POC is defined as the inverse DFT of Rφ(k) in (10)-(12), i.e.,

rφ(n) =
1
N

N−1

∑
k=0

Rφ(k)W−nk
N , n=0, 1, · · · , N−1, (4)

where WN denotes e−j2π/N . The integer displacement value between signals is estimated
using (4).

3.2 DCT sign phase correlation (DCT-SPC)
Let the N-point DCT of the N-point real signal gi(n) be GiC(k). The DCT-II is defined as

GiC(k) =

√

2
N

Ck

N−1

∑
n=0

gi(n) cos
(

π(n + 1/2)k
N

)

(5)

where

Ck =

{

1/
√

2, k = 0
1, k �= 0

. (6)

GiC(k) is expressed as the absolute value, |GiC(k)|, and the sign, σGi(k), i.e.,

GiC(k) = |GiC(k)|σGi(k). (7)

The DCT sign product is given as

Rσ(k) = σG1 (k) · σG2 (k), k=0, 1, · · · , N−1, (8)

where σGi (k) is the sign of GiC(k). If GiC(k) is zero, σGi (k) is replaced by zero. DCT-SPC is
defined in (18) as

rσ(n) =
1
N

N−1

∑
k=0

KkRσ(k) cos
(

πnk
N

)

, n=0, 1, · · · , N−1 (9)
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Fig. 3. Images derived from a non-scrambled image and their relationships: The non-
scrambled image is composed of the magnitude |Gi(k1, k2)| and the phase factor φGi (k1, k2),
while the phase-scrambled image is composed of the magnitude | ˜Gi(k1, k2)|, which is identical
to |Gi(k1, k2)|, and the scrambled phase factor ˜φGi (k1, k2).

where Kk is the weight, which is generally given as

Kk = (Ck)
2. (10)

The integer displacement value is estimated using (9). The advantages of DCT-SPC over POC
are computational complexity and memory complexity, because the DCT-SPC uses only the
DCT signs to estimate translation between signals. The translation with non-integer numbers
can be estimated by DCT-SPC with fitting function as well as POC (25).

4. Phase-scrambled signals and matching using POC

4.1 Template-generation and matching algorithms for secure data management
Figure 2 shows a model of the template-generation and matching algorithms. In the template-
generation algorithms, either the DFT or the DCT coefficients of an input image are calculated
and multiplied by the synchronized signs in order to generate the phase-scrambled coeffi-
cients. Either the phase-scrambled coefficients or the scrambled phase information, which
is extracted from the phase-scrambled coefficients, is stored as a template in a database. In
the secure matching algorithms, when a query image, which is not scrambled, is input, the
DFT or the DCT coefficients of the query image are calculated and multiplied by the synchro-
nized signs to generate the phase-scrambled coefficients. The matcher executes phase-based
correlation between the phase-scrambled coefficients and templates.
In this section, we explain scrambled signals for POC and an image-matching method using
POC. We demonstrate that scrambling has no effect on the accuracy of matching.
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4.2 Phase-scrambled signals
Let us first consider scrambling of the N-point signal gi(n) for POC. First, N-point signs,
sαi (k), are generated in random order by a random number generator with a key, αi, i.e.,

sαi (k) ∈ {1,−1} (11)

k = 0, 1, · · · , N − 1. (12)

In this chapter, the key corresponds to a seed that initializes the random number generator.
Multiplying the DFT coefficients, Gi(k), of gi(n) by the N-point signs, sαi (k), yields the scram-
bled DFT coefficients ˜Gi(k); i.e.,

˜Gi(k) = Gi(k) · sαi (k) (13)

= Gi(k) · e−j(sαi (k)−1)π/2

= |Gi(k)|ejθik e−j(sαi (k)−1)π/2 (14)

where sαi (k) = e−j(sαi (k)−1)π/2. ˜Gi(k) is expressed in polar form as

˜Gi(k) = | ˜Gi(k)|ej˜θik . (15)

Comparing (14) and (15) yields the relationship between the non-scrambled coefficients and
the phase-scrambled coefficients:

| ˜Gi(k)| = |Gi(k)| (16)

and

˜θik =

{

θik + π, sαi (k) = −1
θik, sαi (k) = 1 . (17)

We can conclude that scrambling has no effect on the magnitude. Therefore, the phase-
scrambled coefficients ˜Gi(k) are expressed in terms of the DFT magnitude, |Gi(k)|, of the
original signal and the scrambled phase factor, ˜φGi (k), as

˜Gi(k) = |Gi(k)|˜φGi (k). (18)

The phase-scrambled signal g̃i(n) is the inverse transform of the phase-scrambled coefficients:

g̃i(n) =
1
N

N−1

∑
k=0

˜Gi(k)W−nk
N . (19)

Let us consider the two-dimensional version of the signals as images. Figure 3 shows the
limited images derived from a non-scrambled image gi(n1, n2), the DFT coefficients of which
are Gi(k1, k2) = |Gi(k1, k2)|φGi (k1, k2). The phase-scrambled image g̃i(n1, n2) protects the
visual information of the non-scrambled image, as shown in Fig. 3 (b). The DFT magnitude
of the non-scrambled image and that of the phase-scrambled image are identical. The phase
factor of the non-scrambled image and that of the phase-scrambled image are different. The
phase-only image gφi (n1, n2), as shown in Fig. 3 (c), which is derived from the phase factors of
the non-scrambled image, exposes information about the non-scrambled image, whereas the

scrambled phase-only image g̃i(n1, n2), as shown in Fig. 3 (d), protects the visual information
about the non-scrambled image.
These limited images are expressed as follows:

gφi (n1, n2) =

1
N2

N−1

∑
k1=0

N−1

∑
k2=0

φGi (k1, k2)W
−n1k1
N W−n2k2

N . (20)

g̃i(n1, n2) =

1
N2

N−1

∑
k1=0

N−1

∑
k2=0

|Gi(k1, k2)|˜φGi (k1, k2)W
−n1k1
N W−n2k2

N . (21)

g̃φi (n1, n2) =

1
N2

N−1

∑
k1=0

N−1

∑
k2=0

˜φGi (k1, k2)W
−n1k1
N W−n2k2

N . (22)

where ˜φGi (k1, k2) denotes the scrambled-phase factor.
The phase-scrambled signal and the phase-scrambled coefficients are the space domain rep-
resentation and the frequency domain representation, respectively. In the following sections,
we generally do not distinguish the phase-scrambled signal from the phase-scrambled coef-
ficients, except where confusion may occur. We refer to the phase-scrambled coefficients as
the phase-scrambled signal for one-dimensional expression or the phase-scrambled image for
two-dimensional expression.

4.3 Matching using POC between phase-scrambled signals
From (3), the normalized cross spectrum, ˜Rφ(k), between ˜φG1 (k) and ˜φG2 (k) is given as

˜Rφ(k) = ˜φG1 (k) · ˜φ∗
G2
(k)

= sα1 (k) · φG1 (k) · s∗α2
(k) · φ∗

G2
(k) (23)

where, if the same key is used, i.e., sα1 (k) = sα2 (k), for any k, then

sα1 (k) · s∗α2
(k) = sα1 (k) · sα2 (k) = 1 (24)

and

˜Rφ(k) = Rφ(k). (25)

If the keys are different, i.e., α1 �= α2, then ˜Rφ(k) �= Rφ(k). We conclude that the normalized
cross spectrum of phase-scrambled signals and that of non-scrambled signals are identical if
the key is the same, and we can therefore obtain the estimation values with the same accuracy.

4.4 Scrambling and image matching steps for POC
4.4.1 Scrambling
Scrambling proceeds as follows:

Step 1 The DFT coefficients are calculated from an image.

Step 2 The signs sαi (k) are generated by a key αi.

Step 3 The DFT coefficients are multiplied by the signs according to (13).
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4.2 Phase-scrambled signals
Let us first consider scrambling of the N-point signal gi(n) for POC. First, N-point signs,
sαi (k), are generated in random order by a random number generator with a key, αi, i.e.,

sαi (k) ∈ {1,−1} (11)

k = 0, 1, · · · , N − 1. (12)

In this chapter, the key corresponds to a seed that initializes the random number generator.
Multiplying the DFT coefficients, Gi(k), of gi(n) by the N-point signs, sαi (k), yields the scram-
bled DFT coefficients ˜Gi(k); i.e.,

˜Gi(k) = Gi(k) · sαi (k) (13)

= Gi(k) · e−j(sαi (k)−1)π/2

= |Gi(k)|ejθik e−j(sαi (k)−1)π/2 (14)

where sαi (k) = e−j(sαi (k)−1)π/2. ˜Gi(k) is expressed in polar form as

˜Gi(k) = | ˜Gi(k)|ej˜θik . (15)

Comparing (14) and (15) yields the relationship between the non-scrambled coefficients and
the phase-scrambled coefficients:

| ˜Gi(k)| = |Gi(k)| (16)

and

˜θik =

{

θik + π, sαi (k) = −1
θik, sαi (k) = 1 . (17)

We can conclude that scrambling has no effect on the magnitude. Therefore, the phase-
scrambled coefficients ˜Gi(k) are expressed in terms of the DFT magnitude, |Gi(k)|, of the
original signal and the scrambled phase factor, ˜φGi (k), as

˜Gi(k) = |Gi(k)|˜φGi (k). (18)

The phase-scrambled signal g̃i(n) is the inverse transform of the phase-scrambled coefficients:

g̃i(n) =
1
N

N−1

∑
k=0

˜Gi(k)W−nk
N . (19)

Let us consider the two-dimensional version of the signals as images. Figure 3 shows the
limited images derived from a non-scrambled image gi(n1, n2), the DFT coefficients of which
are Gi(k1, k2) = |Gi(k1, k2)|φGi (k1, k2). The phase-scrambled image g̃i(n1, n2) protects the
visual information of the non-scrambled image, as shown in Fig. 3 (b). The DFT magnitude
of the non-scrambled image and that of the phase-scrambled image are identical. The phase
factor of the non-scrambled image and that of the phase-scrambled image are different. The
phase-only image gφi (n1, n2), as shown in Fig. 3 (c), which is derived from the phase factors of
the non-scrambled image, exposes information about the non-scrambled image, whereas the

scrambled phase-only image g̃i(n1, n2), as shown in Fig. 3 (d), protects the visual information
about the non-scrambled image.
These limited images are expressed as follows:

gφi (n1, n2) =

1
N2

N−1

∑
k1=0

N−1

∑
k2=0

φGi (k1, k2)W
−n1k1
N W−n2k2

N . (20)

g̃i(n1, n2) =

1
N2

N−1

∑
k1=0

N−1

∑
k2=0

|Gi(k1, k2)|˜φGi (k1, k2)W
−n1k1
N W−n2k2

N . (21)

g̃φi (n1, n2) =

1
N2

N−1

∑
k1=0

N−1

∑
k2=0

˜φGi (k1, k2)W
−n1k1
N W−n2k2

N . (22)

where ˜φGi (k1, k2) denotes the scrambled-phase factor.
The phase-scrambled signal and the phase-scrambled coefficients are the space domain rep-
resentation and the frequency domain representation, respectively. In the following sections,
we generally do not distinguish the phase-scrambled signal from the phase-scrambled coef-
ficients, except where confusion may occur. We refer to the phase-scrambled coefficients as
the phase-scrambled signal for one-dimensional expression or the phase-scrambled image for
two-dimensional expression.

4.3 Matching using POC between phase-scrambled signals
From (3), the normalized cross spectrum, ˜Rφ(k), between ˜φG1 (k) and ˜φG2 (k) is given as

˜Rφ(k) = ˜φG1 (k) · ˜φ∗
G2
(k)

= sα1 (k) · φG1 (k) · s∗α2
(k) · φ∗

G2
(k) (23)

where, if the same key is used, i.e., sα1 (k) = sα2 (k), for any k, then

sα1 (k) · s∗α2
(k) = sα1 (k) · sα2 (k) = 1 (24)

and

˜Rφ(k) = Rφ(k). (25)

If the keys are different, i.e., α1 �= α2, then ˜Rφ(k) �= Rφ(k). We conclude that the normalized
cross spectrum of phase-scrambled signals and that of non-scrambled signals are identical if
the key is the same, and we can therefore obtain the estimation values with the same accuracy.

4.4 Scrambling and image matching steps for POC
4.4.1 Scrambling
Scrambling proceeds as follows:

Step 1 The DFT coefficients are calculated from an image.

Step 2 The signs sαi (k) are generated by a key αi.

Step 3 The DFT coefficients are multiplied by the signs according to (13).
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Fig. 4. Images derived from a non-scrambled image and their DCT relationships: The non-
scrambled image is composed of the absolute value |GC(k1, k2)| of DCT coefficients and the
DCT signs σGi (k1, k2), while the sign phase-scrambled image is composed of the absolute
value |˜GCi(k1, k2)|, which is identical to |GCi(k1, k2)|, and the scrambled DCT signs σ̃Gi (k1, k2).

4.4.2 Image matching for translation
Image matching using POC for estimating translation between a query and a template is ac-
complished according to the following steps:

Step 1 The query is scrambled by the signs that are used for scrambling of the template.

Step 2 The DFT phase factors are extracted.

Step 3 The normalized cross spectrum is calculated using (3).

Step 4 The inverse DFT is applied to the result of Step 3 using (4).

Scrambling has no effect on the accuracy of image matching, because the effect of scrambling
is canceled when the normalized cross spectrum is calculated.

4.4.3 Image matching for rotation and scaling
The DFT magnitude is used for the estimation of the rotated and scaled values between images
(6). The phase scrambled method does not distort the DFT magnitude. Therefore, the DFT
magnitude can be directly used for estimation. The steps for phase-scrambled images are the
same as those for non-scrambled images.

5. Sign phase-scrambled signals and DCT-SPC

In this section, we explain sign phase-scrambled signals and their matching for DCT-SPC.
The DCT signs express the phases of signals in the transform domain (18). We show that
scrambling has no effect on the accuracy of image matching.

5.1 Sign phase-scrambled signal
Let us consider sign phase scrambling of gi(n) for DCT-SPC. Multiplying sαi (k) in (17) by
GCi(k) yields the sign phase-scrambled DCT coefficients, ˜GCi(k), i.e.,

˜GCi(k) = GCi(k) · sαi (k)
= |GCi(k)|σGi (k) · sαi (k) (26)

= |˜GCi(k)|σ̃Gi (k) (27)

where the quantities |˜GCi(k)| and σ̃Gi (k) are the absolute value and sign, respectively. Com-
bining (26) and (27) gives the quantitative relationships between the sign phase-scrambled
DCT coefficients, ˜GCi(k), and the non-scrambled DCT coefficients, GCi(k):

|˜GCi(k)| = |GCi(k)| (28)

and

σ̃Gi (k) = σGi (k) · sαi (k). (29)

Therefore, the sign phase-scrambled DCT coefficient, ˜GCi(k), is expressed in terms of the ab-
solute value, |GCi(k)|, of the non-scrambled signal and the scrambled DCT sign, σ̃Gi (k), as

˜GCi(k) = |GCi(k)|σ̃Gi (k) (30)

The sign phase-scrambled signal is the inverse transform of the sign phase-scrambled DCT
coefficients, i.e.,

g̃Ci (n) =

√

2
N

N−1

∑
k=0

Ck|GCi (k)|σ̃Gi (k) cos

(

π(n + 1
2 )k

N

)

. (31)

The sign phase-scrambled signals are real numbers. The DCT-SPC uses the DCT signs, which
are extracted from the transform of the sign phase-scrambled signals.
Figure 4 shows the images derived from a non-scrambled image, as shown in Fig. 4 (a), and
the relationships between these images. As shown in Fig. 4 (b), the sign phase-scrambled
image protects the information about the non-scrambled image. The DCT signs of the non-
scrambled image and that of the sign phase-scrambled image are different. The sign-only
image, as shown in Fig. 4 (c), which is derived from the DCT signs of the non-scrambled
image, exposes the information of the non-scrambled image, while the scrambled sign-only
image, as shown in Fig. 4 (d), protects the information about the non-scrambled image.

5.2 Matching using DCT-SPC between sign-scrambled signals
In the case of the sign phase-scrambled DCT coefficients, the DCT sign product is also invari-
ant if the same key is used. From (8), the DCT sign product, ˜Rσ(k), between σ̃G1 (k) and σ̃G2 (k)
is given as

R̃σ(k) = σ̃G1 (k) · σ̃G2 (k). (32)

From (8),

R̃σ(k) = σG1 (k)sα1 (k) · σG2 (k)sα2 (k). (33)
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Fig. 4. Images derived from a non-scrambled image and their DCT relationships: The non-
scrambled image is composed of the absolute value |GC(k1, k2)| of DCT coefficients and the
DCT signs σGi (k1, k2), while the sign phase-scrambled image is composed of the absolute
value |˜GCi(k1, k2)|, which is identical to |GCi(k1, k2)|, and the scrambled DCT signs σ̃Gi (k1, k2).

4.4.2 Image matching for translation
Image matching using POC for estimating translation between a query and a template is ac-
complished according to the following steps:

Step 1 The query is scrambled by the signs that are used for scrambling of the template.

Step 2 The DFT phase factors are extracted.

Step 3 The normalized cross spectrum is calculated using (3).

Step 4 The inverse DFT is applied to the result of Step 3 using (4).

Scrambling has no effect on the accuracy of image matching, because the effect of scrambling
is canceled when the normalized cross spectrum is calculated.

4.4.3 Image matching for rotation and scaling
The DFT magnitude is used for the estimation of the rotated and scaled values between images
(6). The phase scrambled method does not distort the DFT magnitude. Therefore, the DFT
magnitude can be directly used for estimation. The steps for phase-scrambled images are the
same as those for non-scrambled images.

5. Sign phase-scrambled signals and DCT-SPC

In this section, we explain sign phase-scrambled signals and their matching for DCT-SPC.
The DCT signs express the phases of signals in the transform domain (18). We show that
scrambling has no effect on the accuracy of image matching.

5.1 Sign phase-scrambled signal
Let us consider sign phase scrambling of gi(n) for DCT-SPC. Multiplying sαi (k) in (17) by
GCi(k) yields the sign phase-scrambled DCT coefficients, ˜GCi(k), i.e.,

˜GCi(k) = GCi(k) · sαi (k)
= |GCi(k)|σGi (k) · sαi (k) (26)

= |˜GCi(k)|σ̃Gi (k) (27)

where the quantities |˜GCi(k)| and σ̃Gi (k) are the absolute value and sign, respectively. Com-
bining (26) and (27) gives the quantitative relationships between the sign phase-scrambled
DCT coefficients, ˜GCi(k), and the non-scrambled DCT coefficients, GCi(k):

|˜GCi(k)| = |GCi(k)| (28)

and

σ̃Gi (k) = σGi (k) · sαi (k). (29)

Therefore, the sign phase-scrambled DCT coefficient, ˜GCi(k), is expressed in terms of the ab-
solute value, |GCi(k)|, of the non-scrambled signal and the scrambled DCT sign, σ̃Gi (k), as

˜GCi(k) = |GCi(k)|σ̃Gi (k) (30)

The sign phase-scrambled signal is the inverse transform of the sign phase-scrambled DCT
coefficients, i.e.,

g̃Ci (n) =

√

2
N

N−1

∑
k=0

Ck|GCi (k)|σ̃Gi (k) cos

(

π(n + 1
2 )k

N

)

. (31)

The sign phase-scrambled signals are real numbers. The DCT-SPC uses the DCT signs, which
are extracted from the transform of the sign phase-scrambled signals.
Figure 4 shows the images derived from a non-scrambled image, as shown in Fig. 4 (a), and
the relationships between these images. As shown in Fig. 4 (b), the sign phase-scrambled
image protects the information about the non-scrambled image. The DCT signs of the non-
scrambled image and that of the sign phase-scrambled image are different. The sign-only
image, as shown in Fig. 4 (c), which is derived from the DCT signs of the non-scrambled
image, exposes the information of the non-scrambled image, while the scrambled sign-only
image, as shown in Fig. 4 (d), protects the information about the non-scrambled image.

5.2 Matching using DCT-SPC between sign-scrambled signals
In the case of the sign phase-scrambled DCT coefficients, the DCT sign product is also invari-
ant if the same key is used. From (8), the DCT sign product, ˜Rσ(k), between σ̃G1 (k) and σ̃G2 (k)
is given as

R̃σ(k) = σ̃G1 (k) · σ̃G2 (k). (32)

From (8),

R̃σ(k) = σG1 (k)sα1 (k) · σG2 (k)sα2 (k). (33)
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If the same key is used, we obtain the same result under scrambling, i.e.,

˜Rσ(k) = Rσ(k). (34)

If the keys are different, the result is ˜Rσ(k) �= Rσ(k). This can help prevent illegal use of the
image matching.
We can thus conclude that there is no effect of scrambling on registration accuracy.

5.3 Scrambling and image matching steps for DCT-SPC
5.3.1 Sign phase scrambling
Scrambling proceeds as follows:

Step 1 The DCT coefficients are calculated from an image.

Step 2 The signs sαi (k) are generated by a key αi.

Step 3 The DCT coefficients are multiplied by the signs sαi (k) according to (26).

5.3.2 Image matching for translation
Image matching using DCT-SPC for estimating translation between a query and a template is
accomplished according to the following steps:

Step 1 The query is scrambled by the signs that are used for scrambling of the template.

Step 2 The DCT signs are extracted.

Step 3 The DCT sign product is calculated using (8).

Step 4 The inverse transform is applied to the result of Step 3 using (9).

Scrambling does not affect the accuracy of image matching, because the effect of scrambling
is canceled when the DCT sign product is calculated.

6. SIMULATION

6.1 Translation (synchronized phase scrambling)
Translation estimation experiments were performed using non-scrambled images and syn-
chronized phase-scrambled images. Figure 5 shows the test images: (a) is a 256 × 256 non-
scrambled image, (b) is the shifted image of (a) by 20 pixels in both the horizontal and vertical
directions, and (c) and (d) are the phase-scrambled images of (a) and (b), respectively. Note
that the phase-scrambled images were generated with the same key, which initializes the ran-
dom number generator, i.e., α1 = α2, sα1 (k) = sα2 (k), for any k. We refer to the use of the same
key as synchronized phase scrambling. We executed POC between the two non-scrambled
images, (a) and (b), and POC between the two phase-scrambled images, (c) and (d), as shown
in Fig. 5. Figure 6 shows that the POC surface between phase-scrambled images in (21) was
the same as the POC surface between non-scrambled images in the case of synchronized phase
scrambling. Phase scrambling has no effect on the accuracy of image matching.
We also performed DCT-SPC between the two non-scrambled images and DCT-SPC between
the corresponding sign phase-scrambled images. Note that the sign phase-scrambled images
were generated using the same key. Figure 7 shows the DCT-SPC surface between sign phase-
scrambled images and that between non-scrambled images. Sign phase scrambling was con-
firmed to have no effect on the accuracy of image matching.

We also confirmed the estimation of translation with subpixel accuracy. The same accuracy
was obtained for phase-scrambled images as that for non-scrambled images. (Details are omit-
ted due to space limitations.)

(a) original image (b) shifted image

(c) phase-scrambled (d) phase-scrambled
image of (a) image of (b)

Fig. 5. Test images (256 × 256): (a) is the original image, and (b) is the shifted image of (a). (c)
and (d) are the phase-scrambled images of (a) and (b), respectively.



Phase	Scrambling	for	Image	Matching	in	the	Scrambled	Domain 407

If the same key is used, we obtain the same result under scrambling, i.e.,

˜Rσ(k) = Rσ(k). (34)

If the keys are different, the result is ˜Rσ(k) �= Rσ(k). This can help prevent illegal use of the
image matching.
We can thus conclude that there is no effect of scrambling on registration accuracy.

5.3 Scrambling and image matching steps for DCT-SPC
5.3.1 Sign phase scrambling
Scrambling proceeds as follows:

Step 1 The DCT coefficients are calculated from an image.

Step 2 The signs sαi (k) are generated by a key αi.

Step 3 The DCT coefficients are multiplied by the signs sαi (k) according to (26).

5.3.2 Image matching for translation
Image matching using DCT-SPC for estimating translation between a query and a template is
accomplished according to the following steps:

Step 1 The query is scrambled by the signs that are used for scrambling of the template.

Step 2 The DCT signs are extracted.

Step 3 The DCT sign product is calculated using (8).

Step 4 The inverse transform is applied to the result of Step 3 using (9).

Scrambling does not affect the accuracy of image matching, because the effect of scrambling
is canceled when the DCT sign product is calculated.

6. SIMULATION

6.1 Translation (synchronized phase scrambling)
Translation estimation experiments were performed using non-scrambled images and syn-
chronized phase-scrambled images. Figure 5 shows the test images: (a) is a 256 × 256 non-
scrambled image, (b) is the shifted image of (a) by 20 pixels in both the horizontal and vertical
directions, and (c) and (d) are the phase-scrambled images of (a) and (b), respectively. Note
that the phase-scrambled images were generated with the same key, which initializes the ran-
dom number generator, i.e., α1 = α2, sα1 (k) = sα2 (k), for any k. We refer to the use of the same
key as synchronized phase scrambling. We executed POC between the two non-scrambled
images, (a) and (b), and POC between the two phase-scrambled images, (c) and (d), as shown
in Fig. 5. Figure 6 shows that the POC surface between phase-scrambled images in (21) was
the same as the POC surface between non-scrambled images in the case of synchronized phase
scrambling. Phase scrambling has no effect on the accuracy of image matching.
We also performed DCT-SPC between the two non-scrambled images and DCT-SPC between
the corresponding sign phase-scrambled images. Note that the sign phase-scrambled images
were generated using the same key. Figure 7 shows the DCT-SPC surface between sign phase-
scrambled images and that between non-scrambled images. Sign phase scrambling was con-
firmed to have no effect on the accuracy of image matching.

We also confirmed the estimation of translation with subpixel accuracy. The same accuracy
was obtained for phase-scrambled images as that for non-scrambled images. (Details are omit-
ted due to space limitations.)

(a) original image (b) shifted image

(c) phase-scrambled (d) phase-scrambled
image of (a) image of (b)

Fig. 5. Test images (256 × 256): (a) is the original image, and (b) is the shifted image of (a). (c)
and (d) are the phase-scrambled images of (a) and (b), respectively.
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Fig. 6. Estimation of translation using POC: (a) is the POC surface between the non-scrambled
images, and (b) is the POC surface between the phase-scrambled images. (a) and (b) are
identical, and an acute peak appears at the location expressing the translational displacement.
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Fig. 7. Estimation of translation using DCT-SPC: (a) is the DCT-SPC surface between the non-
scrambled images, and (b) is the DCT-SPC surface between the sign phase-scrambled images.
(a) and (b) are identical, and an acute peak appears at the location expressing the translational
displacement.

6.2 Effect of noise on image matching (synchronized phase scrambling)
Figure 8 shows the effect of noise on image matching. The test image is shown in Fig. 5 (a),
and the shifted image is shown in Fig. 5 (b). First, the noise, which consisted of Gaussian
random numbers with zero mean and a standard deviation of 25, was added to the shifted
image in the space domain. Figure 8 (a) shows the POC surface between the image and the
shifted image with noise. Compared with Fig. 6 (a), the effect of noise on the POC surface is
clear.
Next, we scrambled these two images and performed POC. Figure 8 (b) shows the results. We
confirmed that (a) and (b) in Fig. 8 were identical. We can conclude that scrambling has no
effect on image matching.
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6.2 Effect of noise on image matching (synchronized phase scrambling)
Figure 8 shows the effect of noise on image matching. The test image is shown in Fig. 5 (a),
and the shifted image is shown in Fig. 5 (b). First, the noise, which consisted of Gaussian
random numbers with zero mean and a standard deviation of 25, was added to the shifted
image in the space domain. Figure 8 (a) shows the POC surface between the image and the
shifted image with noise. Compared with Fig. 6 (a), the effect of noise on the POC surface is
clear.
Next, we scrambled these two images and performed POC. Figure 8 (b) shows the results. We
confirmed that (a) and (b) in Fig. 8 were identical. We can conclude that scrambling has no
effect on image matching.
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Fig. 8. POC with noise: Gaussian random number with zero mean and a standard deviation
of 25. (a) and (b) are identical.

6.3 Translation (desynchronized phase scrambling)
Translation estimation experiments were performed between the desynchronized phase-
scrambled images and desynchronized sign phase-scrambled images. That is, the phase-
scrambled images were generated with different keys, i.e., α1 �= α2. The sign phase-scrambled
images were also generated with different keys, i.e., α1 �= α2. Figure 9 shows both the
POC surface between phase-scrambled images and the DCT-SPC surface between sign phase-
scrambled images. A distinct peak expressing the translational displacement did not appear
on either the POC surface and the DCT-SPC surface. The properties of phase-scrambled im-
ages with different keys provides a countermeasure against cross-referencing.
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Fig. 9. Estimation of translation with different key, α1 �= α2 (a) is the POC surface between
phase-scrambled images with different keys, (b) is the DCT-SPC surface between sign phase-
scrambled images with different keys. A distinct peak expressing the translational displace-
ment did not appear in (a) or (b).

6.4 Rotation and Scaling
Rotated and scaled values are generally estimated using the DFT magnitude. This is based
on the fact that the DFT magnitude contains information related to the rotated and scaled
values, which are independent of translation. Note that the log-polar transform is applied to
the DFT magnitude in order to reduce the rotated and scaled values to vertical and horizontal
translations, respectively (6).
The rotated and scaled values between two images, as shown in Fig. 10, were estimated under
two conditions: non-scrambling and phase scrambling with the same key. We confirmed that
the POC surface between phase-scrambled images with the same key and that between non-
scrambled images were identical. This result is trivial, however, because the presented phase
scrambling does not distort the DFT magnitude, as shown in (16).
The phase scrambling does not affect the image matching, and we can perform image match-
ing without descrambling.
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Translation estimation experiments were performed between the desynchronized phase-
scrambled images and desynchronized sign phase-scrambled images. That is, the phase-
scrambled images were generated with different keys, i.e., α1 �= α2. The sign phase-scrambled
images were also generated with different keys, i.e., α1 �= α2. Figure 9 shows both the
POC surface between phase-scrambled images and the DCT-SPC surface between sign phase-
scrambled images. A distinct peak expressing the translational displacement did not appear
on either the POC surface and the DCT-SPC surface. The properties of phase-scrambled im-
ages with different keys provides a countermeasure against cross-referencing.
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ment did not appear in (a) or (b).

6.4 Rotation and Scaling
Rotated and scaled values are generally estimated using the DFT magnitude. This is based
on the fact that the DFT magnitude contains information related to the rotated and scaled
values, which are independent of translation. Note that the log-polar transform is applied to
the DFT magnitude in order to reduce the rotated and scaled values to vertical and horizontal
translations, respectively (6).
The rotated and scaled values between two images, as shown in Fig. 10, were estimated under
two conditions: non-scrambling and phase scrambling with the same key. We confirmed that
the POC surface between phase-scrambled images with the same key and that between non-
scrambled images were identical. This result is trivial, however, because the presented phase
scrambling does not distort the DFT magnitude, as shown in (16).
The phase scrambling does not affect the image matching, and we can perform image match-
ing without descrambling.
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(a) original image (b) rotated image, (c) scaled image,
angle: 15◦. scale factor: 1.2

Fig. 10. Estimation of the rotated and scaled values. Log-polar transform is used to reduce
rotated and scaled values to translational values (6).

7. Conclusion

The presented scrambling enables image matching using invisible images. In addition, im-
age matching between phase-scrambled images is performed with the same accuracy as that
between non-scrambled images. We have explained how to generate phase-scrambled sig-
nals that protect the information in the original image and demonstrated that the presented
synchronized phase-scrambling maintains the relative relationship between two signals math-
ematically. We have shown that the presented scrambling is applicable to both DFT and DCT
coefficients, and therefore secure image matching for phase-based correlation is achieved.
In particular, DCT-SPC is closely related to the image compression method. Application of
the presented scrambling in areas such as image communications and image compression
appears promising.
In the presented scrambling, the management of keys depends on desired systems. Mean-
while, for visual protection, there is one-time key based phase scrambling which does not
require the management of keys (26; 27).
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angle: 15◦. scale factor: 1.2

Fig. 10. Estimation of the rotated and scaled values. Log-polar transform is used to reduce
rotated and scaled values to translational values (6).

7. Conclusion

The presented scrambling enables image matching using invisible images. In addition, im-
age matching between phase-scrambled images is performed with the same accuracy as that
between non-scrambled images. We have explained how to generate phase-scrambled sig-
nals that protect the information in the original image and demonstrated that the presented
synchronized phase-scrambling maintains the relative relationship between two signals math-
ematically. We have shown that the presented scrambling is applicable to both DFT and DCT
coefficients, and therefore secure image matching for phase-based correlation is achieved.
In particular, DCT-SPC is closely related to the image compression method. Application of
the presented scrambling in areas such as image communications and image compression
appears promising.
In the presented scrambling, the management of keys depends on desired systems. Mean-
while, for visual protection, there is one-time key based phase scrambling which does not
require the management of keys (26; 27).
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1. Introduction

A significant number of the algorithms that are currently employed in commercially available
single-channel speech enhancement products are waveform filtering based methods. Waveform
filtering implies that an appropriately chosen filter1 is applied to the incoming noisy speech
data in order to change or smooth the shape the resulting filtered waveform. The objective
of the filtering is usually to either improve the perceptual quality of the output -or- to improve
the recognition rate of a subsequently used speech recognition system. Prominent examples
of waveform processing are the Wiener filtering extensions proposed by McAulay & Malpass
(1980) and Ephraim & Malah (1984). Other examples include schemes that employ wavelets
by Hu & Loizou (2004) and modifications of the iterative Wiener filter and the Kalman filter by
Mouchtaris et al. (2007). Also related are the spectral subtraction method developed by Boll
in 1979 (see the text by Deller et al. (1993)) and its powerful extension, the multiband spectral
subtraction described in the text by Loizou (2007).
The success of many waveform filtering based methods is due to their relative (computational)
simplicity and robustness. A disadvantage of filtering based methods, however, is that they
are never able to completely remove the noise. They are usually aiming to achieve a reasonable
tradeoff between a desired reduction of the noise and an undesired but inadvertent distortion
of the targeted signal.
The search for a denoising paradigm that, at least in theory, allows for potentially “perfect”
enhancement has motivated many researchers to study model based denoising methods. In
model based denoising a parametric model for a speech signal (which may be determinis-
tic or stochastic in nature) is used instead of a general waveform model. A popular choice

1 The employed filters are typically linear but potentially time-variant.
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for a speech model in this context is the harmonic plus noise model (HNM) which was studied
amongst others by Zavarehei et al. (2007). Related is also the work by Zhao & Kleijn (2007)
on the modelling and estimation of speech and noise gains via hidden Markov models. Code-
books of linear predictive coefficients and their employment for speech denoising within a
maximum-likelihood framework were studied by Srinivasan et al. (2006). A minimum mean
square error approach for denoising that relies on a combined stochastic and deterministic
speech model was studied by Hendriks et al. (2007).
The model based speech denoising method discussed in this chapter was proposed by Xiao
et al. (Aug. 2008) and (Apr. 2009). It is inspired by the increasing success of inventory based
speech synthesis systems as discussed in a review paper by O’Shaughnessy (2007). In this work it
is assumed that speaker enrollment and noise enrollment are feasible. The speaker enrollment
procedure provides training data that can be appropriately clustered and used as an inventory
for a “clean” speech signal model. The inventory based denoising is supported by a statistical
analysis of the speech signal under clean and noisy conditions.
One of the disadvantages of this method in comparison to other model based approaches is
its high computational complexity. The procedure requires, in its originally proposed form,
a very large number of floating point multiplications. The bottleneck of the procedure can
be found in correlation operations that need to be carried out over large data records. In this
chapter we are describing a modification of the original approach that incorporates a fast al-
gorithm for the denoising stage. The proposed method substantially reduces the amount of
necessary multiplications via the employment of a set of number theoretic transforms (NTTs,
Blahut (1987)). Number theoretic transforms allow the computation of correlations in fixed-
point arithmetic with a substantial reduction in multiplications. However, NTTs come gener-
ally at the expense of reduced computational accuracy due to the required signal quantization.
We present an approach that balances a dramatic reduction in computational complexity with
only a very slight reduction in perceptual denoising performance.
The chapter is divided into two main sections. Section 2 provides a summary of the proposed
denoising paradigm. A full and detailed description of the method is beyond the scope of this
chapter. The interested reader will find it in the two papers by Xiao et al. (Aug. 2008) and
(Apr. 2009). Section 3 focuses explicitly on the parts of the procedure that can be improved
with a fast algorithm.

2. The Denoising Paradigm

The method proposed by Xiao et al. (Apr. 2009) can be divided into three main tasks: (i) a
system training task, (ii) the signal preprocessing task, and (iii) the signal denoising task. The
main contribution of this work can be found in the modification of the signal denoising task.
For the reader’s convenience, however, we are providing a cursory overview of the entire
system in this section. The description follows closely in structure and notation with that of
the original paper by Xiao et al. (Apr. 2009). Many key details, however, are omitted here. The
interested reader may want to consult the original paper for a comprehensive presentation.
The system training task consists of the development of a speech waveform inventory, two mel-
frequency cepstral coefficient (MFCC) codebooks (under clean and noisy conditions), and a hid-
den Markov model (HMM). The HMM is used to model the codeword transition statistics under
clean and noisy conditions. The system training task is discussed in some greater detail in sec-
tion 2.1.
The procedures of the signal preprocessing task are adjusted according to the expected noise
type. Three different noise types are considered in the original paper. They are white

noise, colored noise, and non-stationary noise. No preprocessing is performed in the case
of white noise. Stationary colored noise requires preprocessing with a prewhitening filter. Non-
stationary noise is preprocessed with a combination of a short-time power spectral estimator
(via harmonic tunnelling, Ealey et al. (2001)) and subsequent Wiener filtering.
Lastly, the speech denoising task combines the results of the preprocessing with the results of
a state sequence computation from the trained HMM as described in section 2.1. Suitable sections
from the speech inventory are chosen through an inventory unit selection scheme and are then
concatenated to form the targeted denoised speech signal (see section 2.2). The inventory
unit selection scheme constitutes the computational bottleneck of the procedure. Most other
components of the method have a computational complexity that is comparable to that of
other model based methods. The complexity of the inventory unit selection scheme, however,
dominates the overall processing requirement by an order of magnitude. The fast processing
algorithm presented in this work focuses therefore exclusively on the inventory unit selection.
It is comprehensively described in section 3.
Throughout this chapter we are using a mathematical notation that is consistent with the one
introduced in the paper by Xiao et al. (Apr. 2009). At the denoising stage we assume that we
observe a signal x[n] which consists of speech s[n] that is uttered by the enrolled speaker and
is distorted by zero mean additive noise v[n], i.e. x[n] = s[n] + v[n]. At the training stage we
use ŝ[n] to, similarly, denote the speaker enrollment data. System training is done off-line from
speaker-specific pre-recorded clean training signals. For simplicity we assume that all training
records of speech are concatenated into one long training sequence ŝ[n].
An accurate description of the enhancement procedure requires the definition of speech units
or frames. We represent a unit as a vector of N successive samples of a signal:

sn = [ s[n − L] s[n − L + 1] . . . s[n − L + N − 1] ]T. (1)

Note that in section 3 we employ signal segments of a different length, i.e. segments with a
processing block-length of K (with K > N, see equations (10) and (11)). The amount of overlap
between adjacent frames is controlled by a step size L. If i denotes a unit (or frame) index then
the associated vector is written as siL. Symbols xn, vn, and ŝn are defined analogously to
equation (1). Symbol S is used to denote our speech-waveform-unit inventory. Set S consists of
all clean training data frames ŝn (∀n, i.e. with a step size of one) with the exception of data
frames that are entirely silent. Data frames are considered entirely silent if the total frame
energy falls below a certain minimal level.
The fundamental paradigm behind the considered denoising method is quite simple: find a
mapping xiL → ŝn(i) that associates a specific inventory frame ŝn(i) to every observed noisy
frame xiL. The complexity of the method arises from the fact that this mapping is generally not
fixed, but time-variant and context dependent. A resulting denoised signal s̃[n] is obtained by
“concatenating” the found frames ŝn(i) via a sinusoidal model based resynthesis technique. The
employed resynthesis technique is similar to the one described in the text by Quatieri (2002).
Please refer to the original paper by Xiao et al. (Apr. 2009) for the details.

2.1. System Training and State Sequence Estimations
The system training stage is used to achieve two separate goals: (1) to provide the denoising
procedure with an inventory of available speech units and (2) to generate a hidden Markov model
that describes transition statistics within the inventory. An illustration of the inventory design
procedure is shown in figure 1. All inventory elements ŝn that belong to a similar phonemic
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We present an approach that balances a dramatic reduction in computational complexity with
only a very slight reduction in perceptual denoising performance.
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denoising paradigm. A full and detailed description of the method is beyond the scope of this
chapter. The interested reader will find it in the two papers by Xiao et al. (Aug. 2008) and
(Apr. 2009). Section 3 focuses explicitly on the parts of the procedure that can be improved
with a fast algorithm.

2. The Denoising Paradigm
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system training task, (ii) the signal preprocessing task, and (iii) the signal denoising task. The
main contribution of this work can be found in the modification of the signal denoising task.
For the reader’s convenience, however, we are providing a cursory overview of the entire
system in this section. The description follows closely in structure and notation with that of
the original paper by Xiao et al. (Apr. 2009). Many key details, however, are omitted here. The
interested reader may want to consult the original paper for a comprehensive presentation.
The system training task consists of the development of a speech waveform inventory, two mel-
frequency cepstral coefficient (MFCC) codebooks (under clean and noisy conditions), and a hid-
den Markov model (HMM). The HMM is used to model the codeword transition statistics under
clean and noisy conditions. The system training task is discussed in some greater detail in sec-
tion 2.1.
The procedures of the signal preprocessing task are adjusted according to the expected noise
type. Three different noise types are considered in the original paper. They are white
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(via harmonic tunnelling, Ealey et al. (2001)) and subsequent Wiener filtering.
Lastly, the speech denoising task combines the results of the preprocessing with the results of
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from the speech inventory are chosen through an inventory unit selection scheme and are then
concatenated to form the targeted denoised speech signal (see section 2.2). The inventory
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components of the method have a computational complexity that is comparable to that of
other model based methods. The complexity of the inventory unit selection scheme, however,
dominates the overall processing requirement by an order of magnitude. The fast processing
algorithm presented in this work focuses therefore exclusively on the inventory unit selection.
It is comprehensively described in section 3.
Throughout this chapter we are using a mathematical notation that is consistent with the one
introduced in the paper by Xiao et al. (Apr. 2009). At the denoising stage we assume that we
observe a signal x[n] which consists of speech s[n] that is uttered by the enrolled speaker and
is distorted by zero mean additive noise v[n], i.e. x[n] = s[n] + v[n]. At the training stage we
use ŝ[n] to, similarly, denote the speaker enrollment data. System training is done off-line from
speaker-specific pre-recorded clean training signals. For simplicity we assume that all training
records of speech are concatenated into one long training sequence ŝ[n].
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or frames. We represent a unit as a vector of N successive samples of a signal:

sn = [ s[n − L] s[n − L + 1] . . . s[n − L + N − 1] ]T. (1)

Note that in section 3 we employ signal segments of a different length, i.e. segments with a
processing block-length of K (with K > N, see equations (10) and (11)). The amount of overlap
between adjacent frames is controlled by a step size L. If i denotes a unit (or frame) index then
the associated vector is written as siL. Symbols xn, vn, and ŝn are defined analogously to
equation (1). Symbol S is used to denote our speech-waveform-unit inventory. Set S consists of
all clean training data frames ŝn (∀n, i.e. with a step size of one) with the exception of data
frames that are entirely silent. Data frames are considered entirely silent if the total frame
energy falls below a certain minimal level.
The fundamental paradigm behind the considered denoising method is quite simple: find a
mapping xiL → ŝn(i) that associates a specific inventory frame ŝn(i) to every observed noisy
frame xiL. The complexity of the method arises from the fact that this mapping is generally not
fixed, but time-variant and context dependent. A resulting denoised signal s̃[n] is obtained by
“concatenating” the found frames ŝn(i) via a sinusoidal model based resynthesis technique. The
employed resynthesis technique is similar to the one described in the text by Quatieri (2002).
Please refer to the original paper by Xiao et al. (Apr. 2009) for the details.

2.1. System Training and State Sequence Estimations
The system training stage is used to achieve two separate goals: (1) to provide the denoising
procedure with an inventory of available speech units and (2) to generate a hidden Markov model
that describes transition statistics within the inventory. An illustration of the inventory design
procedure is shown in figure 1. All inventory elements ŝn that belong to a similar phonemic
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Fig. 1. An illustration of the data clustering method used by the denoising procedure by Xiao
et al. (Apr. 2009). Training data is segmented, MFCC coefficients are extracted, and frames
with “similar” coefficient vectors are lumped into one of M = 50 inventory clusters.

function2 are grouped into the same cluster. The purpose of the grouping is to be able to
study the statistical properties of the group as a whole and then apply a resulting statistical
description in the denoising process. The procedure requires the construction of two mel-
frequency cepstral coefficient (MFCC) codebooks: a clean MFCC codebook C = {C1, C2, . . . , CM}
and a noisy MFCC codebook Ĉ = { Ĉ1, Ĉ2, . . . , ĈM}. The codebooks contain the average of
the MFCC vectors of all clean/noisy inventory units within a respective cluster. The details
of the clustering procedure and the inventory design are omitted here. Please consult the
paper by Xiao et al. (Aug. 2008) for a comprehensive description. An illustration of the noisy
codebook design procedure is shown in figure 2. To maintain compatibility with the notation
introduced in Xiao et al. (Aug. 2008) we will refer to the resulting cluster sets of inventory
vectors ŝn with Kk for k = 1, 2, . . . M.
Given the clean and noisy MFCC codebook vectors for each inventory cluster it becomes pos-
sible to estimate the cluster transition statistics for the given speaker. An illustration of the
considered statistical description after Xiao et al. (Aug. 2008) is shown in figure 3. We use
ŝn → k to indicate the cluster membership of inventory frame ŝ with cluster k. Similarly, we
define x̂iL → j to indicate that the incoming noisy frame x̂iL is vector quantized via the noisy
codebook Ĉ into cluster j. With a simple counting process we can estimate the first-order
temporal state transition probabilities, i.e.

Pk,j = Prob[ ŝ(i+1)L → j | ŝiL → k ]. (2)

Similarly, we can convert our sequence of noisy training frames x̂iL into an observation code
sequence. Again, with a counting process we can estimate the noise induced observation proba-
bilities jointly from our clean and noisy training data:

Qk,j = Prob[ x̂iL → j | ŝiL → k ]. (3)

2 We are using the term phonemic function in reference to a general, function carrying unit of a language.
The group may or may not match with an actual phoneme defined for that language.
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(Noisy Codebook)
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Fig. 2. An illustration of the generation of the noisy MFCC codebook as proposed by Xiao
et al. in (Aug. 2008) and (Apr. 2009). Training noise is added to the elements of the clean
inventory. The noisy MFCC codebook arises from the average of the MFCC vectors computed
from the respective distorted signals within each clean cluster.

State Transition 
Probabilities: 

(Clean Codebook)

MFCC

Noisy Code 1

State Observation 
Probabilities: 

(Noisy Codebook)

MFCC

Clean Code 1

MFCC

Clean Code 2

MFCC

Clean Code 3

MFCC

Noisy Code 2

MFCC

Noisy Code 3

Fig. 3. An illustration of the statistical description of the considered cluster membership after
Xiao et al. (Aug. 2008). The observation of a “noisy” code is statistically related to the “true”
cluster membership of the underlying clean signal segment.

The transition probabilities Pk,j and Qk,j are both used in the denoising process. The statis-
tical description enables us to define an “optimal” sequence kopt(i) of cluster memberships
for incoming testing frames xiL. The sequence is optimal in the sense that the “most likely”
inventory element ŝn(i) to represent the denoised frame for xiL is found in set Kkopt(i). Again,
the details of how to find the sequences kopt(i) are omitted. A comprehensive description is
found in the paper by Xiao et al. (Aug. 2008).
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Fig. 1. An illustration of the data clustering method used by the denoising procedure by Xiao
et al. (Apr. 2009). Training data is segmented, MFCC coefficients are extracted, and frames
with “similar” coefficient vectors are lumped into one of M = 50 inventory clusters.

function2 are grouped into the same cluster. The purpose of the grouping is to be able to
study the statistical properties of the group as a whole and then apply a resulting statistical
description in the denoising process. The procedure requires the construction of two mel-
frequency cepstral coefficient (MFCC) codebooks: a clean MFCC codebook C = {C1, C2, . . . , CM}
and a noisy MFCC codebook Ĉ = { Ĉ1, Ĉ2, . . . , ĈM}. The codebooks contain the average of
the MFCC vectors of all clean/noisy inventory units within a respective cluster. The details
of the clustering procedure and the inventory design are omitted here. Please consult the
paper by Xiao et al. (Aug. 2008) for a comprehensive description. An illustration of the noisy
codebook design procedure is shown in figure 2. To maintain compatibility with the notation
introduced in Xiao et al. (Aug. 2008) we will refer to the resulting cluster sets of inventory
vectors ŝn with Kk for k = 1, 2, . . . M.
Given the clean and noisy MFCC codebook vectors for each inventory cluster it becomes pos-
sible to estimate the cluster transition statistics for the given speaker. An illustration of the
considered statistical description after Xiao et al. (Aug. 2008) is shown in figure 3. We use
ŝn → k to indicate the cluster membership of inventory frame ŝ with cluster k. Similarly, we
define x̂iL → j to indicate that the incoming noisy frame x̂iL is vector quantized via the noisy
codebook Ĉ into cluster j. With a simple counting process we can estimate the first-order
temporal state transition probabilities, i.e.

Pk,j = Prob[ ŝ(i+1)L → j | ŝiL → k ]. (2)

Similarly, we can convert our sequence of noisy training frames x̂iL into an observation code
sequence. Again, with a counting process we can estimate the noise induced observation proba-
bilities jointly from our clean and noisy training data:

Qk,j = Prob[ x̂iL → j | ŝiL → k ]. (3)

2 We are using the term phonemic function in reference to a general, function carrying unit of a language.
The group may or may not match with an actual phoneme defined for that language.
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inventory. The noisy MFCC codebook arises from the average of the MFCC vectors computed
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Fig. 3. An illustration of the statistical description of the considered cluster membership after
Xiao et al. (Aug. 2008). The observation of a “noisy” code is statistically related to the “true”
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The transition probabilities Pk,j and Qk,j are both used in the denoising process. The statis-
tical description enables us to define an “optimal” sequence kopt(i) of cluster memberships
for incoming testing frames xiL. The sequence is optimal in the sense that the “most likely”
inventory element ŝn(i) to represent the denoised frame for xiL is found in set Kkopt(i). Again,
the details of how to find the sequences kopt(i) are omitted. A comprehensive description is
found in the paper by Xiao et al. (Aug. 2008).
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2.2. Speech Denoising
After completion of the described system training we can begin to denoise new incoming
signals x[n]. The denoising procedure can be broken down into 4 separate steps: (1) the es-
timation of the “optimal” cluster membership sequence kopt(i) (as discussed in the previous
section), (2) the preprocessing, i.e. prewhitening, of the noisy signal x[n], (3) the identification
of the best match for each xiL in Kkopt(i), i.e. the intra cluster frame matching, and (4) the “con-
catenation” of the resulting inventory frames to resynthesize the targeted denoised signal.
As indicated in the previous section, we will omit the details of the kopt(i)-sequence estima-
tion. Sequence kopt(i) can be computed fast and efficiently via the Viterbi algorithm, as de-
scribed in the paper by Xiao et al. (Aug. 2008). We also omit most of the details of the data
preprocessing, as they have been comprehensively described in the same paper. We will, how-
ever, briefly describe the underlying principles of the intra cluster frame matching since it is the
target of the proposed fast algorithm described in section 3.
In a first step we define a similarity measure between a noisy frame xiL and an inventory
element ŝn. The choice of the similarity measure proposed in the paper by Xiao et al. (Apr.
2009) was guided by fundamental detection theory. If we are assuming a maximum likelihood
criterion and if the additive noise viL is independent white Gaussian noise then a correlation
detector should be used (see Poor (1994)). Since the power of the training frame and the
testing frame may be significantly different a power normalization was proposed as well. The
resulting similarity measure becomes

σ(xiL, ŝn) =
xT

iL ŝn√
‖xiL‖2 − V2 · ‖ŝn‖

, (4)

in which
√
‖xiL‖2 − V2 represents the estimated power of the underlying clean speech s[n].

If viL contains colored noise then a prewhitening filter is used before the correlation detector.
With hw denoting the impulse response of the prewhitening filter we obtain

σ́(xiL, ŝn) =
(xiL ∗ hw)T (ŝn ∗ hw)√

‖xiL ∗ hw‖2 − V2
w · ‖ŝn ∗ hw‖

, (5)

where we use V2
w = E{(vn ∗ hw)T(vn ∗ hw)} to denote the variance of the prewhitened noise.

A discussion of the non-stationary noise case is omitted here since it is effectively using the
same similarity measure as the colored noise case.
After the generation of an appropriate similarity measure between an incoming noisy frame
xiL (or x̃iL) and an inventory element sn we can define an optimal intra cluster match ŝ(i,k)

via
ŝ(i,k) = arg max

ŝn∈Kk

σ(xiL, ŝn). (6)

In a last step we need to resynthesize our targeted signal. First, we are replacing each frame
xiL with the inventory frame ŝ(i,kopt(i)), i.e. xiL → ŝ(i,kopt(i)), and second, we reconcatenate the
resulting frames via a sinusoidal model expansion similar to the one proposed by Quatieri (2002).
The reconcatenation with the sinusoidal model is important to minimize phase incompatibil-
ities at the frame boundaries.
The performance of the proposed method was evaluated by Xiao et al. (Apr. 2009) with exper-
iments over a subset of the CMU_ARCTIC database from the Language Technologies Institute
at Carnegie Mellon University3. Data processing was conducted at a sampling rate of 8 kHz

3 The corpus is available at <http://www.festvox.org/cmu_arctic>.

and with a segment length of N = 160 samples and a step size of L = 80 samples. The
targeted signal-to-noise ratio was 10 dB. The quality of the resulting denoised speech was as-
sessed with the Perceptual Evaluation of Speech Quality4 (PESQ) measure. For white noise Xiao
et al. reported an improvement of up to 1.06 points on the PESQ scale. For colored noise an
improvement of up to 0.87 points was reported. The performance of the presented method
compared favorably with other state-of-the-art denoising methods.

3. Fast Processing Methods

As mentioned earlier, the bottleneck of the proposed denoising procedure, in terms of compu-
tational complexity, can be found in the maximization of equations (4) and (5) as expressed in
equation (6). In the experiments conducted by Xiao et al. (Apr. 2009) training sets of around
1 hour in length were used. If we operate at a sampling rate of 8 kHz and with a number of
M = 50 clusters then we can expect to have around 500 · 103 to 600 · 103 samples per cluster.
For the denoising of each incoming frame we need to correlate a vector of length 160 with
the entire data set contained in the cluster targeted by kopt(i). The resulting computational
complexity per frame is therefore huge, if no fast computational procedures are involved.
For the remainder of this section we will discuss methods that can dramatically reduce the
computational complexity of the maximization implied in equation (6). In a first step we are
moving to a slightly simplified similarity measure since for a fixed xiL the terms

√
‖xiL‖2 − V2

and
√
‖xiL ∗ hw‖2 − V2

w remain unchanged and can therefore be dropped from the computa-
tion:

σ̃(x, ŝn) =
xT· ŝn

‖ŝn‖
. (7)

Similarity measure (5) can be modified accordingly. The respective result for equation (5) is
obtained by substituting xiL ∗ hw and ŝn ∗ hw into equation (7).
The fast computation of (7) for all frames in a given cluster (as expressed in equation (6)) is
accomplished in three steps:

1. Quantization of the elements in x and ŝn.

2. Computation of xT· ŝn with an overlap-add based convolution procedure via number
theoretic transforms (NTTs).

3. Recursive computation of ‖ŝn‖ and σ̃(x, ŝn).

We begin by applying a uniform scalar quantizer (see Sayood (1996)) to all elements of our
(possibly preprocessed) incoming frame x and the elements of our inventory vectors ŝn. The
quantizer is designed to assign a unique integer between −J and +J (J ∈ N) to every value
in x and ŝn. An optimal choice of J is dependent on three things: (1) the employed frame
length N, (2) the statistics of our training data, and (3) the parameters of the employed number
theoretic transforms. Good choices for J are discussed in section 3.3.
For simplicity of notation we assume for the remainder of this section that symbols x and ŝn
and the associated signals x[n] and ŝ[n] are quantized versions of the original signals, i.e. all
elements of these signals and vectors are integers in the range −J . . .+ J. It is important to em-
phasize that we are not operating with this kind of quantized data in other components of the
proposed method, especially in the step xiL → ŝ(i,kopt(i)) during the target signal resynthesis
where we want to use the original inventory data and not the quantized one.

4 The PESQ measure, an ITU recommendation, is aiming to asses the subjective quality of speech. Please
refer to the text by Loizou (2007) for the details.
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catenation” of the resulting inventory frames to resynthesize the targeted denoised signal.
As indicated in the previous section, we will omit the details of the kopt(i)-sequence estima-
tion. Sequence kopt(i) can be computed fast and efficiently via the Viterbi algorithm, as de-
scribed in the paper by Xiao et al. (Aug. 2008). We also omit most of the details of the data
preprocessing, as they have been comprehensively described in the same paper. We will, how-
ever, briefly describe the underlying principles of the intra cluster frame matching since it is the
target of the proposed fast algorithm described in section 3.
In a first step we define a similarity measure between a noisy frame xiL and an inventory
element ŝn. The choice of the similarity measure proposed in the paper by Xiao et al. (Apr.
2009) was guided by fundamental detection theory. If we are assuming a maximum likelihood
criterion and if the additive noise viL is independent white Gaussian noise then a correlation
detector should be used (see Poor (1994)). Since the power of the training frame and the
testing frame may be significantly different a power normalization was proposed as well. The
resulting similarity measure becomes
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, (4)

in which
√
‖xiL‖2 − V2 represents the estimated power of the underlying clean speech s[n].

If viL contains colored noise then a prewhitening filter is used before the correlation detector.
With hw denoting the impulse response of the prewhitening filter we obtain

σ́(xiL, ŝn) =
(xiL ∗ hw)T (ŝn ∗ hw)√
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, (5)

where we use V2
w = E{(vn ∗ hw)T(vn ∗ hw)} to denote the variance of the prewhitened noise.

A discussion of the non-stationary noise case is omitted here since it is effectively using the
same similarity measure as the colored noise case.
After the generation of an appropriate similarity measure between an incoming noisy frame
xiL (or x̃iL) and an inventory element sn we can define an optimal intra cluster match ŝ(i,k)

via
ŝ(i,k) = arg max

ŝn∈Kk

σ(xiL, ŝn). (6)

In a last step we need to resynthesize our targeted signal. First, we are replacing each frame
xiL with the inventory frame ŝ(i,kopt(i)), i.e. xiL → ŝ(i,kopt(i)), and second, we reconcatenate the
resulting frames via a sinusoidal model expansion similar to the one proposed by Quatieri (2002).
The reconcatenation with the sinusoidal model is important to minimize phase incompatibil-
ities at the frame boundaries.
The performance of the proposed method was evaluated by Xiao et al. (Apr. 2009) with exper-
iments over a subset of the CMU_ARCTIC database from the Language Technologies Institute
at Carnegie Mellon University3. Data processing was conducted at a sampling rate of 8 kHz

3 The corpus is available at <http://www.festvox.org/cmu_arctic>.

and with a segment length of N = 160 samples and a step size of L = 80 samples. The
targeted signal-to-noise ratio was 10 dB. The quality of the resulting denoised speech was as-
sessed with the Perceptual Evaluation of Speech Quality4 (PESQ) measure. For white noise Xiao
et al. reported an improvement of up to 1.06 points on the PESQ scale. For colored noise an
improvement of up to 0.87 points was reported. The performance of the presented method
compared favorably with other state-of-the-art denoising methods.

3. Fast Processing Methods

As mentioned earlier, the bottleneck of the proposed denoising procedure, in terms of compu-
tational complexity, can be found in the maximization of equations (4) and (5) as expressed in
equation (6). In the experiments conducted by Xiao et al. (Apr. 2009) training sets of around
1 hour in length were used. If we operate at a sampling rate of 8 kHz and with a number of
M = 50 clusters then we can expect to have around 500 · 103 to 600 · 103 samples per cluster.
For the denoising of each incoming frame we need to correlate a vector of length 160 with
the entire data set contained in the cluster targeted by kopt(i). The resulting computational
complexity per frame is therefore huge, if no fast computational procedures are involved.
For the remainder of this section we will discuss methods that can dramatically reduce the
computational complexity of the maximization implied in equation (6). In a first step we are
moving to a slightly simplified similarity measure since for a fixed xiL the terms

√
‖xiL‖2 − V2

and
√
‖xiL ∗ hw‖2 − V2

w remain unchanged and can therefore be dropped from the computa-
tion:

σ̃(x, ŝn) =
xT· ŝn

‖ŝn‖
. (7)

Similarity measure (5) can be modified accordingly. The respective result for equation (5) is
obtained by substituting xiL ∗ hw and ŝn ∗ hw into equation (7).
The fast computation of (7) for all frames in a given cluster (as expressed in equation (6)) is
accomplished in three steps:

1. Quantization of the elements in x and ŝn.

2. Computation of xT· ŝn with an overlap-add based convolution procedure via number
theoretic transforms (NTTs).

3. Recursive computation of ‖ŝn‖ and σ̃(x, ŝn).

We begin by applying a uniform scalar quantizer (see Sayood (1996)) to all elements of our
(possibly preprocessed) incoming frame x and the elements of our inventory vectors ŝn. The
quantizer is designed to assign a unique integer between −J and +J (J ∈ N) to every value
in x and ŝn. An optimal choice of J is dependent on three things: (1) the employed frame
length N, (2) the statistics of our training data, and (3) the parameters of the employed number
theoretic transforms. Good choices for J are discussed in section 3.3.
For simplicity of notation we assume for the remainder of this section that symbols x and ŝn
and the associated signals x[n] and ŝ[n] are quantized versions of the original signals, i.e. all
elements of these signals and vectors are integers in the range −J . . .+ J. It is important to em-
phasize that we are not operating with this kind of quantized data in other components of the
proposed method, especially in the step xiL → ŝ(i,kopt(i)) during the target signal resynthesis
where we want to use the original inventory data and not the quantized one.

4 The PESQ measure, an ITU recommendation, is aiming to asses the subjective quality of speech. Please
refer to the text by Loizou (2007) for the details.
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3.1. Preliminary Computations and Notation
Before we delve into the fast computation of xT· ŝn it is beneficial to first briefly discuss an
efficient way to compute the term ‖ŝn‖ in (7). For notational convenience we introduce the
shifted inventory signal s′[n] = ŝ[n − L + N − 1] and its square ς[n] = s′[n] · s′[n]. We can use
ς[n] as an input to the following recursive system with output ξ[n]:

ξ[n] = ξ[n − 1] + ς[n]− ς[n − N]. (8)

Term ‖ŝn‖ is then obtained from ‖ŝn‖ =
√

ξ[n]. The computation of ‖ŝn‖ therefore requires
one multiplication, two additions5, and one square root operation (table lookup) per sample.
A major step in simplifying the computation of xT· ŝn is obtained from recognizing that the
inner product in (7) is equivalent to a convolution operation (indicated with symbol ∗):

xT· ŝn =
N−1

∑
k=0

[x]N−k · ŝ[n − k + N − L − 1] = [x]N−k ∗ s′[n]. (9)

We use the notation [x]k to indicate the kth element of vector x with [x]k = 0 if k < 1 and k > N.
The convolution of equation (9) is further broken down by segmenting s′[n] into segments of
length R. The segments are zero padded to arrive at a processing block-length of K samples:

s′k = [ s′[kR] s′[kR + 1] . . . s′[kR + R − 1] 0 0 . . . 0︸ ︷︷ ︸
K−R

]T. (10)

Similarly we are defining a time-reversed and zero padded input signal vector x′ as:

x′ = [ [x]N [x]N−1 . . . [x]2 [x]1 0 0 . . . 0︸ ︷︷ ︸
K−N

]T. (11)

The convolution operation can then be performed via number theoretic transforms (NNTs,
see Blahut (1987)). The details of the proposed NTT operation are described in section 3.2. If
we assume that we have access to the output vector y′

k = NTTConv{x′, s′k} of the proposed
K-point NTT convolution of x′ and s′k then the inner product in equation (9) becomes:

xT· ŝn = ∑k [y
′
k]n+1−kR. (12)

The overlap and add method implied in equation (12) requires (K − R) additions for each
block of length K, plus the operations necessary for NTTConv.

3.2. Number Theoretic Transforms
Number theoretic transforms can be used for efficient computations of convolutions if the
underlying data is, as indicated earlier, discretized or quantized (see Blahut (1987)). NTTs
generally operate in finite fields or Galois fields. The order p of the field is typically a prime
number, in which case all operations within the field (addition, subtraction, multiplication,
and division) are executed via a modulo-p arithmetic (see Blahut (1987)).
Not all number theoretic transforms are necessarily well suited for the development of fast
algorithms. NTTs of a certain subclass, known as Fermat NTTs, however, have properties that
make them superior to the commonly used fast Fourier transform (FFT, see Proakis & Manolakis

5 We are counting subtractions and additions as the same since they share roughly the same computa-
tional complexity.

(1996)) in computing convolutions within a fixed-point arithmetic. The advantage of such
NTTs are that: (1) an NTT can be implemented in real-valued arithmetic (i.e. it does not re-
quire an underlying complex number representation), and (2) many of the multiplications re-
quired for the computation simplify to shift operations if the underlying processing hardware
is utilizing binary number representations.
NTTs have, however, three important limitations that render their practical implementation
significantly less flexible than that of the FFT: (1) the processing block length K is tied to (i.e.
not independent of) the order p of the underlying number representation, (2) NTTs only exist
for a very limited number of combinations of K and p, and (3) internal overflow errors during
convolution computations cannot be detected and/or flagged. A general discussion of all of
these problems is beyond the scope of this book chapter. The interested reader may consult
the literature, especially the text by Blahut (1987), for a detailed discussion. We will address
the three issues above only within the context of the proposed denoising scheme.
Out of the general set of possible combinations for K and p we found that K = 1024 and
p = 216 + 1 (Fermat prime) are quite well suited for the proposed algorithm. We begin by
considering a general integer vector v = [ v1 v2 . . . vK ]T of length K. More specifically,
we assume that all elements vk of v are integers between − p−1

2 and +
p−1

2 . Furthermore, we
define the following warping operation:

warp{vk} =

{

vk if vk ≥ 0
vk + p if vk < 0. (13)

The notation ṽ = warp{v} refers to an application of the warp-function on vector v on an
element-by-element basis. We also require the following dewarping mapping:

dewarp{ṽk} =

{

ṽk if ṽk ≤ p−1
2

ṽk − p if ṽk >
p−1

2 .
(14)

Again, v = dewarp{ṽ} refers to an application of the dewarp-function on vector ṽ on an
element-by-element basis. Given the parameters K = 1024 and p = 216 + 1 we arrive at the
following definition for the employed NTT:

Ṽ = NTT{ṽ} such that [Ṽ]k+1 =
1023

∑
i=0

ωik [ṽ]i+1 mod p for k = 0 . . . 1023. (15)

Number ω must be chosen such that ω1024 mod p = 1. There are a number of values ω
that satisfy this conditions. Not all choices, however, are well suited for the design of a fast
algorithm. It is possible to apply the radix-two Cooley-Tukey divide-and-conquer approach (see
Blahut (1987)) to equation (15). With the special choice of ω = 18990 we obtain:

[Ṽ]32k′+k′′ =
31

∑
i′=0

2i′k′
[

ωi′k′′
31

∑
i′′=0

2i′′k′′ [ṽ]i′+32i′′

]

mod p for k′, k′′ = 0 . . . 31. (16)

It is, therefore, possible to divide the 1024-point NTT from equation (15) into two sets of 32
sub-NTTs of length 32 each and one set of 1024 multiplications with ωi′k′′ . Furthermore, the
32-point sub-NTTs can be computed without any multiplications since a multiplication with a
power-of-two number is equivalent to a shift operation if the underlying processing hardware
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Term ‖ŝn‖ is then obtained from ‖ŝn‖ =
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ξ[n]. The computation of ‖ŝn‖ therefore requires
one multiplication, two additions5, and one square root operation (table lookup) per sample.
A major step in simplifying the computation of xT· ŝn is obtained from recognizing that the
inner product in (7) is equivalent to a convolution operation (indicated with symbol ∗):

xT· ŝn =
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∑
k=0
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We use the notation [x]k to indicate the kth element of vector x with [x]k = 0 if k < 1 and k > N.
The convolution of equation (9) is further broken down by segmenting s′[n] into segments of
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Similarly we are defining a time-reversed and zero padded input signal vector x′ as:

x′ = [ [x]N [x]N−1 . . . [x]2 [x]1 0 0 . . . 0︸ ︷︷ ︸
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]T. (11)

The convolution operation can then be performed via number theoretic transforms (NNTs,
see Blahut (1987)). The details of the proposed NTT operation are described in section 3.2. If
we assume that we have access to the output vector y′

k = NTTConv{x′, s′k} of the proposed
K-point NTT convolution of x′ and s′k then the inner product in equation (9) becomes:

xT· ŝn = ∑k [y
′
k]n+1−kR. (12)

The overlap and add method implied in equation (12) requires (K − R) additions for each
block of length K, plus the operations necessary for NTTConv.

3.2. Number Theoretic Transforms
Number theoretic transforms can be used for efficient computations of convolutions if the
underlying data is, as indicated earlier, discretized or quantized (see Blahut (1987)). NTTs
generally operate in finite fields or Galois fields. The order p of the field is typically a prime
number, in which case all operations within the field (addition, subtraction, multiplication,
and division) are executed via a modulo-p arithmetic (see Blahut (1987)).
Not all number theoretic transforms are necessarily well suited for the development of fast
algorithms. NTTs of a certain subclass, known as Fermat NTTs, however, have properties that
make them superior to the commonly used fast Fourier transform (FFT, see Proakis & Manolakis

5 We are counting subtractions and additions as the same since they share roughly the same computa-
tional complexity.

(1996)) in computing convolutions within a fixed-point arithmetic. The advantage of such
NTTs are that: (1) an NTT can be implemented in real-valued arithmetic (i.e. it does not re-
quire an underlying complex number representation), and (2) many of the multiplications re-
quired for the computation simplify to shift operations if the underlying processing hardware
is utilizing binary number representations.
NTTs have, however, three important limitations that render their practical implementation
significantly less flexible than that of the FFT: (1) the processing block length K is tied to (i.e.
not independent of) the order p of the underlying number representation, (2) NTTs only exist
for a very limited number of combinations of K and p, and (3) internal overflow errors during
convolution computations cannot be detected and/or flagged. A general discussion of all of
these problems is beyond the scope of this book chapter. The interested reader may consult
the literature, especially the text by Blahut (1987), for a detailed discussion. We will address
the three issues above only within the context of the proposed denoising scheme.
Out of the general set of possible combinations for K and p we found that K = 1024 and
p = 216 + 1 (Fermat prime) are quite well suited for the proposed algorithm. We begin by
considering a general integer vector v = [ v1 v2 . . . vK ]T of length K. More specifically,
we assume that all elements vk of v are integers between − p−1

2 and +
p−1

2 . Furthermore, we
define the following warping operation:

warp{vk} =

{

vk if vk ≥ 0
vk + p if vk < 0. (13)

The notation ṽ = warp{v} refers to an application of the warp-function on vector v on an
element-by-element basis. We also require the following dewarping mapping:

dewarp{ṽk} =

{

ṽk if ṽk ≤ p−1
2

ṽk − p if ṽk >
p−1

2 .
(14)

Again, v = dewarp{ṽ} refers to an application of the dewarp-function on vector ṽ on an
element-by-element basis. Given the parameters K = 1024 and p = 216 + 1 we arrive at the
following definition for the employed NTT:

Ṽ = NTT{ṽ} such that [Ṽ]k+1 =
1023

∑
i=0

ωik [ṽ]i+1 mod p for k = 0 . . . 1023. (15)

Number ω must be chosen such that ω1024 mod p = 1. There are a number of values ω
that satisfy this conditions. Not all choices, however, are well suited for the design of a fast
algorithm. It is possible to apply the radix-two Cooley-Tukey divide-and-conquer approach (see
Blahut (1987)) to equation (15). With the special choice of ω = 18990 we obtain:

[Ṽ]32k′+k′′ =
31

∑
i′=0

2i′k′
[

ωi′k′′
31

∑
i′′=0

2i′′k′′ [ṽ]i′+32i′′

]

mod p for k′, k′′ = 0 . . . 31. (16)

It is, therefore, possible to divide the 1024-point NTT from equation (15) into two sets of 32
sub-NTTs of length 32 each and one set of 1024 multiplications with ωi′k′′ . Furthermore, the
32-point sub-NTTs can be computed without any multiplications since a multiplication with a
power-of-two number is equivalent to a shift operation if the underlying processing hardware
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operates on a binary number system. A detailed analysis of equation (16) reveals that equa-
tion (15) can be computed with roughly 1024 multiplications, 5120 additions, and 5120 shift
operations.
An important aspect of the computations in equations (16) and (15) is the modulo reduction
of order p. Given the standard approach to modulo reductions one might suspect that each
reduction comes at the cost of an integer division. In the given case of p = 216 + 1, however,
it becomes possible to reduce the complexity of a modulo reduction to that of an addition, if
the underlying processing hardware operates on a binary number system. To that end, we
can group adjacent bits in our underlying number representation into blocks of 16. All blocks
with bits higher than 16 are shifted down to line up with the least significant bit and then
added block-by-block with an alternating sign. The details of the implementation are readily
found in the literature (see also Blahut (1987)). Due to the cyclic nature of the p = 216 + 1
reduction it is possible to build the require modulo operation directly into the hardware of the
employed multiplier, adder, and shifting units. We, therefore, do not count modulo operations
separately in our complexity analysis.
The computation of convolutions via NTTs requires us to also consider the inverse NTT. Sim-
ilarly to equation (15) we define:

ṽ = NTT−1{Ṽ} such that [ṽ]k+1 = K−1
1023

∑
i=0

ω−ik [Ṽ]i+1 mod p

for k = 0 . . . 1023. (17)

Note that (K−1) represents the integer with the property (K−1) · K mod p = 1. The inverse
NTT can also be computed via the radix-two Cooley-Tukey divide-and-conquer approach:

[ṽ]32k′+k′′ = K−1 ·
31

∑
i′=0

2−i′k′
[

ω−i′k′′
31

∑
i′′=0

2−i′′k′′ [Ṽ]i′+32i′′

]

mod p

for k′, k′′ = 0 . . . 31. (18)

The computational complexity of the NTT and the inverse NTT are therefore the same, except
we have an additional set of 1024 multiplications with K−1 in the case of the inverse NTT. We
will see in section 3.3 though that the scaling with K−1 can be omitted when we apply the
inverse NTT to our proposed fast computation procedure.
We are now in the position to define the computation of y′

k as used in equation (12). The oper-
ation requires two warping operation, one dewarping operation, two NTTs, and one inverse
NTT:

y′
k = NTTConv{x′, s′k} = dewarp{NTT−1{NTT{warp{x′}} � NTT{warp{s′k}}}}, (19)

in which � denotes element-by-element-wise vector multiplication.

3.3. Complexity Analysis and Perfomance
A successful implementation of the fast algorithm proposed in the previous two sections re-
quires a careful definition of our quantization granularity6 J. If J is too big then we are likely
to receive too many (undetectable) overflow errors in the NTT based convolution operation.

6 Note that the effective number of quantization levels for our data is given by 2J + 1.

The resulting intra cluster frame matching becomes unreliable and the perceptual quality of
the proposed denoising method suffers. If we pick J too small then the effective quantization
granularity of our data becomes too coarse. Again, the resulting intra cluster frame matching
becomes unreliable and the perceptual quality is reduced.
In experiments over the same data set that was used in the original performance analysis
by Xiao et al. (Aug. 2008) we found that the error count in the intra cluster frame matching
procedure remained relatively unaffected by the number of employed quantization levels if
the number did not drop significantly below 60, i.e. 2J + 1 ≥ 60. Similar experiments revealed
that we receive virtually no overflow errors in our procedure7 if J ≤ 35. A recommended
range for J is therefor between 30 and 35.
To maximize the efficiency of the proposed NTT based convolution it is best to pick K =
N + R − 1. With a processing block-length K of 1024 and a frame length N of 160 we obtain
R = 865.
To obtain reasonably normalized numbers for the computational complexity of different solu-
tion approaches for equation (6) we decided to reference all operation counts to an equivalent
count for each inventory sample. A direct, brute force, computation of equation (6) requires
320 multiplications/sample and 318 additions/sample. We technically also require one divi-
sion/sample and one square-root-operation/sample. The division and the square root, how-
ever, are a part of all considered algorithms and are therefore omitted in the overall counts.
For comparison we consider the proposed fast convolution approach with a conventional
radix-two fast Fourier transform (FFT) instead of the proposed NTT. A 1024-point FFT requires
9216 complex multiplications and 10240 complex additions8 (see Blahut (1987)). Each com-
plex multiplication can be evaluated with 3 real multiplications and 5 real additions. We,
therefore, obtain 27648 real multiplications and 56320 real additions. The disadvantage of a
complex arithmetic of the FFT is partially alleviated by the fact that we can typically process
two FFTs with real imputs with a single FFT with complex inputs (see Proakis & Manolakis
(1996)). Operations are consequently cut in half and we obtain as a final count for a 1024-
point FFT 13824 (real) multiplications and 28160 (real) additions. The FFT equivalent of equa-
tion (19) can be evaluated on-line with one 1024-point FFT, one 1024-point inverse FFT and
1024 complex multiplications. Note that we only need one FFT to compute (19) on-line since
the corresponding FFTs of our inventory ŝ[n] can be precomputed off-line. Furthermore, we
do not need to consider the additional scaling factor of 1

K in the inverse FFT since the scaling
becomes immaterial in the subsequent maximum search. Furthermore, we receive an addi-
tional number of K − R = N − 1 = 1023 additions due to the overlap and add procedure from
equation (12).
In summary, we require 2 × 13824 + 3 × 1024 = 30720 multiplications and 2 × 28160 + 5 ×
1024 + 1023 = 62463 additions to compute the required 1024-point convolution with an FFT
based approach. The convolution operation has to be repeated every R = 865 samples. On a
per-sample count we obtain 35.52 multiplications/sample and 72.22 additions/sample. Tech-
nically we need to also add in the one multiplication/sample and the two additions/sample
for the separate computation of ‖ŝn‖.

7 Assuming N = 160, K = 1024, and p = 216 + 1.
8 The complexity analysis presented here may slightly differ from complexity computations from other

sources. The main differences in computation counts are usually due to differences in how trivial mul-
tiplications are considered. We decided to include the count of trivial multiplications for the FFT as
well as the NTT.
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1024 complex multiplications. Note that we only need one FFT to compute (19) on-line since
the corresponding FFTs of our inventory ŝ[n] can be precomputed off-line. Furthermore, we
do not need to consider the additional scaling factor of 1

K in the inverse FFT since the scaling
becomes immaterial in the subsequent maximum search. Furthermore, we receive an addi-
tional number of K − R = N − 1 = 1023 additions due to the overlap and add procedure from
equation (12).
In summary, we require 2 × 13824 + 3 × 1024 = 30720 multiplications and 2 × 28160 + 5 ×
1024 + 1023 = 62463 additions to compute the required 1024-point convolution with an FFT
based approach. The convolution operation has to be repeated every R = 865 samples. On a
per-sample count we obtain 35.52 multiplications/sample and 72.22 additions/sample. Tech-
nically we need to also add in the one multiplication/sample and the two additions/sample
for the separate computation of ‖ŝn‖.

7 Assuming N = 160, K = 1024, and p = 216 + 1.
8 The complexity analysis presented here may slightly differ from complexity computations from other

sources. The main differences in computation counts are usually due to differences in how trivial mul-
tiplications are considered. We decided to include the count of trivial multiplications for the FFT as
well as the NTT.
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The computation of a 1024-point NTT after section 3.2 requires 1024 multiplications, 5120
additions, and 5120 shift operations. Similarly to the computations for the FFT we re-
quire 2 × 1024 + 1024 = 3072 multiplications, 2 × 5120 + 1023 = 11263 additions, and
2 × 5120 = 10240 shift operations to compute the required 1024-point convolution with an
NTT based approach. Again, the convolution operation has to be repeated every R = 865 sam-
ples. On a per-sample count we obtain 3.56 multiplications/sample, 13.03 additions/sample,
and 11.84 shifts/sample. Considering also the one multiplication/sample and the two addi-
tions/sample for the separate computation of ‖ŝn‖ we obtain a total tally of 4.56 multiplica-
tions/sample, 15.03 additions/sample, and 11.84 shifts/sample for the proposed approach.

4. Conclusions

We presented a fast algorithm for the correlation computations that are required for the inven-
tory based speech enhancement method proposed by Xiao et al. (Apr. 2009). The correlation
computations are used in the inventory unit selection scheme of the enhancement procedure.
They present a significant computational bottleneck for this method. The computational com-
plexity of the inventory unit selection scheme would dominate the overall processing require-
ment of the method by an order of magnitude if no fast algorithms were employed.
The fast computation procedure proposed in this chapter is able to dramatically reduce the
computational complexity of the proposed method without significantly affecting its enhance-
ment performance. The number of multiplications per inventory sample required for the pro-
cessing can be reduced from around 36.52 for a conventional FFT based method down to
around 4.56 for the proposed NTT based method. The proposed approach is thus significantly
faster than conventional computation methods.
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tions/sample for the separate computation of ‖ŝn‖ we obtain a total tally of 4.56 multiplica-
tions/sample, 15.03 additions/sample, and 11.84 shifts/sample for the proposed approach.

4. Conclusions

We presented a fast algorithm for the correlation computations that are required for the inven-
tory based speech enhancement method proposed by Xiao et al. (Apr. 2009). The correlation
computations are used in the inventory unit selection scheme of the enhancement procedure.
They present a significant computational bottleneck for this method. The computational com-
plexity of the inventory unit selection scheme would dominate the overall processing require-
ment of the method by an order of magnitude if no fast algorithms were employed.
The fast computation procedure proposed in this chapter is able to dramatically reduce the
computational complexity of the proposed method without significantly affecting its enhance-
ment performance. The number of multiplications per inventory sample required for the pro-
cessing can be reduced from around 36.52 for a conventional FFT based method down to
around 4.56 for the proposed NTT based method. The proposed approach is thus significantly
faster than conventional computation methods.

5. References

Blahut, R. E. (1987). Fast Algorithms for Digital Signal Processing, Addison-Wesley.
Deller, J. R., Proakis, J. G. & Hansen, J. H. (1993). Discrete-Time Processing of Speech Signals,

Macmillan, New York.
Ealey, D., Kelleher, H. & Pearce, D. (2001). Harmonic tunnelling: tracking non-stationary

noises during speech, Proceedings of EUROSPEECH pp. 437–440.
Ephraim, Y. & Malah, D. (1984). Speech enhancement using a minimum mean square error

short-time spectral amplitude estimator, IEEE Transactions on Acoustics, Speech, and
Signal Processing 32: 1109–1121.

Hendriks, R. C., Heusdens, R. & Jensen, J. (2007). An MMSE estimator for speech enhance-
ment under a combined stochastic/deterministic speech model, IEEE Transactions on
Audio, Speech and Language Processing 15(2): 406–415.

Hu, Y. & Loizou, P. C. (2004). Speech enhancement based on wavelet thresholding the multi-
taper spectrum, IEEE Transactions on Speech and Audio Processing 12(1): 59–67.

Loizou, P. C. (2007). Speech Enhancement, Theory and Practice, CRC-Press.
McAulay, R. J. & Malpass, M. L. (1980). Speech enhancement using a soft-decision noise

suppression filter, IEEE Transactions on Acoustics, Speech, and Signal Processing ASSP-
28(2): 137–145.

Mouchtaris, A., Van der Spiegel, J., Mueller, P. & Tsakalides, P. (2007). A spectral conversion
approach to single-channel speech enhancement, IEEE Transactions on Audio, Speech
and Language Processing 15(4): 1280–1193.

O’Shaughnessy, D. (2007). Modern methods of speech synthesis, IEEE Circuits and Systems
Magazine 7(3): 6–23.

Poor, H. V. (1994). An Introduction to Signal Detection and Estimation, Springer-Verlag.
Proakis, J. G. & Manolakis, D. G. (1996). Digital Signal Processing – Principles, Algorithms, and

Applications, 3rd edn, Prentice Hall, Upper Saddle River, New Jersey 07458.
Quatieri, T. F. (2002). Discrete-Time Speech Signal Processing: Principles and Practice, Prentice

Hall.
Sayood, K. (1996). Introduction to Data Compression, Morgan Kaufman.
Srinivasan, S., Samuelsson, J. & Kleijn, W. B. (2006). Codebook driven short-term predictor

parameter estimation for speech enhancement, IEEE Transactions on Audio, Speech,
and Language Processing 14(1): 163–176.

Xiao, X., Lee, P. & Nickel, R. M. (Apr. 2009). Inventory based speech enhancement for speaker
dedicated speech communication systems, Proceedings of ICASSP, Taipei, Taiwan,
pp. 3877–3880.

Xiao, X., Lee, P. & Nickel, R. M. (Aug. 2008). Inventory based speech denoising with hidden
Markov models, Proceedings of EUSIPCO, Lausanne, Switzerland.

Zavarehei, E., Vaseghi, S. & Yan, Q. (2007). Noisy speech enhancement using harmonic-noise
model and codebook-based post-processing, IEEE Transactions on Audio, Speech, and
Language Processing 15(4): 1194–1203.

Zhao, D. Y. & Kleijn, W. B. (2007). HMM-based gain modeling for enhancement of speech in
noise, IEEE Transactions on Audio, Speech, and Language Processing 15(3): 882–892.



Signal	Processing428



Compression	of	microarray	images 429

Compression	of	microarray	images

António	J.	R.	Neves	and	Armando	J.	Pinho

0

Compression of microarray images *

António J. R. Neves and Armando J. Pinho
Signal Processing Lab, DETI/IEETA, University of Aveiro

Portugal

1. Introduction

DNA microarrays have become a tool of paramount importance in the study of gene func-
tion, regulation, and interaction across large numbers of genes, and even entire genomes
(Hegde et al., 2000; Moore, 2001). Microarray experiments generate pairs of 16 bits per pixel
grayscale images (see Fig. 1, for an example). These images, which may require several tens
of megabytes in order to be stored or transmitted, are analyzed by software tools that extract
relevant information, such as the intensity of the spots and the background level. This infor-
mation is then used for evaluating the expression level of individual genes (Hegde et al., 2000;
Moore, 2001).

(a) Green channel (b) Red channel
Fig. 1. Example of a pair of images (1041 × 1044 pixels) that results from a microarray experi-
ment.

The common approach for microarray compression has been based on image analysis for spot
finding (griding followed by segmentation) with the aim of separating the microarray image
data into different streams based on pixel similarities (Adjeroh et al., 2006; Faramarzpour and
Shirani, 2004; Faramarzpour et al., 2003; Hua et al., 2003; 2002; Jörnsten et al., 2003; 2002a;
Lonardi and Luo, 2004; Zhang et al., 2005). Once separated, the streams are compressed to-
gether with the segmentation information. A potential drawback of these segmentation based

*This work was supported in part by the FCT (Fundação para a Ciência e Tecnologia).
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approaches is that different spot placements (e.g., non-rectangular) might compromise their
performance. In fact, although initially the rectangular packing was the organization used for
spot placement in microarrays, other non-rectangular packings have also been proposed (see
Fig. 2).

(a) Rectangular packing (b) Orange packing
Fig. 2. Different spot packing: (a) Rectangular packing; (b) Orange packing (sample image
from http://microarray1k.aecom.yu.edu/). Note that these images are not related.
They serve just for illustrating different spot placements.

Although initially most of the specialized techniques for microarray image compression con-
sidered the lossy approach as a reasonable possibility (Faramarzpour and Shirani, 2004; Hua
et al., 2003; 2002; Jörnsten et al., 2003; 2002a), the most recent methods address mainly re-
versible techniques (Faramarzpour et al., 2003; Lonardi and Luo, 2004; Zhang et al., 2005).
Keeping the original images allows future re-analysis by possibly better algorithms. In fact,
the analytic methods that are used for extracting information from the images are continu-
ously being improved (Kothapalli et al., 2002; Leung and Cavalieri, 2003; Sasik et al., 2004).
Also, as with other biomedical related data, legal issues might play a key role when choosing
between maintaining or deleting the original data.
Recently, we have investigated methods for compressing microarray images that do not re-
quire spot segmentation. This new approach is based on arithmetic coding that is driven by
image-dependent multi-bitplane finite-context models. Basically, the image is compressed on
a bitplane basis, going from the most significant to the least significant bitplane. The finite-
context model used by the arithmetic encoder uses (causal) pixels from the bitplane under
compression and also pixels from the bitplanes already encoded. To our knowledge, this
technique is currently the best one available in terms of compression efficiency of microarray
images (Neves and Pinho, 2009).
In this chapter, we start by describing the most important techniques for the lossless com-
pression of microarray images that have been proposed in the literature. Then, we present a
set of experiments that have been performed with the aim of providing a reference regard-
ing the performance of standard image coding techniques, namely, lossless JPEG2000, JBIG
and JPEG-LS, when applied to the lossless compression of microarray images. We proceed
with the description of an image-independent multi-bitplane finite-context approach and we
continue with the image-dependent version. Finally, we present experimental results that

illustrate the compression performance of the several approaches and we draw some conclu-
sions.

2. Compression techniques for microarray images

In this section, we present the most important methods for compression of microarray im-
ages, namely, the works of Jörnsten et al. (2003), Hua et al. (2002), Faramarzpour et al. (2003),
Lonardi and Luo (2004) and Zhang et al. (2005). Although all the methods presented in this
section address the microarray compression problem using different approaches, some of the
processing steps are common and similar to the ones depicted in Fig. 3.
All the methods start by segmenting the microarray images into regions of interest (ROIs) con-
taining the spot and some surrounding background. Some methods go even further, separat-
ing the spot area from the background. However, the segmentation algorithm used in each
method is different.

Header Spots
coding

Segmentation

Microarray image

Gridding

coding
Background

coding

Compressed image

Fig. 3. The common processing steps of the compression methods presented in this section.

Through segmentation, it is possible to encode the spots and background separately. This
is explicitly done in the works of Hua et al. (2003; 2002); Jörnsten et al. (2003); Jörnsten and
Yu (2000; 2002); Jörnsten et al. (2002a;b); Lonardi and Luo (2004), and more implicilty in the
work of Faramarzpour and Shirani (2004); Faramarzpour et al. (2003), because, in this case, the
separation between the spot area and the background is performed only when the sequence
is entropy encoded.
Almost all available methods have also a lossy compression version. These methods remove
what is considered to be noise or redundant. Although this step sounds obvious, the question
is “What should be considered noise or redundant?” Note that, in the context of microarray
images, the background is very important for noise estimation, because the bias due to noise
can be estimated and removed in the calculation of the gene expression level of each spot.
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approaches is that different spot placements (e.g., non-rectangular) might compromise their
performance. In fact, although initially the rectangular packing was the organization used for
spot placement in microarrays, other non-rectangular packings have also been proposed (see
Fig. 2).
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Fig. 2. Different spot packing: (a) Rectangular packing; (b) Orange packing (sample image
from http://microarray1k.aecom.yu.edu/). Note that these images are not related.
They serve just for illustrating different spot placements.

Although initially most of the specialized techniques for microarray image compression con-
sidered the lossy approach as a reasonable possibility (Faramarzpour and Shirani, 2004; Hua
et al., 2003; 2002; Jörnsten et al., 2003; 2002a), the most recent methods address mainly re-
versible techniques (Faramarzpour et al., 2003; Lonardi and Luo, 2004; Zhang et al., 2005).
Keeping the original images allows future re-analysis by possibly better algorithms. In fact,
the analytic methods that are used for extracting information from the images are continu-
ously being improved (Kothapalli et al., 2002; Leung and Cavalieri, 2003; Sasik et al., 2004).
Also, as with other biomedical related data, legal issues might play a key role when choosing
between maintaining or deleting the original data.
Recently, we have investigated methods for compressing microarray images that do not re-
quire spot segmentation. This new approach is based on arithmetic coding that is driven by
image-dependent multi-bitplane finite-context models. Basically, the image is compressed on
a bitplane basis, going from the most significant to the least significant bitplane. The finite-
context model used by the arithmetic encoder uses (causal) pixels from the bitplane under
compression and also pixels from the bitplanes already encoded. To our knowledge, this
technique is currently the best one available in terms of compression efficiency of microarray
images (Neves and Pinho, 2009).
In this chapter, we start by describing the most important techniques for the lossless com-
pression of microarray images that have been proposed in the literature. Then, we present a
set of experiments that have been performed with the aim of providing a reference regard-
ing the performance of standard image coding techniques, namely, lossless JPEG2000, JBIG
and JPEG-LS, when applied to the lossless compression of microarray images. We proceed
with the description of an image-independent multi-bitplane finite-context approach and we
continue with the image-dependent version. Finally, we present experimental results that

illustrate the compression performance of the several approaches and we draw some conclu-
sions.

2. Compression techniques for microarray images

In this section, we present the most important methods for compression of microarray im-
ages, namely, the works of Jörnsten et al. (2003), Hua et al. (2002), Faramarzpour et al. (2003),
Lonardi and Luo (2004) and Zhang et al. (2005). Although all the methods presented in this
section address the microarray compression problem using different approaches, some of the
processing steps are common and similar to the ones depicted in Fig. 3.
All the methods start by segmenting the microarray images into regions of interest (ROIs) con-
taining the spot and some surrounding background. Some methods go even further, separat-
ing the spot area from the background. However, the segmentation algorithm used in each
method is different.
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Fig. 3. The common processing steps of the compression methods presented in this section.

Through segmentation, it is possible to encode the spots and background separately. This
is explicitly done in the works of Hua et al. (2003; 2002); Jörnsten et al. (2003); Jörnsten and
Yu (2000; 2002); Jörnsten et al. (2002a;b); Lonardi and Luo (2004), and more implicilty in the
work of Faramarzpour and Shirani (2004); Faramarzpour et al. (2003), because, in this case, the
separation between the spot area and the background is performed only when the sequence
is entropy encoded.
Almost all available methods have also a lossy compression version. These methods remove
what is considered to be noise or redundant. Although this step sounds obvious, the question
is “What should be considered noise or redundant?” Note that, in the context of microarray
images, the background is very important for noise estimation, because the bias due to noise
can be estimated and removed in the calculation of the gene expression level of each spot.
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The technique proposed by Jörnsten et al. (2003) is characterized by a first stage devoted
to griding and segmentation. Using the approximate center of each spot, a seeded region
growing is performed for segmenting the spots. The segmentation map is encoded using
chain-coding, whereas the interior of the regions are encoded using a modified version of the
LOCO-I algorithm (LOw COmplexity LOssless COmpression for Images, the algorithm be-
hind the JPEG-LS coding standard), named SLOCO. Besides lossy-to-lossless capability, Jörn-
sten’s technique allows partial decoding by means of independently encoded image blocks.
Hua et al. (2002) presented a transform-based coding technique. Initially, a segmentation is
performed using the Mann-Whitney algorithm and the segmentation information is encoded
separately. Due to the thresholding properties of the Mann-Whitney algorithm, the griding
stage is avoided. Then, a modified EBCOT (Embedded Block Coding with Optimized Trun-
cation) (Taubman and Marcellin, 2002) for handling arbitrarily shaped regions is used for en-
coding the spots and background separately, allowing lossy-to-lossless coding of background
only (with the spots encoded in lossless mode) or both background and spots.
The compression method proposed by Faramarzpour et al. (2003) starts by locating and ex-
tracting the microarray spots, isolating each spot into an individual ROI. A spiral path is ad-
justed to each of these ROIs, such that its center coincides with the center of mass of the spot.
The idea is to transform the ROI into an one-dimensional signal with minimum entropy. Then,
predictive coding is applied along this path, with a separation between residuals belonging to
the spot area and those belonging to the background area.
Lonardi and Luo (2004) proposed lossless and lossy compression algorithms for microarray
images (MicroZip). The method uses a fully automatic griding procedure, similar to that
of Faramarzpour’s method, for separating spots from the background (which can be lossy
compressed). Through segmentation, the image is split into two streams: foreground and
background. Then, for entropy coding, each stream is divided into two 8 bit sub-streams
and arithmetic encoded, with the option of being previously processed by a Burrows-Wheeler
transform.
The method proposed by Adjeroh et al. (2006); Zhang et al. (2005) is based on PPAM (Pre-
diction by Partial Approximate Matching). PPAM is an image compression algorithm which
extends the PPM text compression algorithm, considering the special characteristics of natural
images (Zhang et al., 2005). Initially, the microarray image is separated into background and
foreground. Then, for each of these two components, the pixel representation is separated
into its most significant and least significant parts. To compress the data, the most significant
part is first processed by an error prediction scheme. The residuals are then encoded by the
PPAM context model and encoder. The least significant part is encoded directly by the PPAM
encoder and the segmentation information is saved without compression.

3. Standard image compression methods

JBIG, JPEG-LS and JPEG2000 are state-of-the-art standards for coding digital images. They
have been developed with different goals in mind, being JBIG more focused on bi-level
imagery, JPEG-LS dedicated to the lossless compression of continuous-tone images and
JPEG2000 designed with the aim of providing a wide range of functionalities.
The JBIG standard (Joint Bi-level Image Experts Group) was issued in 1993 by ISO/IEC (In-
ternational Organization for Standardization / International Electrotechnical Commission)
and ITU-T (Telecommunication Standardization Sector of the International Telecommunica-
tion Union) for the progressive lossless compression of binary and low-precision gray-level
images (typically, having less than 6 bits per pixel). The major advantages of JBIG over other

existing standards, such as FAX Group 3/4, are its capability of progressive encoding and its
superior compression efficiency (Hampel et al., 1992; ISO/IEC, 1993; Netravali and Haskell,
1995; Salomon, 2000). The core of JBIG is an adaptive context-based arithmetic encoder, rely-
ing on 1024 contexts when operating in sequential mode or on low resolution layers of the pro-
gressive mode, or 4096 contexts when encoding high resolution layers. More recently, a new
version, named JBIG2, has been published (ISO/IEC, 2000b), introducing additional function-
alities to the standard, such as multipage document compression, two modes of progressive
compression, lossy compression and differentiated compression methods for different regions
of the image (e.g., text or halftones) (Salomon, 2000).
JPEG-LS was developed by the Joint Photographic Experts Group (JPEG) with the aim of pro-
viding a low complexity lossless image standard that could be able to offer better compression
efficiency than lossless JPEG (ISO/IEC, 1999; Taubman and Marcellin, 2002; Weinberger et al.,
2000). Part 1 of this standard was finalized in 1999. The core of JPEG-LS is based on the
LOCO-I algorithm, that relies on prediction, residual modeling and context-based coding of
the residuals. Most of the low complexity of this technique comes from the assumption that
prediction residuals follow a two-sided geometric probability distribution and from the use of
Golomb codes which are known to be optimal for this kind of distributions. Besides lossless
compression, JPEG-LS also provides a lossy mode where the maximum absolute error can
be controlled by the encoder. This is known as near-lossless compression or L∞-constrained
compression.
From the three image coding standards addressed in this section, JPEG2000 is the most recent
one (ISO/IEC, 2000a; Taubman and Marcellin, 2002). Part 1 was published as an Interna-
tional Standard in the year 2000. It is based on wavelet technology and EBCOT coding of
the wavelet coefficients, providing very good compression performance for a wide range of
bitrates, including lossless coding. Moreover, JPEG2000 allows the generation of embedded
code streams, meaning that from a higher bitrate stream it is possible to extract lower bitrate
instances without the need for re-encoding. This property is of fundamental importance for
progressive transmission, for example, over slow communication channels.
These three standard image encoders cover a great variety of coding approaches. In fact,
whereas JPEG2000 is transform based, JPEG-LS relies on predictive coding, and JBIG relies
on context-based arithmetic coding. This diversity in coding engines might be helpful for
drawing conclusions regarding the appropriateness of each of these technologies for the case
of microarray image compression.

3.1 Compression performance of the standards
Before trying to develop new compression methods, it is always useful to find out how ex-
isting compression standards behave on the class of images of interest. Therefore, for per-
forming that assessment, we collected microarray images from three different publicly avail-
able sources: (1) 32 images that we refer to as the Apo AI set and which have been col-
lected from http://www.stat.berkeley.edu/users/terry/zarray/Html/index.
html (this set was previously used by Jörnsten et al. (2003); Jörnsten and Yu (2002)); (2) 14 im-
ages forming the ISREC set which have been collected from http://www.isrec.isb-sib.
ch/DEA/module8/P5_chip_image/images/; (3) three images previously used to test Mi-
croZip (Lonardi and Luo, 2004), which were collected from http://www.cs.ucr.edu/
~yuluo/MicroZip/.
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performed using the Mann-Whitney algorithm and the segmentation information is encoded
separately. Due to the thresholding properties of the Mann-Whitney algorithm, the griding
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cation) (Taubman and Marcellin, 2002) for handling arbitrarily shaped regions is used for en-
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justed to each of these ROIs, such that its center coincides with the center of mass of the spot.
The idea is to transform the ROI into an one-dimensional signal with minimum entropy. Then,
predictive coding is applied along this path, with a separation between residuals belonging to
the spot area and those belonging to the background area.
Lonardi and Luo (2004) proposed lossless and lossy compression algorithms for microarray
images (MicroZip). The method uses a fully automatic griding procedure, similar to that
of Faramarzpour’s method, for separating spots from the background (which can be lossy
compressed). Through segmentation, the image is split into two streams: foreground and
background. Then, for entropy coding, each stream is divided into two 8 bit sub-streams
and arithmetic encoded, with the option of being previously processed by a Burrows-Wheeler
transform.
The method proposed by Adjeroh et al. (2006); Zhang et al. (2005) is based on PPAM (Pre-
diction by Partial Approximate Matching). PPAM is an image compression algorithm which
extends the PPM text compression algorithm, considering the special characteristics of natural
images (Zhang et al., 2005). Initially, the microarray image is separated into background and
foreground. Then, for each of these two components, the pixel representation is separated
into its most significant and least significant parts. To compress the data, the most significant
part is first processed by an error prediction scheme. The residuals are then encoded by the
PPAM context model and encoder. The least significant part is encoded directly by the PPAM
encoder and the segmentation information is saved without compression.

3. Standard image compression methods

JBIG, JPEG-LS and JPEG2000 are state-of-the-art standards for coding digital images. They
have been developed with different goals in mind, being JBIG more focused on bi-level
imagery, JPEG-LS dedicated to the lossless compression of continuous-tone images and
JPEG2000 designed with the aim of providing a wide range of functionalities.
The JBIG standard (Joint Bi-level Image Experts Group) was issued in 1993 by ISO/IEC (In-
ternational Organization for Standardization / International Electrotechnical Commission)
and ITU-T (Telecommunication Standardization Sector of the International Telecommunica-
tion Union) for the progressive lossless compression of binary and low-precision gray-level
images (typically, having less than 6 bits per pixel). The major advantages of JBIG over other

existing standards, such as FAX Group 3/4, are its capability of progressive encoding and its
superior compression efficiency (Hampel et al., 1992; ISO/IEC, 1993; Netravali and Haskell,
1995; Salomon, 2000). The core of JBIG is an adaptive context-based arithmetic encoder, rely-
ing on 1024 contexts when operating in sequential mode or on low resolution layers of the pro-
gressive mode, or 4096 contexts when encoding high resolution layers. More recently, a new
version, named JBIG2, has been published (ISO/IEC, 2000b), introducing additional function-
alities to the standard, such as multipage document compression, two modes of progressive
compression, lossy compression and differentiated compression methods for different regions
of the image (e.g., text or halftones) (Salomon, 2000).
JPEG-LS was developed by the Joint Photographic Experts Group (JPEG) with the aim of pro-
viding a low complexity lossless image standard that could be able to offer better compression
efficiency than lossless JPEG (ISO/IEC, 1999; Taubman and Marcellin, 2002; Weinberger et al.,
2000). Part 1 of this standard was finalized in 1999. The core of JPEG-LS is based on the
LOCO-I algorithm, that relies on prediction, residual modeling and context-based coding of
the residuals. Most of the low complexity of this technique comes from the assumption that
prediction residuals follow a two-sided geometric probability distribution and from the use of
Golomb codes which are known to be optimal for this kind of distributions. Besides lossless
compression, JPEG-LS also provides a lossy mode where the maximum absolute error can
be controlled by the encoder. This is known as near-lossless compression or L∞-constrained
compression.
From the three image coding standards addressed in this section, JPEG2000 is the most recent
one (ISO/IEC, 2000a; Taubman and Marcellin, 2002). Part 1 was published as an Interna-
tional Standard in the year 2000. It is based on wavelet technology and EBCOT coding of
the wavelet coefficients, providing very good compression performance for a wide range of
bitrates, including lossless coding. Moreover, JPEG2000 allows the generation of embedded
code streams, meaning that from a higher bitrate stream it is possible to extract lower bitrate
instances without the need for re-encoding. This property is of fundamental importance for
progressive transmission, for example, over slow communication channels.
These three standard image encoders cover a great variety of coding approaches. In fact,
whereas JPEG2000 is transform based, JPEG-LS relies on predictive coding, and JBIG relies
on context-based arithmetic coding. This diversity in coding engines might be helpful for
drawing conclusions regarding the appropriateness of each of these technologies for the case
of microarray image compression.

3.1 Compression performance of the standards
Before trying to develop new compression methods, it is always useful to find out how ex-
isting compression standards behave on the class of images of interest. Therefore, for per-
forming that assessment, we collected microarray images from three different publicly avail-
able sources: (1) 32 images that we refer to as the Apo AI set and which have been col-
lected from http://www.stat.berkeley.edu/users/terry/zarray/Html/index.
html (this set was previously used by Jörnsten et al. (2003); Jörnsten and Yu (2002)); (2) 14 im-
ages forming the ISREC set which have been collected from http://www.isrec.isb-sib.
ch/DEA/module8/P5_chip_image/images/; (3) three images previously used to test Mi-
croZip (Lonardi and Luo, 2004), which were collected from http://www.cs.ucr.edu/
~yuluo/MicroZip/.
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JBIG compression was obtained using version 1.6 of the JBIG Kit package1, with sequential
coding (-q flag). JPEG2000 lossless compression was obtained using version 5.1 of the JJ2000
codec with default parameters (lossless compression)2. JPEG-LS coding was obtained using
version 2.2 of the SPMG JPEG-LS codec with default parameters3. For additional reference,
we also give compression results using the popular compression tool GZIP (version 1.2.4).
Table 1 shows the compression results, in number of bits per pixel (bpp), where the first group
of images corresponds to the Apo AI set, the second to the ISREC set and the third one to
the MicroZip image set. Image size ranges from 1000 × 1000 to 5496 × 1956 pixels, i.e., from
uncompressed sizes of about 2 megabytes to more than 20 megabytes (all images have 16 bits
per pixel). The average results presented take into account the different sizes of the images,
i.e., they correspond to the total number of bits divided by the total number of image pixels.

Image set Gzip JPEG2000 JBIG JPEG-LS

APO_AI 12.711 11.063 10.851 10.608
ISREC 12.464 11.366 10.925 11.145

Microzip 11.434 9.515 9.297 8.974
Average 12.273 10.653 10.393 10.218

Table 1. Compression results, in bits per pixel (bpp), using lossless JPEG2000, JBIG and JPEG-
LS. For reference, results are also given for the popular compression tool GZIP.

The total average results show that gains of about 13.2%, 15.3% and 16.7%, in relation to GZIP
compression, are attained respectively for lossless JPEG2000, JBIG and JPEG-LS, showing the
superiority of image coding techniques over general purpose data compression methods in
the task of compressing images. The average results by image set show that JPEG-LS provides
the highest compression in the case of the Apo AI and MicroZip images, whereas JBIG gives
the best results for the ISREC set. Lossless JPEG2000 is always slightly behind these two. It
is interesting to note that the set for which JBIG gave the best results is also the one requiring
more bits per pixel for encoding.

3.1.1 Sensitivity to noise
It has been noted by Jörnsten et al. (2003) that, in general, the eight least significant bitplanes
of cDNA microarray images are close to random and, therefore, incompressible. Since this
fact may result in some degradation in the compression performance of the encoders, we
decided to address this problem and to study the effect of noisy bitplanes in the compression
performance of the standards.
To perform this evaluation, we separated the images into a number p of most significant bit-
planes and 16 − p least significant bitplanes. Whereas the p most significant bitplanes have
been sent to the encoder, the 16 − p least significant bitplanes have been left uncompressed.
This means that the bitrate of a given image is the sum of the bitrate generated by encoding
the p most significant bitplanes plus the 16 − p bits concerning the bitplanes that have been
left uncompressed.

1 http://www.cl.cam.ac.uk/~mgk25/jbigkit/.
2 http://jj2000.epfl.ch.
3 The original website of this codec, http://spmg.ece.ubc.ca, is currently unavailable. However, it

can be obtained from ftp://www.ieeta.pt/~ap/codecs/jpeg_ls_v2.2.tar.gz.
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Fig. 4. Influence of noisy bitplanes in the performance of the standard encoding methods. The
the curves indicate the bitrate obtained when only a given number p of the most significant
bitplanes are sent to the encoder, whereas the other 16 − p bitplanes are left uncompressed.

Image set JPEG2000 JBIG JPEG-LS
8 bp Best 8 bp Best 8 bp Best

Apo_AI 10.940 10.790 10.510 10.507 10.523 10.433
ISREC 11.100 10.954 10.607 10.583 10.838 10.713

MicroZip 9.918 9.321 9.506 9.030 9.588 8.912
Average 10.661 10.376 10.224 10.073 10.302 10.026

Table 2. Average compression results, in bits per pixel (bpp), when a number of bitplanes
is left uncompressed. The columns labeled “8 bp” provide results for the case where only
the 8 most significant bitplanes have been encoded and the 8 least significant bitplanes have
been left uncompressed. The column named “Best” contains the results for the case where the
separation of most and least significant bitplanes has been optimally found.
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JBIG compression was obtained using version 1.6 of the JBIG Kit package1, with sequential
coding (-q flag). JPEG2000 lossless compression was obtained using version 5.1 of the JJ2000
codec with default parameters (lossless compression)2. JPEG-LS coding was obtained using
version 2.2 of the SPMG JPEG-LS codec with default parameters3. For additional reference,
we also give compression results using the popular compression tool GZIP (version 1.2.4).
Table 1 shows the compression results, in number of bits per pixel (bpp), where the first group
of images corresponds to the Apo AI set, the second to the ISREC set and the third one to
the MicroZip image set. Image size ranges from 1000 × 1000 to 5496 × 1956 pixels, i.e., from
uncompressed sizes of about 2 megabytes to more than 20 megabytes (all images have 16 bits
per pixel). The average results presented take into account the different sizes of the images,
i.e., they correspond to the total number of bits divided by the total number of image pixels.

Image set Gzip JPEG2000 JBIG JPEG-LS

APO_AI 12.711 11.063 10.851 10.608
ISREC 12.464 11.366 10.925 11.145

Microzip 11.434 9.515 9.297 8.974
Average 12.273 10.653 10.393 10.218

Table 1. Compression results, in bits per pixel (bpp), using lossless JPEG2000, JBIG and JPEG-
LS. For reference, results are also given for the popular compression tool GZIP.

The total average results show that gains of about 13.2%, 15.3% and 16.7%, in relation to GZIP
compression, are attained respectively for lossless JPEG2000, JBIG and JPEG-LS, showing the
superiority of image coding techniques over general purpose data compression methods in
the task of compressing images. The average results by image set show that JPEG-LS provides
the highest compression in the case of the Apo AI and MicroZip images, whereas JBIG gives
the best results for the ISREC set. Lossless JPEG2000 is always slightly behind these two. It
is interesting to note that the set for which JBIG gave the best results is also the one requiring
more bits per pixel for encoding.

3.1.1 Sensitivity to noise
It has been noted by Jörnsten et al. (2003) that, in general, the eight least significant bitplanes
of cDNA microarray images are close to random and, therefore, incompressible. Since this
fact may result in some degradation in the compression performance of the encoders, we
decided to address this problem and to study the effect of noisy bitplanes in the compression
performance of the standards.
To perform this evaluation, we separated the images into a number p of most significant bit-
planes and 16 − p least significant bitplanes. Whereas the p most significant bitplanes have
been sent to the encoder, the 16 − p least significant bitplanes have been left uncompressed.
This means that the bitrate of a given image is the sum of the bitrate generated by encoding
the p most significant bitplanes plus the 16 − p bits concerning the bitplanes that have been
left uncompressed.

1 http://www.cl.cam.ac.uk/~mgk25/jbigkit/.
2 http://jj2000.epfl.ch.
3 The original website of this codec, http://spmg.ece.ubc.ca, is currently unavailable. However, it

can be obtained from ftp://www.ieeta.pt/~ap/codecs/jpeg_ls_v2.2.tar.gz.
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Fig. 4. Influence of noisy bitplanes in the performance of the standard encoding methods. The
the curves indicate the bitrate obtained when only a given number p of the most significant
bitplanes are sent to the encoder, whereas the other 16 − p bitplanes are left uncompressed.

Image set JPEG2000 JBIG JPEG-LS
8 bp Best 8 bp Best 8 bp Best

Apo_AI 10.940 10.790 10.510 10.507 10.523 10.433
ISREC 11.100 10.954 10.607 10.583 10.838 10.713

MicroZip 9.918 9.321 9.506 9.030 9.588 8.912
Average 10.661 10.376 10.224 10.073 10.302 10.026

Table 2. Average compression results, in bits per pixel (bpp), when a number of bitplanes
is left uncompressed. The columns labeled “8 bp” provide results for the case where only
the 8 most significant bitplanes have been encoded and the 8 least significant bitplanes have
been left uncompressed. The column named “Best” contains the results for the case where the
separation of most and least significant bitplanes has been optimally found.
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Figure 4 depicts bitrate curves, as a function of p, for two different images, “1230c1G” and
“array1”. As can be observed, the best bitrate is generally not met when compressing all
16 bitplanes, but instead when some of the least significant bitplanes are left uncompressed.
However, the value of the optimum value of p, popt, varies not only from image to image,
but also from one encoder to the other. In fact, for the Apo AI set, which is characterized
by the most regular value of popt, JBIG is the encoder with the highest value of popt (around
8), then comes lossless JPEG2000 (around 10) and, finally, JPEG-LS (around 13). This result
is not surprising, since JBIG encodes the bitplanes independently. Therefore, without being
able to get information from other bitplanes, it is natural that JBIG starts considering bitplanes
as “noise” earlier than the other encoders. Moreover, this can also be the justification for its
better performance in the ISREC set, because it is the most noisy.
Table 2 compares average results for the three set of images regarding two situations: (1)
the image is divided into the eight most significant bitplanes (which are encoded) and the
eight least significant bitplanes (which are left uncompressed); (2) the optimum value of p
is determined for each image. From this table, and comparing with the Table 1, we can see
that, in fact, this splitting operation can provide some additional compression gains. The best
results attained provided improvements of 3.1%, 2.6% and 1.9% respectively for JBIG, lossless
JPEG2000 and JPEG-LS.
However, finding the right value for p may require as many as 16 iterations of the compression
phase in order to find it. Moreover, from the results shown in Table 2, we can see that a simple
separation of the bitplanes in an upper and lower half may improve the compression in some
cases (Apo AI and ISREC image sets), but may also produce the opposite result (MicroZip
image set).

3.1.2 Lossy-to-lossless compression
From the point of view of compression efficiency, and taking into account the results pre-
sented in Table 1, JPEG-LS is the overall best lossless compression method, followed by JBIG
and lossless JPEG2000. The difference between JPEG-LS and lossless JPEG2000 is about 4.1%
and between JPEG-LS and JBIG is only 1.7%. However, the better compression performance
provided by JPEG-LS can be overshadowed by a potentially important functionality provided
by the other two standards, which is progressive, lossy-to-lossless, transmission.
In the case of lossless JPEG2000, this functionality is basically a by-product of the multi-
resolution wavelet technology used in its encoding engine and also due to a strategy of en-
coding the information in layers (Taubman and Marcellin, 2002). In the case of JBIG, this
property comes from two different sources. On one hand, images with more that one bitplane
are encoded using a bitplane-by-bitplane coding approach. This provides a kind of progres-
sive transmission, from most to least significant bitplanes, where the precision of the pixels
is improved for each added bitplane. Moreover, this technique produces a reduction of the
L∞ error by a factor of two for each additional bitplane. On the other hand, JBIG permits the
progressive transmission of each bitplane by progressively increasing its spatial resolution
(ISO/IEC, 1993; Salomon, 2000). However, the compression results that we present in Table 1
do not take into account the additional overhead implied by this encoding mode of JBIG (we
used the -q flag of the encoder, which disables this mode).
In Fig. 5, we present rate-distortion curves for two images, “1230c1G” and “array1”, obtained
with the lossless JPEG2000 and JBIG coding standards, and according to two error metrics:
L2-norm (root mean squared error) and L∞-norm (maximum absolute error). Regarding the
L2-norm, we observe that lossless JPEG2000 provides slightly better rate-distortion results for
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Fig. 5. Rate distortion curves showing the performance of lossless JPEG2000 and JBIG in a
lossy-to-lossless mode of operation. Results are given both for the L2 (root mean squared
error) and L∞ (maximum absolute error) norms.

bitrates less than 8 bpp. For higher bitrates, this codec exhibits a sudden degradation of the
rate-distortion. We believe that this phenomenon is related to the default parameters used by
the encoder, which might not be well suited for images having 16 bits per pixel, such as those
of the microarrays. Moreover, we think that a careful setting of these parameters may lead to
improvements in the rate-distortion of JPEG2000 for bitrates higher than 8 bpp, although we
consider this tuning a problem that is beyond the scope of this work.
With respect to the L∞-norm, we observe that JBIG is the one with the best rate-distortion
performance. In fact, due to its bitplane-by-bitplane approach, it guarantees an exponential
and upper bounded decrease of the maximum absolute error. The upper bound of the error is
given by 2(16−p) − 1, where p is the number of bitplanes already decoded. Contrarily, lossless
JPEG2000 cannot guarantee such bound, which may be a major drawback in some cases. Fi-
nally, we note that the sudden deviation of the lossless JPEG2000 curves around bitrates of 8
bpp is probably related to the same problem pointed out earlier for the case of the L2-norm.
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Figure 4 depicts bitrate curves, as a function of p, for two different images, “1230c1G” and
“array1”. As can be observed, the best bitrate is generally not met when compressing all
16 bitplanes, but instead when some of the least significant bitplanes are left uncompressed.
However, the value of the optimum value of p, popt, varies not only from image to image,
but also from one encoder to the other. In fact, for the Apo AI set, which is characterized
by the most regular value of popt, JBIG is the encoder with the highest value of popt (around
8), then comes lossless JPEG2000 (around 10) and, finally, JPEG-LS (around 13). This result
is not surprising, since JBIG encodes the bitplanes independently. Therefore, without being
able to get information from other bitplanes, it is natural that JBIG starts considering bitplanes
as “noise” earlier than the other encoders. Moreover, this can also be the justification for its
better performance in the ISREC set, because it is the most noisy.
Table 2 compares average results for the three set of images regarding two situations: (1)
the image is divided into the eight most significant bitplanes (which are encoded) and the
eight least significant bitplanes (which are left uncompressed); (2) the optimum value of p
is determined for each image. From this table, and comparing with the Table 1, we can see
that, in fact, this splitting operation can provide some additional compression gains. The best
results attained provided improvements of 3.1%, 2.6% and 1.9% respectively for JBIG, lossless
JPEG2000 and JPEG-LS.
However, finding the right value for p may require as many as 16 iterations of the compression
phase in order to find it. Moreover, from the results shown in Table 2, we can see that a simple
separation of the bitplanes in an upper and lower half may improve the compression in some
cases (Apo AI and ISREC image sets), but may also produce the opposite result (MicroZip
image set).

3.1.2 Lossy-to-lossless compression
From the point of view of compression efficiency, and taking into account the results pre-
sented in Table 1, JPEG-LS is the overall best lossless compression method, followed by JBIG
and lossless JPEG2000. The difference between JPEG-LS and lossless JPEG2000 is about 4.1%
and between JPEG-LS and JBIG is only 1.7%. However, the better compression performance
provided by JPEG-LS can be overshadowed by a potentially important functionality provided
by the other two standards, which is progressive, lossy-to-lossless, transmission.
In the case of lossless JPEG2000, this functionality is basically a by-product of the multi-
resolution wavelet technology used in its encoding engine and also due to a strategy of en-
coding the information in layers (Taubman and Marcellin, 2002). In the case of JBIG, this
property comes from two different sources. On one hand, images with more that one bitplane
are encoded using a bitplane-by-bitplane coding approach. This provides a kind of progres-
sive transmission, from most to least significant bitplanes, where the precision of the pixels
is improved for each added bitplane. Moreover, this technique produces a reduction of the
L∞ error by a factor of two for each additional bitplane. On the other hand, JBIG permits the
progressive transmission of each bitplane by progressively increasing its spatial resolution
(ISO/IEC, 1993; Salomon, 2000). However, the compression results that we present in Table 1
do not take into account the additional overhead implied by this encoding mode of JBIG (we
used the -q flag of the encoder, which disables this mode).
In Fig. 5, we present rate-distortion curves for two images, “1230c1G” and “array1”, obtained
with the lossless JPEG2000 and JBIG coding standards, and according to two error metrics:
L2-norm (root mean squared error) and L∞-norm (maximum absolute error). Regarding the
L2-norm, we observe that lossless JPEG2000 provides slightly better rate-distortion results for
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Fig. 5. Rate distortion curves showing the performance of lossless JPEG2000 and JBIG in a
lossy-to-lossless mode of operation. Results are given both for the L2 (root mean squared
error) and L∞ (maximum absolute error) norms.

bitrates less than 8 bpp. For higher bitrates, this codec exhibits a sudden degradation of the
rate-distortion. We believe that this phenomenon is related to the default parameters used by
the encoder, which might not be well suited for images having 16 bits per pixel, such as those
of the microarrays. Moreover, we think that a careful setting of these parameters may lead to
improvements in the rate-distortion of JPEG2000 for bitrates higher than 8 bpp, although we
consider this tuning a problem that is beyond the scope of this work.
With respect to the L∞-norm, we observe that JBIG is the one with the best rate-distortion
performance. In fact, due to its bitplane-by-bitplane approach, it guarantees an exponential
and upper bounded decrease of the maximum absolute error. The upper bound of the error is
given by 2(16−p) − 1, where p is the number of bitplanes already decoded. Contrarily, lossless
JPEG2000 cannot guarantee such bound, which may be a major drawback in some cases. Fi-
nally, we note that the sudden deviation of the lossless JPEG2000 curves around bitrates of 8
bpp is probably related to the same problem pointed out earlier for the case of the L2-norm.
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3.2 Conclusions
The main objective of this section was to provide a set of comprehensive results regarding
the lossless compression of microarray images by state-of-the-art image coding standards,
namely, lossless JPEG2000, JBIG and JPEG-LS. In order to facilitate future comparisons by
other researchers, we collected a total of 49 microarray images available from the Internet. We
believe that the development of specialized compression techniques should be supported by a
preliminary study of the performance provided by well established methods and, particularly,
by those that are standards. Only after making such study it is possible to be in a comfortable
position for arguing about the relevance of some specialized technique.
From the experimental results obtained, we conclude that JPEG-LS gives the best lossless com-
pression performance. However, it lacks lossy-to-lossless capability, which may be a decisive
functionality if remote transmission over possibly slow links is a requirement. Complying to
this requirement we find JBIG and lossless JPEG2000, lossless JPEG2000 being the best consid-
ering rate-distortion in the sense of the L2-norm and JBIG the most efficient when considering
the L∞-norm. Moreover, JBIG is consistently better than lossless JPEG2000 regarding lossless
compression ratios. Also, JBIG is the method that can benefit most from a correct separa-
tion of most significant bitplanes that are encoded and least significant bitplanes that are left
uncompressed (it gained 3.1%), and it is also the coding technique that, due to the bitplane-
by-bitplane coding, can search for the optimum point of separation on-the-fly. In fact, this can
be done by monitoring the bitrate resulting from the compression of each bitplane, and stop
doing compression when this value is over 1 bpp. As a final conclusion, and according to
what we presented in this section, it is our opinion that the technology behind JBIG seems to
be the most appropriate for microarray image coding.

4. Compression of microarray images using finite-context models and arithmetic
coding

4.1 Finite-context models
The core of the methods proposed in the remainder of this chapter consists of an adaptive
finite-context model followed by arithmetic coding. A finite-context model (see Fig. 6) of an
information source assigns probability estimates to the symbols of an alphabet A, according to
a conditioning context computed over a finite and fixed number, M, of past outcomes (order-
M finite-context model) (Rissanen, 1983; Rissanen and Langdon, Jr., 1981; Sayood, 2000). At
time t, we represent these conditioning outcomes by ct = xt−M+1, . . . , xt−1, xt. The number of
conditioning states of the model is |A|M, dictating its complexity (or model cost). In our case,
A = {0, 1} and, therefore, |A| = 2.
In practice, the probability that the next outcome, xt+1, is “0” is obtained using the estimator

P(xt+1 = 0|ct) =
n(0, ct) + δ

n(0, ct) + n(1, ct) + 2δ
, (1)

where n(s, ct) represents the number of times that, in the past, the information source gen-
erated symbol s ∈ A having ct as the conditioning context. The parameter δ > 0, besides
allowing fine tuning the estimator, avoids generating zero probabilities when a symbol is en-
coded for the first time. In our case, we used δ = 1, which corresponds to Laplace’s estimator
(it can be seen as an initialization of all counters to one). The counters are updated each time
a symbol is encoded. Since the context template is causal, the decoder is able to reproduce the
same probability estimates without needing additional information.

0001... 01 1 1 ...
Context

10 0

Model

)t+1P(x

Encoder
Output

 bit−stream 

symbol
Input

ct

t−4x t+1x

= s | c t

Fig. 6. Finite-context model: the probability of the next outcome, xt+1, is conditioned by the
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Context, ct n(0, ct) n(1, ct) n(0, ct) + n(1, ct)
00000 23 41 64
00001 16 6 22
00010 19 30 49
00011 34 42 76
00100 36 17 53
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Table 3. Simple example illustrating how finite-context models are implemented. The rows
of the table represent a probability model at a given instant t. In this example, the particular
model that is chosen for encoding a symbol depends on the last five encoded symbols (order-5
context).

Table 3 shows an example of how a finite-context is typically implemented. In this example,
an order-5 finite-context model is presented. Each row represents a probability model that
is used to encode a given symbol according to the last encoded symbols (five in this exam-
ple). Therefore, if the last symbols were “00010”, i.e., ct = 00010, then the model communi-
cates the following probability estimates to the arithmetic encoder: P(0|00010) = 19/49 and
P(1|00010) = 30/49.
The block denoted “Encoder” in Fig. 6 is an arithmetic encoder. It is well known that prac-
tical arithmetic coding generates output bit-streams with average bitrates almost identical to
the entropy of the model (Bell et al., 1990; Salomon, 2000; Sayood, 2000). In our case, the
theoretical bitrate average (entropy) of the model after encoding N symbols is given by

HN = − 1
N

N−1

∑
t=0

log2 P(xt+1 = s|ct) bps, (2)

where “bps” stands for “bits per symbol”. Since we are dealing with images, instead of using
the generic “bps” measure we use “bpp”, which stands for “bits per pixel”. Recall that the
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3.2 Conclusions
The main objective of this section was to provide a set of comprehensive results regarding
the lossless compression of microarray images by state-of-the-art image coding standards,
namely, lossless JPEG2000, JBIG and JPEG-LS. In order to facilitate future comparisons by
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believe that the development of specialized compression techniques should be supported by a
preliminary study of the performance provided by well established methods and, particularly,
by those that are standards. Only after making such study it is possible to be in a comfortable
position for arguing about the relevance of some specialized technique.
From the experimental results obtained, we conclude that JPEG-LS gives the best lossless com-
pression performance. However, it lacks lossy-to-lossless capability, which may be a decisive
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be done by monitoring the bitrate resulting from the compression of each bitplane, and stop
doing compression when this value is over 1 bpp. As a final conclusion, and according to
what we presented in this section, it is our opinion that the technology behind JBIG seems to
be the most appropriate for microarray image coding.

4. Compression of microarray images using finite-context models and arithmetic
coding

4.1 Finite-context models
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, (1)
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coded for the first time. In our case, we used δ = 1, which corresponds to Laplace’s estimator
(it can be seen as an initialization of all counters to one). The counters are updated each time
a symbol is encoded. Since the context template is causal, the decoder is able to reproduce the
same probability estimates without needing additional information.
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Table 3 shows an example of how a finite-context is typically implemented. In this example,
an order-5 finite-context model is presented. Each row represents a probability model that
is used to encode a given symbol according to the last encoded symbols (five in this exam-
ple). Therefore, if the last symbols were “00010”, i.e., ct = 00010, then the model communi-
cates the following probability estimates to the arithmetic encoder: P(0|00010) = 19/49 and
P(1|00010) = 30/49.
The block denoted “Encoder” in Fig. 6 is an arithmetic encoder. It is well known that prac-
tical arithmetic coding generates output bit-streams with average bitrates almost identical to
the entropy of the model (Bell et al., 1990; Salomon, 2000; Sayood, 2000). In our case, the
theoretical bitrate average (entropy) of the model after encoding N symbols is given by

HN = − 1
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log2 P(xt+1 = s|ct) bps, (2)

where “bps” stands for “bits per symbol”. Since we are dealing with images, instead of using
the generic “bps” measure we use “bpp”, which stands for “bits per pixel”. Recall that the
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entropy of any sequence of two symbols is limited to 1 bps, a value that is achieved when the
symbols are independent and equally likely.

4.2 Image-independent contexts
In Section 3, we presented a study of the compression performance of three image coding stan-
dards in the context of microarray image compression: JPEG2000, JBIG and JPEG-LS. Since
they rely on three different coding technologies, we were able not only to evaluate the perfor-
mance of each of these standards, but also to collect hints regarding what might be the best
coding technology regarding microarray image compression. In that study, we concluded
that from the three technologies evaluated (predictive coding in the case of JPEG-LS, trans-
form coding in the case of JPEG2000 and context-based arithmetic coding in the case of JBIG),
the technology behind JBIG seemed to be the most promising. In fact, JPEG-LS provided the
highest compression, closely followed by JBIG. However, unlike JPEG2000 and JBIG, it does
not provide lossy-to-lossless capabilities, a characteristic that might be of high interest, spe-
cially in the case where remote databases have to be accessed using transmission channels of
reduced bandwidth. Moreover, with JBIG, the image bitplanes are compressed independently,
suggesting the existence of some room for improvement.
Motivated by these observations, we developed a compression method for microarray images
which is based on the same technology as JBIG but that, unlike JBIG, exploits inter-bitplane
dependencies, providing coding gains in relation to JBIG (Neves and Pinho, 2006). Designing
contexts that gather information from more than one bitplane (multi-bitplane contexts) is not
just a matter of joining more bits to the context, because for each new bit added the memory
required doubles. Moreover, there is the danger of running into the context dilution problem,
due to the lack of sufficient data for estimating the probabilities. Therefore, this extension to
multi-bitplane contexts must be done carefully.
The method proposed by Neves and Pinho (2006) was inspired by EIDAC (Yoo et al., 1998), a
compression method that has been used with success for coding images with a reduced num-
ber of intensities (simple images). The images are compressed on a bitplane basis, from the
most to the least significant bitplane. The causal finite-context model that drives the arithmetic
encoder uses pixels both from the bitplane currently being encoded and from the bitplanes
already encoded. As encoding proceeds, the average bitrate obtained after encoding each bit-
plane is monitored. If, for some bitplane, the average bitrate exceeds one bit per pixel, then
the encoding process is stopped and the remaining bitplanes are saved without compression.
The encoding procedure is outlined in Fig. 7.
The context modeling part of EIDAC was designed mainly with the aim of compressing im-
ages with eight bitplanes or less, implying, at most, 19 bits of context. A straightforward ex-
tension to images with 16 bitplanes would require contexts of 27 bits, i.e., at least 2× 227 = 228

counters. Essentially, the technique proposed by Neves and Pinho (2006) differs from EIDAC
in three aspects: (1) it was designed taking into account the specific nature of the images,
keeping the size of the contexts limited to 21 bits; (2) it does not use the histogram packing
procedure proposed for EIDAC because, generally, microarray images have dense intensity
histograms; (3) it implements a rate-control mechanism that avoids producing average bitrates
of more than one bit per pixel in bitplanes that are too noisy (this is a common characteristic
of the least significant bitplanes of microarray images (Jörnsten et al., 2003)).
As we mentioned before, choosing the context template for a multi-bitplane image is a critical
task, requiring tradeoffs involving aspects such as the maximum size of the context, the prob-
lem of context dilution and the placement of the context bits such that the maximum informa-
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bitplanes uncompressed
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Encode all pixels
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Encode bitplane k
k = 15, 14, 13, ..., 0

Fig. 7. Encoding procedure of the method proposed by Neves and Pinho (2006). The choice of
the context shape is based on Fig. 8. Note that, being a bitplane based encoder, it is possible
to monitor the bitrate used to encode each bitplane.

tion can be collected. This work was done in (Neves and Pinho, 2006) mainly using a trial and
error procedure, leading to the image-independent context configuration displayed in Fig. 8.
Note that, when encoding the eight least significant bitplanes, the finite-context model is only
formed with pixels from the higher numbered bitplanes. This specific context configuration
together with the rate-control mechanism avoids the degradation in compression rate when
there are bitplanes that are close to random and, therefore, are almost incompressible.
Although being able to provide state-of-the-art compression results, the method proposed in
(Neves and Pinho, 2006) could be improved. In fact, due to its image-independent nature,
and despite being designed for a specific type of images (microarrays), the context configura-
tion depicted in Fig. 8 resulted from a complicated process that tried to balance the inevitable
particularities among the images. From the point of view of a single image, this context con-
figuration might seem overkill, i.e., a smaller context might suffice. However, it is needed for
satisfying the ensemble of images. This observation motivated the image-dependent context-
modeling approach that we describe in the next section.
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tion can be collected. This work was done in (Neves and Pinho, 2006) mainly using a trial and
error procedure, leading to the image-independent context configuration displayed in Fig. 8.
Note that, when encoding the eight least significant bitplanes, the finite-context model is only
formed with pixels from the higher numbered bitplanes. This specific context configuration
together with the rate-control mechanism avoids the degradation in compression rate when
there are bitplanes that are close to random and, therefore, are almost incompressible.
Although being able to provide state-of-the-art compression results, the method proposed in
(Neves and Pinho, 2006) could be improved. In fact, due to its image-independent nature,
and despite being designed for a specific type of images (microarrays), the context configura-
tion depicted in Fig. 8 resulted from a complicated process that tried to balance the inevitable
particularities among the images. From the point of view of a single image, this context con-
figuration might seem overkill, i.e., a smaller context might suffice. However, it is needed for
satisfying the ensemble of images. This observation motivated the image-dependent context-
modeling approach that we describe in the next section.
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Fig. 8. Image-independent context configuration used in (Neves and Pinho, 2006) at five dif-
ferent compression stages: (a) when encoding the most significant bitplane (four bits of con-
text); (b) when encoding the second most significant bitplane (ten bits of context); (c) when
encoding the third most significant bitplane (16 bits of context); (d) from the fourth until the
eighth most significant bitplanes (17–21 bits of context); (e) the eight least significant bitplanes
(13–20 bits of context). Context positions falling outside the image at the image borders are
considered as having zero value.

5. Image-dependent finite-context models

Instead of using the image-independent context model presented in Fig. 8, the algorithm that
we describe in this section tries to find the “best” context configuration to encode the current
bitplane, based on the templates depicted in Fig. 9. The test of all possible context configura-
tions is a hard task, virtually impossible, due to the huge number of possibilities. To overcome
this drawback, we developed a greedy approach that we explain next.
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Fig. 9. (a) The template used for growing the context at the level of the bitplane currently
being encoded; (b) The template used for growing the context corresponding to the bitplanes
already encoded.

Before encoding a bitplane, p, the algorithm constructs an appropriate context configuration
through an iterative process (note that bitplanes are numbered from 0, the least significant
bitplane, to 15, the most significant bitplane). In each iteration, an additional context bit is
tested in each of the 16 − p possible locations, one in each of the 16 − p context bitplanes that
are available. In a given context bitplane, the additional bit can only be inserted in position k
of the corresponding template displayed in Fig. 9 if all positions i < k belong already to the
best context configuration found so far. This means that the part of the context belonging to a
given bitplane can grow only according to the pixel numbering shown in Fig. 9. The template

in Fig. 9(a) is used for the context bitplane p, whereas the template in Fig. 9(b) applies to the
remaining context bitplanes, i.e., from bitplane p + 1 to bitplane 15.
After performing an iteration, the new context bit is assigned to the position where the largest
improvement in the compression performance of bitplane p occurred. If none of the possi-
ble 16 − p context bit positions were able to improve the compression, then the search stops
and the context configuration found so far is used for encoding the bitplane p. Otherwise, a
new context bit is tested. This iterative process proceeds while the new context bit is able to
improve the compression performance of bitplane p or until the maximum context depth is
reached. For the results presented in this section, we used a maximum of 20 context bits. Fig-
ure 10 presents an example of the context configuration obtained with this process for some
of the bitplanes of the image “1230c1G” (APO_AI image set).
The configuration of the context bits for a particular bitplane, p, can be communicated to the
decoder using approximately 4(16 − p) bits. Note that the maximum number of context bits
per context bitplane is less that 16 (see Fig. 9) and, therefore, can be represented in four bits.
Hence, the total overhead regarding the image-dependent contexts is just some tens of bytes.
The algorithm is outlined next.

bestCtx := 0-order context;
bestRate := rate for encoding bitplane
with 0-order context;
do

improved := FALSE;
for p := bitplane to be encoded, 15

if p = bitplane to be encoded
add bit according to Fig. 9(a);

else
add bit according to Fig. 9(b);

end
rate := rate for encoding bitplane
using current context;
if rate < bestRate

bestCtx := current context;
bestRate := rate;
improved := TRUE;

end
remove bit added above;

end
while size of bestCtx < 20 AND improved

Being a greedy approach, it is not guaranteed that the optimum is found. In fact, as can be
seen, for each context bitplane the context can only grow according to a predefined order
which is given by the pixel numbering associated to the templates of Fig. 9. This limits the
number of degrees of freedom of the search process, reducing the probability of finding the
optimum configuration, but, on the other hand, also allowing running this procedure in a
reasonable time.
In order to further accelerate the process of choosing these image-dependent contexts, and
due to the highly structured nature of microarray images, we developed another version of
the algorithm where only a small region of the image is used for constructing the contexts.
Using this faster approach, the results obtained for a region of 256 × 256 pixels have been
slightly worse. However, we verified a significant reduction in the time spent. In a 2 GHz
Pentium 4 computer with 512 MBytes of memory, the MicroZip test set (three images totaling
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Before encoding a bitplane, p, the algorithm constructs an appropriate context configuration
through an iterative process (note that bitplanes are numbered from 0, the least significant
bitplane, to 15, the most significant bitplane). In each iteration, an additional context bit is
tested in each of the 16 − p possible locations, one in each of the 16 − p context bitplanes that
are available. In a given context bitplane, the additional bit can only be inserted in position k
of the corresponding template displayed in Fig. 9 if all positions i < k belong already to the
best context configuration found so far. This means that the part of the context belonging to a
given bitplane can grow only according to the pixel numbering shown in Fig. 9. The template

in Fig. 9(a) is used for the context bitplane p, whereas the template in Fig. 9(b) applies to the
remaining context bitplanes, i.e., from bitplane p + 1 to bitplane 15.
After performing an iteration, the new context bit is assigned to the position where the largest
improvement in the compression performance of bitplane p occurred. If none of the possi-
ble 16 − p context bit positions were able to improve the compression, then the search stops
and the context configuration found so far is used for encoding the bitplane p. Otherwise, a
new context bit is tested. This iterative process proceeds while the new context bit is able to
improve the compression performance of bitplane p or until the maximum context depth is
reached. For the results presented in this section, we used a maximum of 20 context bits. Fig-
ure 10 presents an example of the context configuration obtained with this process for some
of the bitplanes of the image “1230c1G” (APO_AI image set).
The configuration of the context bits for a particular bitplane, p, can be communicated to the
decoder using approximately 4(16 − p) bits. Note that the maximum number of context bits
per context bitplane is less that 16 (see Fig. 9) and, therefore, can be represented in four bits.
Hence, the total overhead regarding the image-dependent contexts is just some tens of bytes.
The algorithm is outlined next.

bestCtx := 0-order context;
bestRate := rate for encoding bitplane
with 0-order context;
do

improved := FALSE;
for p := bitplane to be encoded, 15

if p = bitplane to be encoded
add bit according to Fig. 9(a);

else
add bit according to Fig. 9(b);

end
rate := rate for encoding bitplane
using current context;
if rate < bestRate

bestCtx := current context;
bestRate := rate;
improved := TRUE;

end
remove bit added above;

end
while size of bestCtx < 20 AND improved

Being a greedy approach, it is not guaranteed that the optimum is found. In fact, as can be
seen, for each context bitplane the context can only grow according to a predefined order
which is given by the pixel numbering associated to the templates of Fig. 9. This limits the
number of degrees of freedom of the search process, reducing the probability of finding the
optimum configuration, but, on the other hand, also allowing running this procedure in a
reasonable time.
In order to further accelerate the process of choosing these image-dependent contexts, and
due to the highly structured nature of microarray images, we developed another version of
the algorithm where only a small region of the image is used for constructing the contexts.
Using this faster approach, the results obtained for a region of 256 × 256 pixels have been
slightly worse. However, we verified a significant reduction in the time spent. In a 2 GHz
Pentium 4 computer with 512 MBytes of memory, the MicroZip test set (three images totaling
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Fig. 10. Context configuration obtained by the proposed method in five different bitplanes of
the image “1230c1G”: (a) when encoding bitplane 14 (seven bits of context); (b) when encoding
bitplane 13 (11 bits of context); (c) when encoding bitplane 12 (13 bits of context); (d) when
encoding bitplane 11 (17 bits of context); (e) when encoding bitplane 10 (20 bits of context).
Context positions falling outside the image at the image borders are considered as having zero
value.

approximately 21 million pixels) required about 220 minutes to compress when the whole
image was used to performed the search. When we used a region of 256 × 256 pixels, it
required approximately 6 minutes to compress the MicroZip test set (about 2 minutes more
than the image-independent approach). These three images have sizes of 1916 × 1872, 5496 ×
1956 and 3625 × 1929 pixels. Decoding is faster, because the decoder does not have to search
for the best context: that information is embedded in the bitstream.

6. Experimental results

Table 4 shows the average compression results, in bits per pixel, for the three sets of images
described previously (see Section 3). In this table, we present experimental results of both the
image-independent and the image-dependent approaches. We also include results obtained
with SPIHT (Said and Pearlman, 1996)4 and EIDAC (Yoo et al., 1998).
Comparing with the results presented in Table 1, we can see that the fast version of the image-
dependent method (indicated as “256 × 256” in the table) is 6.3% better than JBIG, 4.7% bet-
ter than JPEG-LS and 8.6% better than lossless JPEG2000. It is important to remember that
JPEG-LS does not provide progressive decoding, a characteristic that is intrinsic to the image-
dependent multi-bitplane finite-context method and also to JPEG2000 and JBIG. From the re-
sults presented in Table 4, it can also be seen that using an area of 256× 256 pixels in the center
of the image for finding the context, instead of the whole image, leads to a small degradation
in the performance (about 0.3%), showing the appropriateness of this approach.

4 SPIHT codec from http://www.cipr.rpi.edu/research/SPIHT/ (version 8.01).

Image set SPIHT EIDAC Image Image-dependent
independent 256×256 Full

APO_AI 10.812 10.543 10.280 10.225 10.194
ISREC 11.098 10.446 10.199 10.198 10.158

MicroZip 9.198 8.837 8.840 8.667 8.619
Average 10.378 10.005 9.826 9.741 9.708

Table 4. Average compression results, in bits per pixel, using SPIHT, EIDAC, the image-
independent and the image-dependent methods. The “256 × 256” column indicates results
obtained with a context model adjusted using only a square of 256 × 256 pixels at the center
of the microarray image, whereas “Full” indicates that the search was performed in the whole
image. The average results presented take into account the different sizes of the images, i.e.,
they correspond to the total number of bits divided by the total number of image pixels.

Table 5 confirms the performance of the image-dependent method relatively to two recent
specialized methods for compressing microarray images: MicroZip (Lonardi and Luo, 2004)
and Zhang’s method (Adjeroh et al., 2006; Zhang et al., 2005). As can be observed, the image-
dependent multi-bitplane finite-context method provides compression gains of 9.1% relatively
to MicroZip and 6.2% in relation to Zhang’s method, on a set of test images that has been used
by all these methods.

Images MicroZip Zhang Image Image-dependent
independent 256×256 Full

array1 11.490 11.380 11.105 11.120 11.056
array2 9.570 9.260 8.628 8.470 8.423
array3 8.470 8.120 7.962 7.717 7.669

Average 9.532 9.243 8.840 8.667 8.619

Table 5. Compression results, in bits per pixel, using two specialized methods, MicroZip
and Zhang’s method, the image-independent method and the image-dependent method. The
“256 × 256” column indicates results obtained with a context model adjusted using only a
square of 256 × 256 pixels at the center of the microarray image, whereas “Full” indicates that
the search was performed in the whole image.

Figure 11 shows, for three different images, the average number of bits per pixel that are
needed for representing each bitplane. As expected, this value generally increases when
going from most significant bitplanes to least significant bitplanes. For the case of images
“Def661Cy3” and “1230c1G”, it can be seen that the average number of bits per pixel re-
quired by the eight least significant bitplanes is close to one, as pointed out by Jörnsten et al.
(2003). However, image “array3” shows a different behavior. Because this image is less
noisy, the compression algorithm is able to exploit redundancies even in lower bitplanes. This
is done without compromising the compression efficiency of noisy images, due to the mech-
anism that monitors and controls the average number of bits per pixel required for encoding
each bitplane.
The maximum number of context bits that we allowed for building the contexts was limited
to 20. Since the coding alphabet is binary, this implies, at most, 2 × 220 = 2 097 152 counters
that can be stored in approximately 8 MBytes of computer memory. In a 2 GHz Pentium 4
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Fig. 10. Context configuration obtained by the proposed method in five different bitplanes of
the image “1230c1G”: (a) when encoding bitplane 14 (seven bits of context); (b) when encoding
bitplane 13 (11 bits of context); (c) when encoding bitplane 12 (13 bits of context); (d) when
encoding bitplane 11 (17 bits of context); (e) when encoding bitplane 10 (20 bits of context).
Context positions falling outside the image at the image borders are considered as having zero
value.

approximately 21 million pixels) required about 220 minutes to compress when the whole
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required approximately 6 minutes to compress the MicroZip test set (about 2 minutes more
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4 SPIHT codec from http://www.cipr.rpi.edu/research/SPIHT/ (version 8.01).
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image. The average results presented take into account the different sizes of the images, i.e.,
they correspond to the total number of bits divided by the total number of image pixels.
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and Zhang’s method (Adjeroh et al., 2006; Zhang et al., 2005). As can be observed, the image-
dependent multi-bitplane finite-context method provides compression gains of 9.1% relatively
to MicroZip and 6.2% in relation to Zhang’s method, on a set of test images that has been used
by all these methods.
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Table 5. Compression results, in bits per pixel, using two specialized methods, MicroZip
and Zhang’s method, the image-independent method and the image-dependent method. The
“256 × 256” column indicates results obtained with a context model adjusted using only a
square of 256 × 256 pixels at the center of the microarray image, whereas “Full” indicates that
the search was performed in the whole image.

Figure 11 shows, for three different images, the average number of bits per pixel that are
needed for representing each bitplane. As expected, this value generally increases when
going from most significant bitplanes to least significant bitplanes. For the case of images
“Def661Cy3” and “1230c1G”, it can be seen that the average number of bits per pixel re-
quired by the eight least significant bitplanes is close to one, as pointed out by Jörnsten et al.
(2003). However, image “array3” shows a different behavior. Because this image is less
noisy, the compression algorithm is able to exploit redundancies even in lower bitplanes. This
is done without compromising the compression efficiency of noisy images, due to the mech-
anism that monitors and controls the average number of bits per pixel required for encoding
each bitplane.
The maximum number of context bits that we allowed for building the contexts was limited
to 20. Since the coding alphabet is binary, this implies, at most, 2 × 220 = 2 097 152 counters
that can be stored in approximately 8 MBytes of computer memory. In a 2 GHz Pentium 4
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Fig. 11. Average number of bits per pixel required for encoding each bitplane of three different
microarray images (one from each test set).

computer with 512 MBytes of memory, the image-dependent algorithm required about six
minutes to compress the MicroZip test set (note that this compression time is only indicative,
because the code has not been optimized for speed). Decoding is faster, because the decoder
does not have to search for the best context. Just for comparison, the codecs of the compression
standards took approximately one minute to encode the same set of images.

7. Conclusions

The use of microarray expression data in state-of-the-art biology has been well established.
The widespread adoption of this technology, coupled with the significant volume of data gen-
erated per experiment, in the form of images, has led to significant challenges in storage and
query-retrieval. In this work, we have studied the problem of coding this type of images.
We presented a set of comprehensive results regarding the lossless compression of microar-
ray images by state-of-the-art image coding standards, namely, lossless JPEG2000, JBIG and
JPEG-LS. From the experimental results obtained, we conclude that JPEG-LS gives the best
lossless compression performance. However, it lacks lossy-to-lossless capability, which may
be a decisive functionality if remote transmission over possibly slow links is a requirement.
Complying to this requirement we find JBIG and lossless JPEG2000, lossless JPEG2000 being
the best considering rate-distortion in the sense of the L2-norm and JBIG the most efficient
when considering the L∞-norm. Moreover, JBIG is consistently better than lossless JPEG2000
regarding lossless compression ratios.
Motivated by these findings, we have developed efficient methods for lossless compression
of microarray images, allowing progressive, lossy-to-lossless decoding. These methods are
based on bitplane compression using image-independent or image-dependent finite-context
models and arithmetic coding. They do not require griding and/or segmentation as most
of the specialized methods that have been proposed do. This may be an advantage if only
compression is sought, since it reduces the complexity of the method. Moreover, since they
do not require griding, they are robust, for example, against layout changes in spot placement.

The results obtained by the multi-bitplane context-based methods have been compared with
the three image coding standards and with two recent specialized methods: MicroZip and
Zhang’s method. The results obtained show that these new methods have better compression
performance in all image test sets used.
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because the code has not been optimized for speed). Decoding is faster, because the decoder
does not have to search for the best context. Just for comparison, the codecs of the compression
standards took approximately one minute to encode the same set of images.
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The use of microarray expression data in state-of-the-art biology has been well established.
The widespread adoption of this technology, coupled with the significant volume of data gen-
erated per experiment, in the form of images, has led to significant challenges in storage and
query-retrieval. In this work, we have studied the problem of coding this type of images.
We presented a set of comprehensive results regarding the lossless compression of microar-
ray images by state-of-the-art image coding standards, namely, lossless JPEG2000, JBIG and
JPEG-LS. From the experimental results obtained, we conclude that JPEG-LS gives the best
lossless compression performance. However, it lacks lossy-to-lossless capability, which may
be a decisive functionality if remote transmission over possibly slow links is a requirement.
Complying to this requirement we find JBIG and lossless JPEG2000, lossless JPEG2000 being
the best considering rate-distortion in the sense of the L2-norm and JBIG the most efficient
when considering the L∞-norm. Moreover, JBIG is consistently better than lossless JPEG2000
regarding lossless compression ratios.
Motivated by these findings, we have developed efficient methods for lossless compression
of microarray images, allowing progressive, lossy-to-lossless decoding. These methods are
based on bitplane compression using image-independent or image-dependent finite-context
models and arithmetic coding. They do not require griding and/or segmentation as most
of the specialized methods that have been proposed do. This may be an advantage if only
compression is sought, since it reduces the complexity of the method. Moreover, since they
do not require griding, they are robust, for example, against layout changes in spot placement.

The results obtained by the multi-bitplane context-based methods have been compared with
the three image coding standards and with two recent specialized methods: MicroZip and
Zhang’s method. The results obtained show that these new methods have better compression
performance in all image test sets used.
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1. INTRODUCTION

Due to the finite precision nature of computer arithmetic, the output roundoff noise of a fixed-
point IIR digital filter usually arises. This noise is critically dependent on the internal structure
of an IIR digital filter [1],[2]. Error feedback (EF) is known as an effective technique for reduc-
ing the output roundoff noise in an IIR digital filter [3]-[5]. Williamson [6] has reduced the
output roundoff noise more effectively by choosing the filter structure and applying EF to the
filter. Lu and Hinamoto [7] have developed a jointly optimized technique of EF and realiza-
tion to minimize the effects of roundoff noise at the filter output subject to l2-norm dynamic-
range scaling constraints. Li and Gevers [8] have analyzed the output roundoff noise of the
closed-loop system with a state-estimate feedback controller, and presented an algorithm for
realizing the state-estimate feedback controller with minimum output roundoff noise under
l2-norm dynamic-range scaling constraints. Hinamoto and Yamamoto [9] have proposed a
method for applying EF to a given closed-loop system with a state-estimate feedback con-
troller.
This paper investigates the problem of jointly optimizing EF and realization for the closed-
loop system with a state-estimate feedback controller so as to minimize the output roundoff
noise subject to l2-norm dynamic-range scaling constraints. To this end, the problem at hand is
converted into an unconstrained optimization problem by using linear-algebraic techniques,
and then an iterative technique which relies on a quasi-Newton algorithm [10] is developed.
With a closed-form formula for gradient evaluation and an efficient quasi-Newton solver, the
unconstrained optimization problem can be solved efficiently. Our computer simulation re-
sults demonstrate the validity and effectiveness of the proposed technique.
Throughout the paper, In stands for the identity matrix of dimension n × n, the transpose
(conjugate transpose) of a matrix A is indicated by AT (A∗), and the trace and ith diagonal
element of a square matrix A are denoted by tr[A] and (A)ii, respectively.

2. ROUNDOFF NOISE ANALYSIS

Consider a stable, controllable and observable linear discrete-time system described by

x(k + 1) = Aox(k) + bou(k)

y(k) = cox(k)
(1)
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where x(k) is an n × 1 state-variable vector, u(k) is a scalar input, y(k) is a scalar output, and
Ao, bo and co are n × n, n × 1 and 1 × n real constant matrices, respectively. The transfer
function of the linear system in (1) is given by

Ho(z) = co(zIn − Ao)
−1bo. (2)

If a regulator is designed by using the full-order state observer, we obtain a state-estimate
feedback controller as

x̃(k + 1) = Fo x̃(k) + bou(k) + goy(k)

= Ro x̃(k) + bor(k) + goy(k)

u(k) = −ko x̃(k) + r(k)

(3)

where x̃(k) is an n × 1 state-variable vector in the full-order state observer, go is an n × 1 gain
vector chosen so that all the eigenvalues of Fo = Ao − goco are inside the unit circle in the
complex plane, ko is a 1 × n state-feedback gain vector chosen so that each of the eigenvalues
of Ao − boko is at a desirable location within the unit circle, r(k) is a scalar reference signal,
and Ro = Fo − boko. The closed-loop control system consisting of the linear system in (1) and
the state-estimate feedback controller in (3) is illustrated in Fig. 1.

~

u(k)r(k) y(k)
HO(z)

x(k)
z 

-1I

O

FO

kO

bO g

Fig. 1. The closed-loop control system with a state-estimate feedback controller.

When performing quantization before matrix-vector multiplication, we can express the finite-
word-length (FWL) implementation of (3) with error feedback as

x̂(k + 1) = R Q[x̂(k)] + br(k) + gy(k) + De(k)

u(k) = −k Q[x̂(k)] + r(k)
(4)

where

e(k) = x̂(k)− Q[x̂(k)]

is an n × 1 roundoff error vector and D is an n × n error feedback matrix. All coefficient
matrices R, b, g and k are assumed to have an exact fractional Bc bit representation. The FWL

state-variable vector x̂(k) and signal u(k) all have a B bit fractional representation, while the
reference input r(k) is a (B − Bc) bit fraction. The vector quantizer Q[·] in (4) rounds the B
bit fraction x̂(k) to (B − Bc) bits after completing the multiplications and additions, where the
sign bit is not counted. It is assumed that the roundoff error vector e(k) can be modeled as a
zero-mean noise process with covariance σ2 In where

σ2 =
1
12

2−2(B−Bc).

It is noted that if the ith element of the roundoff error vector e(k) is indicated by ei(k) for i =
1, 2, · · · , n then the variable ei(k) can be approximated by a white noise sequence uniformly
distributed with the following probability density function:

p(ei(k)) =

{

2B−Bc for − 1
2

2−(B−Bc) ≤ ei(k) ≤
1
2

2−(B−Bc)

0 otherwise

u(k)r(k) y(k)
HO(z)
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Fig. 2. A state-estimate feedback controller with error feedback.

The closed-loop system consisting of the linear system in (1) and the state-estimate feedback
controller with error feedback in (4) is shown in Fig. 2, and is described by
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x(k + 1)
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x(k)
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where x(k) is an n × 1 state-variable vector, u(k) is a scalar input, y(k) is a scalar output, and
Ao, bo and co are n × n, n × 1 and 1 × n real constant matrices, respectively. The transfer
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−1bo. (2)
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(3)

where x̃(k) is an n × 1 state-variable vector in the full-order state observer, go is an n × 1 gain
vector chosen so that all the eigenvalues of Fo = Ao − goco are inside the unit circle in the
complex plane, ko is a 1 × n state-feedback gain vector chosen so that each of the eigenvalues
of Ao − boko is at a desirable location within the unit circle, r(k) is a scalar reference signal,
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HO(z)

x(k)
z 

-1I
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FO
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bO g

Fig. 1. The closed-loop control system with a state-estimate feedback controller.
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where

A =

[

Ao −bok

gco R

]

, b =

[

bo

b

]

B =

[

bok

D − R

]

, c = [co 0] .

From (5), the transfer function from the roundoff error vector e(k) to the output y(k) is given
by

GD(z) = c (zI2n − A)−1B. (6)

The output noise gain J(D) = σ2
out/σ2 is then computed as

J(D) = tr[W D] (7)

with
W D =

1
2π j

∮

|z|=1
G∗

D(z)GD(z)
dz
z

(8)

where σ2
out stands for the noise variance at the output. For tractability, we evaluate J(D) in (7)

by replacing R, b, g and k by Ro, bo, go and ko, respectively. Defining

S =

[

In 0

In −In

]

, (9)

the transfer function in (6) can be expressed as

GD(z) = cS(zI2n − S−1 AS)−1S−1B

= c(zI2n − Φ)−1

[

boko

Fo − D

]

= co(zIn − Ao + boko)−1boko(zIn − Fo)−1

·(zIn − D)

= c(zI2n − Φ)−1U(zIn − D)

(10)

where

Φ =

[

Ao − boko boko

0 Fo

]

U =

[

0

In

]

.

It is noted that the stability of the closed-loop control system is determined by the eigenvalues
of matrix A in (5), or equivalently, those of matrix Φ in (10). This means that neither of the
roundoff error vector e(k) and the error-feedback matrix D affects the stability.
Substituting (10) into matrix W D in (8) gives

W D = (b0k0)
TW1b0k0 + (b0k0)

TW2(F0 − D)

+(F0 − D)TW3b0k0

+(F0 − D)TW4(F0 − D)

(11)

where
W = ΦTWΦ + cTc

W =

[

W1 W2

W3 W4

]

.

Since W is positive semidefinite, it can be shown that there exists an n × n matrix P such that
W3 = W4P. In addition, (11) can be written by virtue of W2 = W T

3 as

W D = (F0 + Pb0k0 − D)TW4(F0 + Pb0k0 − D)

+(b0k0)
T(W1 − PTW4P)b0k0.

(12)

Alternatively, applying z-transform to the first equation in (5) under the assumption that
e(k) = 0, we obtain

[

X(z)

X̂(z)

]

= (zI − A)−1bR(z) (13)

where X(z), X̂(z) and R(z) represent the z-transforms of x(k), x̂(k) and r(k), respectively.
Replacing R, b, k and g by Ro, bo, ko and go, respectively, and then using

S−1

[

X(z)

X̂(z)

]

= (zI2n − S−1 AS)−1S−1b

yields
X̂(z) = X(z) = F(z)R(z) (14)

where
F(z) = [zIn − (Ao − boko)]

−1bo.

The controllability Gramian K defined by

K =
1

2π j

∮

|z|=1
F(z)F∗(z)

dz
z

(15)

can be obtained by solving the following Lyapunov equation:

K = (Ao − boko)K(Ao − boko)
T + bobT

o . (16)

3. ROUNDOFF NOISE MINIMIZATION

Consider the system in (4) with D = 0 and denote it by (R, b, g, k)n. By applying a coordinate
transformation x̃′(k) = T−1 x̂(k) to the above system (R, b, g, k)n, we obtain a new realization
characterized by (R̃, b̃, g̃, k̃)n where

R̃ = T−1RT , b̃ = T−1b

g̃ = T−1g, k̃ = kT .
(17)

For the system described by (17), the counterparts of W i for i = 1, 2, 3, 4 are given by

W̃ i = TTW iT (18)
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and the corresponding output noise gain is given by

J(D, T) = tr[W̃ D] (19)

where W̃ D can be obtained referring to (11) as

W̃ D =
[

T−1(F0 + Pb0k0)T − D
]T

·TTW4T
[

T−1(F0 + Pb0k0)T − D
]

+TT(b0k0)
T(W1 − PTW4P)b0k0T .

In addition, (15) can be written as

K̃ =
1

2π j

∮

|z|=1
T−1F(z)F∗(z)T−T dz

z

= T−1KT−T .

(20)

As a result, the output roundoff noise minimization problem amounts to obtaining matrices
D and T which jointly minimize J(D, T) in (19) subject to the l2-norm dynamic-range scaling
constraints specified by

(K̃)ii = (T−1KT−T)ii = 1, i = 1, 2, · · · , n. (21)

To deal with (21), we define
T̂ = TTK− 1

2 . (22)

Then the l2-norm dynamic-range scaling constraints in (21) can be written as

(T̂−T T̂−1
)ii = 1, i = 1, 2, · · · , n. (23)

These constraints are always satisfied if T̂−1 assumes the form

T̂−1
=

[

t1
||t1||

,
t2

||t2||
, · · · ,

tn

||tn||

]

. (24)

Substituting (22) into (19), we obtain

J(D, T̂) = tr
[

T̂(Â − T̂T DT̂−T
)TŴ4

·(Â − T̂T DT̂−T
)T̂T

+ T̂ĈT̂T
]

(25)

where
Â = K− 1

2 (F0 + Pb0k0)K
1
2 , Ŵ4 = K

1
2 W4K

1
2

Ĉ = K
1
2 (b0k0)

T(W1 − PTW4P)b0k0K
1
2 .

From the foregoing arguments, the problem of obtaining matrices D and T that minimize (19)
subject to the scaling constraints in (21) is now converted into an unconstrained optimization
problem of obtaining D and T̂ that jointly minimize J(D, T̂) in (25).

Let x be the column vector that collects the variables in matrix D and matrix [t1, t2, · · · , tn].
Then J(D, T̂) is a function of x, denoted by J(x). The proposed algorithm starts with an initial
point x0 obtained from an initial assignment D = T̂ = In. In the kth iteration, a quasi-Newton
algorithm updates the most recent point xk to point xk+1 as [10]

xk+1 = xk + αkdk (26)

where
dk = −Sk∇J(xk)

αk = arg
[

min
α

J(xk + αdk)
]

Sk+1 = Sk +

(

1 + γT
k Skγk
γT

k δk

)

δkδ
T
k

γT
k δk

− δkγT
k Sk+Skγkδ

T
k

γT
k δk

S0 = I, δk = xk+1−xk, γk = ∇J(xk+1)−∇J(xk).

Here, ∇J(x) is the gradient of J(x) with respect to x, and Sk is a positive-definite approxima-
tion of the inverse Hessian matrix of J(xk). This iteration process continues until

|J(xk+1)− J(xk)| < ε (27)

is satisfied where ε > 0 is a prescribed tolerance.
In what follows, we derive closed-form expressions of ∇J(x) for the cases where D assumes
the form of a general, diagonal, or scalar matrix.
1) Case 1: D Is a General Matrix: From (25), the optimal choice of D is given by

D = T̂−TÂT̂ T, (28)

which leads to
J(T̂−TÂT̂ T, T̂) = tr

[

T̂ĈT̂T
]

. (29)

In this case, the number of elements in vector x consisting of T̂ is equal to n2 and the gradient
of J(x) is found to be

∂J(x)
∂tij

= lim
∆→ 0

J(T̂ ij)− J(T̂)
∆

= 2eT
j T̂ĈT̂ T T̂gij, i, j = 1, 2, · · · , n

(30)

where T̂ ij is the matrix obtained from T̂ with a perturbed (i, j)th component, which is given
by

T̂ ij = T̂ +
∆T̂gije

T
j T̂

1 − ∆eT
j T̂gij

and gij is computed using

gij = ∂

{

t j

||t j||

}

/∂tij =
1

||t j||3
(tijt j − ||t j||2ei).

2) Case 2: D Is a Diagonal Matrix: Here, matrix D assumes the form

D = diag{d1, d2, · · · , dn}. (31)
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2 , Ŵ4 = K

1
2 W4K

1
2
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In this case, (25) becomes
J(D, T̂) = tr

[

T̂ MdT̂T
]

(32)

where
Md = Ĉ + ÂTŴ4 Â + Ŵ4T̂T D2T̂−T

−ÂTŴ4T̂T DT̂−T − Ŵ4 ÂT̂T DT̂−T .

It follows that
∂J(x)
∂tij

= 2eT
j T̂ MdT̂T T̂gij, i, j = 1, 2, · · · , n

∂J(x)
∂di

= 2eT
i (DT̂ − T̂ ÂT

)Ŵ4T̂Tei, i = 1, 2, · · · , n.

(33)

3) Case 3: D Is a Scalar Matrix: It is assumed here that D = αIn with a scalar α. The gradient of
J(x) can then be calculated as

∂J(x)
∂tij

= 2eT
j T̂ MsT̂T T̂gij, i, j = 1, 2, · · · , n

∂J(x)
∂α

= tr
[

T̂(2αŴ4 − ÂTŴ4 − Ŵ4 Â)T̂T
]

(34)

where
Ms = (Â − αIn)

TŴ4(Â − αIn) + Ĉ.

4. A NUMERICAL EXAMPLE

In this section we illustrate the proposed method by considering a linear discrete-time system
specified by

Ao =





0 1 0
0 0 1

0.339377 −1.152652 1.520167



 , bo =





0
0
1





co =
[

0.093253 0.128620 0.314713
]

.

Suppose that the poles of the observer and regulator in the system are required to be located
at z = 0.1532, 0.2861, 0.1137, and z = 0.5067, 0.6023, 0.4331, respectively. This can be achieved
by choosing

ko =
[

0.471552 −0.367158 3.062267
]

go =
[

−0.006436 3.683651 5.083920
]T .

Performing the l2-norm dynamic-range scaling to the state-estimate feedback controller, we
obtain J(0) = 686.4121 in (7) where D = 0. Next, the controller is transformed into the optimal
realization that minimizes J(0) in (7) under the l2-norm dynamic-range scaling constraints.
This leads to Jmin(0) = 28.6187. Finally, EF and state-variable coordinate transformation are
applied to the above optimal realization so as to jointly minimize the output roundoff noise.
The profiles of J(x) during the first 20 iteration for the cases of D being a general, diagonal,
and scalar matrix are depicted in Fig. 3.

1) Case 1: D Is a General Matrix: The quasi-Newton algorithm was applied to minimize (25). It
took the algorithm 20 iterations to converge to the solution

D =





0.211191 −3.078211 −3.344596
−1.321589 1.897308 3.243515

1.917916 −1.890027 −3.807473





T =





−11.039974 −43.683697 −30.131793
−3.231505 8.919473 9.118205

2.620911 6.462685 7.032260





and the minimized noise gain was found to be J(D, T̂) = 4.8823. Next, the above optimal
EF matrix D was rounded to a power-of-two representation with 3 bits after the binary point,
which resulted in

D3bit =





0.250 −3.125 −3.375
−1.375 1.875 3.250

1.875 −1.875 −3.750





and a noise gain J(D3bit, T̂) = 23.4873. Furthermore, when the optimal EF matrix D was
rounded to the integer representation

Dint =





0 −3 −3
−1 2 3

2 −2 −4



 ,

the noise gain was found to be J(Dint, T̂) = 293.0187.
2) Case 2: D Is a Diagonal Matrix: Again, the quasi-Newton algorithm was applied to minimize
J(D, T̂) in (25) for a diagonal EF matrix D. It took the algorithm 20 iterations to converge to
the solution

D = diag{0.050638,−0.608845,−0.951572}

T =





3.588878 0.735966 0.010417
−2.457241 0.728171 0.556762

1.514232 −2.058856 0.142204





and the minimized noise gain was found to be J(D, T̂) = 12.7097. Next, the above opti-
mal diagonal EF matrix D was rounded to a power-of-two representation with 3 bits af-
ter the binary point to yield D3bit = diag{0.000,−0.625,−1.000}, which leads to a noise
gain J(D3bit, T̂) = 12.7722. Furthermore, when the optimized diagonal EF matrix D was
rounded to the integer representation Dint = diag{0,−1,−1}, the noise gain was found to be
J(Dint, T̂) = 13.7535.
3) Case 3: D Is a Scalar Matrix: In this case, the quasi-Newton algorithm was applied to mini-
mize (25) for D = αI3 with a scalar α. The algorithm converges after 20 iterations to converge
to the solution

D = −0.779678 I3

T =





3.252790 −0.081745 −0.198376
−1.717225 1.220068 −0.792487

0.546599 −0.854316 2.295944





and the minimized noise gain was found to be J(D, T̂) = 16.2006. Next, the EF matrix D = αI3
was rounded to a power-of-two representation with 3 bits after the binary point as well as
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In this case, (25) becomes
J(D, T̂) = tr

[

T̂ MdT̂T
]

(32)

where
Md = Ĉ + ÂTŴ4 Â + Ŵ4T̂T D2T̂−T

−ÂTŴ4T̂T DT̂−T − Ŵ4 ÂT̂T DT̂−T .

It follows that
∂J(x)
∂tij

= 2eT
j T̂ MdT̂T T̂gij, i, j = 1, 2, · · · , n

∂J(x)
∂di

= 2eT
i (DT̂ − T̂ ÂT

)Ŵ4T̂Tei, i = 1, 2, · · · , n.

(33)

3) Case 3: D Is a Scalar Matrix: It is assumed here that D = αIn with a scalar α. The gradient of
J(x) can then be calculated as

∂J(x)
∂tij

= 2eT
j T̂ MsT̂T T̂gij, i, j = 1, 2, · · · , n

∂J(x)
∂α

= tr
[

T̂(2αŴ4 − ÂTŴ4 − Ŵ4 Â)T̂T
]

(34)

where
Ms = (Â − αIn)

TŴ4(Â − αIn) + Ĉ.

4. A NUMERICAL EXAMPLE

In this section we illustrate the proposed method by considering a linear discrete-time system
specified by

Ao =





0 1 0
0 0 1

0.339377 −1.152652 1.520167



 , bo =





0
0
1





co =
[

0.093253 0.128620 0.314713
]

.

Suppose that the poles of the observer and regulator in the system are required to be located
at z = 0.1532, 0.2861, 0.1137, and z = 0.5067, 0.6023, 0.4331, respectively. This can be achieved
by choosing

ko =
[

0.471552 −0.367158 3.062267
]

go =
[

−0.006436 3.683651 5.083920
]T .

Performing the l2-norm dynamic-range scaling to the state-estimate feedback controller, we
obtain J(0) = 686.4121 in (7) where D = 0. Next, the controller is transformed into the optimal
realization that minimizes J(0) in (7) under the l2-norm dynamic-range scaling constraints.
This leads to Jmin(0) = 28.6187. Finally, EF and state-variable coordinate transformation are
applied to the above optimal realization so as to jointly minimize the output roundoff noise.
The profiles of J(x) during the first 20 iteration for the cases of D being a general, diagonal,
and scalar matrix are depicted in Fig. 3.

1) Case 1: D Is a General Matrix: The quasi-Newton algorithm was applied to minimize (25). It
took the algorithm 20 iterations to converge to the solution

D =





0.211191 −3.078211 −3.344596
−1.321589 1.897308 3.243515

1.917916 −1.890027 −3.807473





T =





−11.039974 −43.683697 −30.131793
−3.231505 8.919473 9.118205

2.620911 6.462685 7.032260





and the minimized noise gain was found to be J(D, T̂) = 4.8823. Next, the above optimal
EF matrix D was rounded to a power-of-two representation with 3 bits after the binary point,
which resulted in

D3bit =





0.250 −3.125 −3.375
−1.375 1.875 3.250

1.875 −1.875 −3.750





and a noise gain J(D3bit, T̂) = 23.4873. Furthermore, when the optimal EF matrix D was
rounded to the integer representation

Dint =





0 −3 −3
−1 2 3

2 −2 −4



 ,

the noise gain was found to be J(Dint, T̂) = 293.0187.
2) Case 2: D Is a Diagonal Matrix: Again, the quasi-Newton algorithm was applied to minimize
J(D, T̂) in (25) for a diagonal EF matrix D. It took the algorithm 20 iterations to converge to
the solution

D = diag{0.050638,−0.608845,−0.951572}

T =





3.588878 0.735966 0.010417
−2.457241 0.728171 0.556762

1.514232 −2.058856 0.142204





and the minimized noise gain was found to be J(D, T̂) = 12.7097. Next, the above opti-
mal diagonal EF matrix D was rounded to a power-of-two representation with 3 bits af-
ter the binary point to yield D3bit = diag{0.000,−0.625,−1.000}, which leads to a noise
gain J(D3bit, T̂) = 12.7722. Furthermore, when the optimized diagonal EF matrix D was
rounded to the integer representation Dint = diag{0,−1,−1}, the noise gain was found to be
J(Dint, T̂) = 13.7535.
3) Case 3: D Is a Scalar Matrix: In this case, the quasi-Newton algorithm was applied to mini-
mize (25) for D = αI3 with a scalar α. The algorithm converges after 20 iterations to converge
to the solution

D = −0.779678 I3

T =





3.252790 −0.081745 −0.198376
−1.717225 1.220068 −0.792487

0.546599 −0.854316 2.295944





and the minimized noise gain was found to be J(D, T̂) = 16.2006. Next, the EF matrix D = αI3
was rounded to a power-of-two representation with 3 bits after the binary point as well as
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Fig. 3. Profiles of iterative noise gain minimization.

an integer representation. It was found that these representations were given by D3bit =
diag{0.750, 0.750, 0.750} and Dint = diag{1, 1, 1}, respectively. The corresponding noise gains
were obtained as J(D3bit, T̂) = 16.2370 and J(Dint, T̂) = 18.2063, respectively.
The above simulation results in terms of noise gain J(D, T̂) in (25) are summarized in Table 1.
For comparison purpose, their counterparts obtained using the method in [9] are also included
in the table, where the minimization of the roundoff noise was carried out using EF and state-
variable coordinate transformation, but in a separate manner. From the table, it is observed
that the proposed joint optimization offers improved reduction in roundoff noise gain for the
cases of a scalar EF matrix and a diagonal EF matrix when compared with those obtained by
using separate optimization. However, in the case of a general EF matrix, the optimal solution
with infinite precision appears to be quite sensitive to the parameter perturbations.

Error-Feedback Accuracy of D

Scheme Infinite
Precision

3 Bit
Quantization

Integer
Quantization

D = 0
Separate 28.6187

Scalar
Separate [9] 20.1235 20.1810 26.0527

Scalar
Joint 16.2006 16.2370 18.2063

Diagonal
Separate [9] 16.4104 16.4547 17.4039

Diagonal
Joint 12.7097 12.7722 13.7535

General
Separate [9] 11.6352 11.7054 16.5814

General
Joint 4.8823 23.4873 293.0187

Table 1. Noise gain J(D, T̂) for different EF schemes.

More reduction of the noise gain might be possible by re-designing the coordinate transfor-
mation matrix T for the optimally quantized D.

5. CONCLUSION

The joint optimization problem of EF and realization to minimize the effects of roundoff
noise of the closed-loop system with a state-estimate feedback controller subject to l2-norm
dynamic-range scaling constraints has been investigated. The probelm at hand has been con-
verted into an unconstrained optimization problem by using linear algebraic techniques. An
efficient quasi-Newton algorithm has been employed to solve the unconstrained optimization
problem. The proposed technique has been applied to the cases where EF matrix is a general,
diagonal, or scalar matrix. The effectiveness for the cases of a scalar EF matrix and a diag-
onal EF matrix compared with the existing method [9] has been illustrated by a numerical
example.
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an integer representation. It was found that these representations were given by D3bit =
diag{0.750, 0.750, 0.750} and Dint = diag{1, 1, 1}, respectively. The corresponding noise gains
were obtained as J(D3bit, T̂) = 16.2370 and J(Dint, T̂) = 18.2063, respectively.
The above simulation results in terms of noise gain J(D, T̂) in (25) are summarized in Table 1.
For comparison purpose, their counterparts obtained using the method in [9] are also included
in the table, where the minimization of the roundoff noise was carried out using EF and state-
variable coordinate transformation, but in a separate manner. From the table, it is observed
that the proposed joint optimization offers improved reduction in roundoff noise gain for the
cases of a scalar EF matrix and a diagonal EF matrix when compared with those obtained by
using separate optimization. However, in the case of a general EF matrix, the optimal solution
with infinite precision appears to be quite sensitive to the parameter perturbations.

Error-Feedback Accuracy of D

Scheme Infinite
Precision

3 Bit
Quantization

Integer
Quantization

D = 0
Separate 28.6187

Scalar
Separate [9] 20.1235 20.1810 26.0527

Scalar
Joint 16.2006 16.2370 18.2063
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Separate [9] 16.4104 16.4547 17.4039
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Joint 12.7097 12.7722 13.7535

General
Separate [9] 11.6352 11.7054 16.5814

General
Joint 4.8823 23.4873 293.0187

Table 1. Noise gain J(D, T̂) for different EF schemes.

More reduction of the noise gain might be possible by re-designing the coordinate transfor-
mation matrix T for the optimally quantized D.

5. CONCLUSION

The joint optimization problem of EF and realization to minimize the effects of roundoff
noise of the closed-loop system with a state-estimate feedback controller subject to l2-norm
dynamic-range scaling constraints has been investigated. The probelm at hand has been con-
verted into an unconstrained optimization problem by using linear algebraic techniques. An
efficient quasi-Newton algorithm has been employed to solve the unconstrained optimization
problem. The proposed technique has been applied to the cases where EF matrix is a general,
diagonal, or scalar matrix. The effectiveness for the cases of a scalar EF matrix and a diag-
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1. Introduction 

Many endogenous and exogenous factors can affect the physiological, mental and 
behavioral states in humans. In order to identify such states, monitoring tools need to use 
biological indicators, or biomarkers, able to identify biological events and predict outcomes. 
These biomarkers can be divided into two categories.  
The first category contains what we could call the “structural” biomarkers that are extracted 
from physiological structures and mainly defined at the genetic and/or molecular level (e.g., 
Berg, 2008; Dengler et al., 2007; Eleuteri et al., 2009; Isaac, 2008; Moura et al., 2008; Wei, 
2009). For instance, the formation or consumption of certain molecules provide biomarkers 
to identify patients with moderate to severe forms of cardiac heart failure (Eleuteri et al., 
2009; Isaac, 2008) while changes in cortisol level allow detection of an increased stress 
response (Armstrong & Hatfield, 2006). Similarly, other active molecules (e.g., C-reactive 
protein) are used as biomarkers of valvular heart disease (Moura et al., 2008) while cardiac 
troponins and N-type natriuretic peptides can be used in post-transplant patient 
surveillance (Dengler et al., 2007). Other examples of structural biomarkers aim to identify 
abnormalities in neural connectivity in the brain. For instance, the presence of certain 
molecules in venous blood or a damaged white matter provides potential predictors of risk 
of cerebral palsy (Dammann & Leviton, 2004, 2006; Kaukola et al., 2004). Also, genomic and 
proteomic biomarkers are able to define the risk of an individual to develop a 
neurodegenerative disease such as Parkinson’s disease (Gasser, 2009), Alzheimer's disease 
(Berg, 2008; Wei, 2009) or amyotrophic lateral (Tuner et al., 2009) and multiple sclerosis 
(Wei, 2009).  
The second category includes what we could call “functional” biomarkers that are further 
related to continuous measurements of body function throughout time in order to track 
physiological, mental and behavioral states (e.g., Georgopoulos et al., 2007; Hejjel & Gál, 
2001; Hofstra et al., 2008). For instance, electro-cardiograms, heartbeat, and body 
temperature are possible functional biomarkers to determine stress level (Hejjel & Gál, 
2001). Body temperature can be used to detect the phase of circadian rhythms (Hofstra et al., 
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2008), and blood pressure can be employed to identify the chronic fatigue (Newton et al., 
2009). Recently, it has been also suggested that measurements of the skin conductance was a 
better tool to monitor nociceptive stimulation and pain than heart rate and blood pressure 
(Storm et al., 2008).  
Another important family of functional biomarkers includes status measurements of brain 
functions in order to monitor and interpret neural activity, identify specific neurological 
events and predict outcomes (e.g., Gentili et al., 2008; Guarracino, 2008; Hatfield et al., 2004; 
Irani et al., 2007; Tuner et al., 2009; van Putten et al., 2005; Williams & Ramamoorthy, 2007). 
These brain indicators, or brain biomarkers, can be derived from signals recorded by means 
of invasive acquisition techniques such as implantable microelectrodes arrays or 
electrocorticography (Schalk et al., 2008), or, alternatively, non-invasive techniques such as 
electroencephalography (EEG), magnetoencephalography (MEG), functional magnetic 
resonance imaging (fMRI) or emerging neuroimaging technologies such as functional near 
infrared spectroscopy (fNIRS) (Irani et al., 2007; Parasuraman & Rizzo, 2007). For instance, 
brain biomarkers derived from temporal or spectral EEG signals processing allow for the 
determination of anesthetic depth during pediatric cardiac surgery (Williams & 
Ramamoorthy, 2009). Other brain biomarkers derived from EEG, such as the brain 
symmetry index, permit the detection of seizure activity in the temporal lobe and can be, 
therefore, useful for epileptic monitoring needed in intensive care units (van Putten et al., 
2005). Still using EEG analysis, it is also possible to detect a reduction of cerebral blood flow 
below a certain threshold (Guarracino et al., 2008). Other high-temporal resolution 
measurement techniques such as MEG have also been used to successfully classify 
respective groups of individuals subjected to multiple sclerosis, Alzheimer’s disease, 
schizophrenia, Sjögren’s syndrome, chronic alcoholism, facial pain and healthy controls 
(Georgopoulos et al., 2007). More recently, it has been shown that the fNIRS imaging 
technique, a relatively novel cerebral imaging tool, could provide information allowing the 
monitoring of brain oxygenation by measuring regional cerebral venous oxygen saturation 
(Guarracino et al., 2008). 
These examples provided by medical, biomedical and bioengineering research fields 
illustrate how various brain monitoring tools are being developed intending to uncover 
structural or functional brain biomarkers for detection, prevention, prediction, and 
diagnosis of heart function, adverse neurological events and neural/neurodegenerative 
diseases. However, the research aiming to uncover functional brain biomarkers directly 
relevant for the restoration of cognitive-motor and/or sensorimotor functions (e.g., disabled 
populations, advanced aging) is still a relatively young research field. Indeed, although 
many assistive technologies aiming to restore cognitive-motor and sensorimotor functions 
are currently underway (e.g., neuroprosthetics (Cipriani et al., 2008; Wolpaw et al., 2007); 
exoskeletons (Carignan et al., 2008)), few brain monitoring tools related to sensorimotor 
integration are being developed. However, these bioengineering applications, such as the 
design of smart neuroprosthetics, require a deeper understanding of brain dynamics in 
ecological situations that involve human interaction with new tools and/or changing 
environments that guide learning and more generally shape motor behavior. Specifically, 
such monitoring tools aiming to assess the dynamic status of the brain necessitates the 
knowledge of brain biomarkers able to track brain dynamics in ecological situations where 
humans have to learn new tasks, to master novel tools and/or changing environments. 
These brain biomarkers should be preferably non-invasive (i.e., no surgical intervention 

needed), simple to record and analyze, simultaneously robust and sensitive to specific 
changes in brain function in natural situations. Such assessment in ecological situations 
requires non-invasive recording of the dynamic brain activity with a high temporal 
resolution (e.g., millisecond), which is well suited for EEG. Although some research efforts 
are underway (e.g., Deeny et al., 2003, 2009; Gentili et al., 2008, 2009a,b; Hatfield et al., 2004; 
Haufler et al., 2000; Kerick et al., 2004) to develop methods to provide non-invasive 
functional brain biomarkers able to track the brain status during sensorimotor performance; 
some questions and problems remain. For example, how accurately and efficiently can a 
cognitive-motor or sensorimotor state be inferred? What methods might provide robust 
brain biomarkers applicable on single-subject and single-trial bases? How can the signal 
processing techniques used in laboratory contexts to derive such biomarkers can be 
transferred successfully in real-time applications to ecological contexts? Although this 
manuscript does not purport to exhaustively answer these questions, some elements of 
response and possible problem-solving perspectives will be presented and discussed. 
Therefore, the aims of this chapter are to provide the state-of-the-art of the research along 
with the main signal processing techniques related to functional non-invasive EEG/MEG 
brain biomarkers that allow tracking of cortical dynamics to assess the level of mastery of a 
sensorimotor task and the adaptation to novel tools or environments. It must be noted that, 
from a technical point of view, the methodological approaches presented here are also 
applicable to some (minimally) invasive techniques such as electrocorticography. However, 
when considering an invasive approach, in addition to the inherent risks and difficulties 
related to a surgical intervention, the whole scalp will not be likely covered by the recording 
device, creating limitations in terms of the regions of interest where potential biomarkers 
could be detected. Thus, we will mainly focus on non-invasive recording techniques that use 
a high-temporal resolution (EEG/MEG) with a particular emphasis on results obtained with 
EEG since this recording technique is portable and, thus, applicable in ecological situations. 
In Section 2, the main pre-processing methods employed to clean the EEG/MEG signals of 
artifacts will be explained along with the subsequent methodological approaches that allow 
for the computation of brain biomarkers. Specifically, Section 2 will focus on the spectral 
power and phase synchronization representing the two most classical univariate and 
multivariate non-invasive functional brain biomarkers of performance. In Section 3, the 
classical and the latest findings in this brain biomarker research field will be presented by 
emphasizing promising progress but also current limitations and possible solutions to 
overcome them. Section 4, will present how these brain biomarkers may provide important 
advances in bioengineering applications in ecological contexts such as the development of 
smart neuroprosthetics and brain monitoring techniques. Finally, we will summarize these 
results and suggest future research directions.  

 
2. Signal Processing Methods  

The aim of this second section is not to provide an exhaustive presentation of all the existing 
processing methods for EEG and MEG signals, but rather, to introduce some signal 
processing approaches for EEG and MEG signals to, first, pre-process the signal to remove 
artifacts and, then, to derive non-invasive functional brain biomarkers (e.g., based on 
spectral power and coherence) that are used to assess and track adaptation in cognitive-
motor/sensorimotor performance in humans. 
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2008), and blood pressure can be employed to identify the chronic fatigue (Newton et al., 
2009). Recently, it has been also suggested that measurements of the skin conductance was a 
better tool to monitor nociceptive stimulation and pain than heart rate and blood pressure 
(Storm et al., 2008).  
Another important family of functional biomarkers includes status measurements of brain 
functions in order to monitor and interpret neural activity, identify specific neurological 
events and predict outcomes (e.g., Gentili et al., 2008; Guarracino, 2008; Hatfield et al., 2004; 
Irani et al., 2007; Tuner et al., 2009; van Putten et al., 2005; Williams & Ramamoorthy, 2007). 
These brain indicators, or brain biomarkers, can be derived from signals recorded by means 
of invasive acquisition techniques such as implantable microelectrodes arrays or 
electrocorticography (Schalk et al., 2008), or, alternatively, non-invasive techniques such as 
electroencephalography (EEG), magnetoencephalography (MEG), functional magnetic 
resonance imaging (fMRI) or emerging neuroimaging technologies such as functional near 
infrared spectroscopy (fNIRS) (Irani et al., 2007; Parasuraman & Rizzo, 2007). For instance, 
brain biomarkers derived from temporal or spectral EEG signals processing allow for the 
determination of anesthetic depth during pediatric cardiac surgery (Williams & 
Ramamoorthy, 2009). Other brain biomarkers derived from EEG, such as the brain 
symmetry index, permit the detection of seizure activity in the temporal lobe and can be, 
therefore, useful for epileptic monitoring needed in intensive care units (van Putten et al., 
2005). Still using EEG analysis, it is also possible to detect a reduction of cerebral blood flow 
below a certain threshold (Guarracino et al., 2008). Other high-temporal resolution 
measurement techniques such as MEG have also been used to successfully classify 
respective groups of individuals subjected to multiple sclerosis, Alzheimer’s disease, 
schizophrenia, Sjögren’s syndrome, chronic alcoholism, facial pain and healthy controls 
(Georgopoulos et al., 2007). More recently, it has been shown that the fNIRS imaging 
technique, a relatively novel cerebral imaging tool, could provide information allowing the 
monitoring of brain oxygenation by measuring regional cerebral venous oxygen saturation 
(Guarracino et al., 2008). 
These examples provided by medical, biomedical and bioengineering research fields 
illustrate how various brain monitoring tools are being developed intending to uncover 
structural or functional brain biomarkers for detection, prevention, prediction, and 
diagnosis of heart function, adverse neurological events and neural/neurodegenerative 
diseases. However, the research aiming to uncover functional brain biomarkers directly 
relevant for the restoration of cognitive-motor and/or sensorimotor functions (e.g., disabled 
populations, advanced aging) is still a relatively young research field. Indeed, although 
many assistive technologies aiming to restore cognitive-motor and sensorimotor functions 
are currently underway (e.g., neuroprosthetics (Cipriani et al., 2008; Wolpaw et al., 2007); 
exoskeletons (Carignan et al., 2008)), few brain monitoring tools related to sensorimotor 
integration are being developed. However, these bioengineering applications, such as the 
design of smart neuroprosthetics, require a deeper understanding of brain dynamics in 
ecological situations that involve human interaction with new tools and/or changing 
environments that guide learning and more generally shape motor behavior. Specifically, 
such monitoring tools aiming to assess the dynamic status of the brain necessitates the 
knowledge of brain biomarkers able to track brain dynamics in ecological situations where 
humans have to learn new tasks, to master novel tools and/or changing environments. 
These brain biomarkers should be preferably non-invasive (i.e., no surgical intervention 

needed), simple to record and analyze, simultaneously robust and sensitive to specific 
changes in brain function in natural situations. Such assessment in ecological situations 
requires non-invasive recording of the dynamic brain activity with a high temporal 
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transferred successfully in real-time applications to ecological contexts? Although this 
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for the computation of brain biomarkers. Specifically, Section 2 will focus on the spectral 
power and phase synchronization representing the two most classical univariate and 
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classical and the latest findings in this brain biomarker research field will be presented by 
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2. Signal Processing Methods  

The aim of this second section is not to provide an exhaustive presentation of all the existing 
processing methods for EEG and MEG signals, but rather, to introduce some signal 
processing approaches for EEG and MEG signals to, first, pre-process the signal to remove 
artifacts and, then, to derive non-invasive functional brain biomarkers (e.g., based on 
spectral power and coherence) that are used to assess and track adaptation in cognitive-
motor/sensorimotor performance in humans. 
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2.1 Pre-processing 
During recording, EEG/MEG signals are generally corrupted with some undesirable 
artifacts such as body movements, muscular artifacts, eye movements, eye blinks, 
environmental noise or heart beat. These artifacts produce possible biases in the detection 
and interpretation of brain biomarkers that will be later derived from the EEG/MEG 
signals. Constraints placed on subjects to minimize these artifacts in a laboratory setting 
cannot be realistically expected in an ecological situation. Therefore, in order to remove such 
artifacts, pre-processing of the EEG/MEG signals may be a necessary and critical step 
(Georgopoulos et al., 2007). Although several signal processing methods are available, such 
pre-processing stage can be performed by using various methods such as Independent 
Component Analysis (ICA) and adaptive filtering.  

 
2.1.1 Artifact removal using Independent Component Analysis 
In many dynamical systems, the measurements are given as a set of mixed signals with 
noise. For example, in the same way conversations are recorded by a number of 
microphones in a crowded party, brain signals containing artifacts are measured through 
multiple EEG/MEG sensors. The information in each of the original signals can be analyzed 
as long as it is possible to identify the system corresponding to the source that emits these 
signals captured by a set of sensors. In this regard, blind source separation is a relevant 
method to approximately recover the original source signals from a set of observed mixed 
signals without any a priori knowledge about either the source signals or the mixing system. 
Regarding applications in biomedical signal processing, ICA is currently considered one of 
the most sophisticated statistical approaches for solving the general problem of blind source 
separation. 

 
2.1.1.1 Basic assumptions of ICA 
ICA is a linear transformation method to find estimated source signals (i.e., the independent 
components) while optimally demixing the mixed signals where independent components 
must satisfy the following conditions (Hyvärinen & Oja, 2000; Oja, 2004; Vaseghi, 2007; 
Vigário et al., 2000): 

i) The independent components are non-Gaussian and statistically independent of 
the higher-order statistics (covariance and kurtosis). 

ii) At most, no more than one independent component can be Gaussian. 
iii) The dimension of the set of independent components does not exceed the number 

of sensors. 
 

Moreover, three additional assumptions must be considered when ICA is applied to 
EEG/MEG signals (Hyvärinen et al., 2001): 
iv) The existence of statistically independent components in EEG/MEG source signals 

is assumed. 
v) The statistically independent components are instantaneously and linearly mixed 

at the sensors. 
vi) The independent components and the mixing processes are supposed to be 

stationary. 
 

Several versions of ICA exist. First, the simple ICA will be presented. Then, the two most 
popular ICA algorithms named Infomax ICA and FastICA will be reviewed. 

 
2.1.1.2 Simple ICA algorithm 
In the simple ICA algorithm, the unknown additive noise is excluded (Oja, 2004). Assume 
that the m  dimensional observed signal (e.g., EEG/MEG) vector 

        Tm kxkxkxk ,,, 21 x  is given by a linear combination of the n  

dimensional source signal vector         Tn ksksksk ,,, 21 s  at each time 

sample k , that is: 
 
        ksaksaksakx nniiii  2211 , mi ,,2,1  . (1) 
 
 
In a more compact notation, Equation (1) can be rewritten as 
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 (2) 

 
where the matrix  naaaA ,,, 21   is the mixing matrix, the indices n and m 
are the number of sensors and sources, respectively. The matrix A is a m x n matrix 
(generally m ≥ n but a common choice is m = n). Practically, both the mixing matrix and the 
source signal vector are unknown; however, we can estimate a demixing matrix W  in 
order to obtain the estimation of a source signal vector  kŝ  using three fundamental 
assumptions (from i) to iii); see section 2.1.1.1) for ICA previously mentioned such that: 
 
    kk Wxs ˆ   (3) 
 

where ideally 1 AW  and the elements of  kŝ  are statistically independent.  
Practically, several preprocessing strategies make ICA simpler and better conditioned 
(Hyvärinen & Oja, 2000). For example, the centering technique simplifies the ICA algorithms 
by subtracting the mean vector from the observed signal vector so as to make it a zero mean 
valued vector. On the other hand, whitening decreases the correlation among the observed 
signals by transforming the centered observed vector to have unit variance in all directions 
(Vigário, 2000). 

 
2.1.1.3 Infomax ICA and FastICA 
Among the various ICA algorithms that are available, Infomax ICA (Bell & Sejnowski, 1995) 
and FastICA (Hyvärinen, 1999) are the two most popular ones. They use different 
independence properties to obtain the independent components. Specifically, Infomax ICA 
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and FastICA (Hyvärinen, 1999) are the two most popular ones. They use different 
independence properties to obtain the independent components. Specifically, Infomax ICA 
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minimizes the mutual information whereas FastICA maximizes the non-Gaussian nature. 
These two algorithms provide qualitatively and quantitatively similar results. However, 
FastICA is generally faster than Infomax ICA, but is subject to more variability than Infomax 
ICA especially when applied to removal of eye blink artifacts (Glass et al., 2004). Concerning 
Infomax ICA, this approach is unable to separate source signals with a sub-Gaussian 
distribution. Therefore, an extended version of Infomax ICA, named extended Infomax ICA, 
has been introduced to separate both sub-Gaussian and super-Gaussian distributions for the 
source signals (Lee et al., 1999). 

 
2.1.1.4 Independent Components Analysis for artifact identification and removal from 
EEG and MEG signals 
ICA has been recently applied to the analysis of biomedical signals mostly acquired from 
EEG and MEG. In these applications, it is essential to associate each independent component 
with the neurophysiological nature of the phenomenon (e.g., event-related brain dynamics, 
steady-state brain activity, etc.) in order to identify them. In many cases, ICA algorithms 
have been successfully applied to EEG and MEG in order to identify and remove artifacts 
such as cardiac, ocular, or muscular activities from the neurophysiological activities of 
interest (the computational steps of these algorithms are illustrated in Fig.1), since the nature 
of the artifact sources is different from those of the actual brain activity related sources in 
terms of anatomical, physiological, and statistical considerations.  

 
Fig. 1. Computational steps for ICA-based signal processing. 
 
In general, the independent components related to the suspected artifacts must be manually 
assigned to an artifact type based on the attributes of the independent components (e.g., 
amplitude peak, frequency patterns). However, since the criteria to decide to remove such a 
component can depend of subjective judgments, this approach is sensitive to biases. 

Recently, several automatic artifact detection and removal methods have been introduced 
(Delorme et al., 2001; Rong & Contreras-Vidal, 2006). For example, the functionally similar 
independent components could be automatically categorized using neural network with 
respect to a set of features such as spatial maps, spectral properties, and higher-order 
statistics (Rong & Contreras-Vidal, 2006). 

 
2.1.1.5 Limitation of ICA 
Although ICA facilitates the analysis of the brain dynamics, this method cannot isolate 
highly correlated sources due to the assumption of statistical independence. Furthermore, it 
cannot identify uniquely ordered, correctly phased and properly scaled source signals, in 
other words, when using ICA, the independent components that are isolated could be 
randomly ordered, reversely phased, or ill scaled. However, in the case where such specific 
characteristics are of interest, it must be noted that ICA is not able to identify the source of 
the signals. Moreover, for practical bioengineering applications, artifact identification and 
removal based on ICA is not appropriate for real-time processing since it requires significant 
computational resources and a large amount of data collected from a sufficiently large 
number of channels. The next paragraph introduces adaptive filtering, another method that 
can be potentially useful for real-time applications. 

 
2.1.2 Artifact removal using adaptive filtering  
Despite the advantages of ICA as an artifact removal method, this technique is 
computationally very expensive and, thus, not well suited under some conditions such as 
real-time applications. However, other linear and nonlinear filtering based-techniques to 
remove specific artifacts in real-time are available. Among these methods, adaptive filtering 
has been introduced for removing ocular artifacts in real-time (He et al., 2004). 

 
2.1.2.1 Principle of adaptive filtering 
Adaptive filters are based on the principle that the desired (clean) signal can be extracted 
from the input signal through the adaptation of the filter parameters. The filter parameters 
are adapted based on minimizing an error function between the filter output signal and a 
desired signal. The most commonly used adaptive filtering algorithms are the Kalman filter, 
the least mean square (LMS) filter, and the recursive least square (RLS) filter (for more 
details on the implementations of these methods see Zaknich, 2005).  

 
2.1.2.2 Removing ocular artifacts by adaptive filtering 
Specifically, adaptive filtering has been used to remove ocular artifacts that could 
contaminate EEG/MEG (Georgiadis et al., 2005; Sanei & Chambers, 2007). For instance, He 
et al., (2004) suggested an adaptive filter that uses three inputs to the system. First, the actual 
EEG/MEG signal  kx  with the ocular artifacts  kz  as the primary input 

(      kzkxks  ). The second and third inputs are the vertical and horizontal eye 
movement (VEOG and HEOG) as two reference inputs (  krv  and  krh ), respectively. Each 
reference input is first processed by a finite impulse response (FIR) filter using the RLS 
algorithm (  krv̂  and  krĥ , respectively) and then subtracted from the EEG signal under 
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the assumption that the desired ocular artifacts cleaned EEG signal is a zero-mean stationary 
random signal that is uncorrelated with the ocular artifacts and the two reference signals. 
Thus, the desired output produced by the whole system is the EEG signal without ocular 
artifacts. Hence the whole system can be described using the following sets of equations and 
the corresponding scheme illustrated in Fig. 2: 
 
                 krkrkzkxkrkrkske hvhv ˆˆˆˆ    (4) 
 

where      



M

m
vvv mkrmhkr

1
1ˆ  and      




M

m
hhh mkrmhkr

1
1ˆ  for the filter 

parameters  mhv  and  mhh , respectively.  ke  is the error between the observed signal 
and reference inputs. 

 
Fig. 2. Computational scheme of the adaptive filter configuration for eye artifact removal 
(EOG: Electrooculography). (The different symbols used in this figure are described in the 
text above). 

 
2.1.2.3 Limitation of adaptive filtering 
The LMS and RLS filters, popular alternative algorithms to the Kalman filter, also present 
some advantages and drawbacks. The LMS filter is one of the relatively simple adaptive 
filtering algorithms, so it is computationally very efficient, but it is not suitable for signals 
with high rate of sudden changes due to its slow rate of convergence (Vaseghi, 2007). In this 
case, the RLS filter offers relatively faster convergence and smaller error rate with more 
computations. More generally, a single type of artifact can be removed with a single filter, so 
multiple filtering must be performed when multiple forms of artifacts are present, 
increasing the chances of distorting the signals of interest. 

 
2.1.3 Summary 
To summarize, many novel artifact-removal techniques have been introduced along with 
some of their variants (He et al., 2004; Lee et al., 1999; Vaseghi 2007; Vigário et al., 2000). A 
common requirement for the artifact removal method is to remove the artifacts but keep the 
neurophysiological activities of interest intact. For this reason, the employment of 
algorithms for modeling and filtering must be carefully considered along with their 

underlying assumptions, since it may undesirably alter the estimated artifact-cleaned 
EEG/MEG signal (Hyvärinen & Oja, 2000; Oja, 2004; Vaseghi, 2007; Vigário et al., 2000). ICA 
is generally the most suitable artifacts removal algorithm with minimal affects on the 
interesting EEG/MEG signals, but it is very expensive in terms of both computation and 
memory usage. Adaptive filtering, on the other hand, can effectively remove artifacts from 
EEG/MEG signals in real-time fashion. 
Once EEG/MEG signals are free of artifacts, the next step is to compute the brain 
biomarkers derived from these clean EEG/MEG signals in order to assess sensorimotor 
performance and learning. In this regard, the two main biomarkers that are available are 
derived from the spectral power and phase synchronisation between two signals located at 
different positions on the scalp. These two brain biomarkers are presented in the next two 
sections. 

 
2.2 Spectral Power 
A first type of brain biomarker that can be used to assess the level of mastery in 
sensorimotor performance and learning can be derived from the spectral power computed 
for specific frequency bands. Many different methods (e.g., parametric, non-parametric, and 
subspace methods) are available to compute the EEG/MEG spectral power (Kay, 1988; Sanei 
& Chambers, 2007; Shumway & Stoffer, 2000). For instance, some of these methods that have 
been applied are the classical fast Fourier transform (e.g., Hatfield et al., 1984; Haufler et al., 
2000) and more sophisticated procedures such as the multitaper (e.g., Conteras-Vidal & 
Kerick, 2004) or wavelet (e.g., Mu et al., 2008) techniques. While some of these approaches 
have been applied with success in EEG/MEG studies that focus on sensorimotor 
performance and/or Brain Computer Interface (BCI) systems (McFarland et al., 2006; 
Pfurtscheller & Lopes da Silva, 1999), two methods are particularly popular to compute the 
EEG/MEG spectral power. The first approach uses autoregressive (AR) methods (e.g., 
McFarland et al., 2006, 2008) while the second one uses the band power method 
(Pfurtscheller & Lopes da Silva, 1999, 2005; Pfurtscheller & Neuper, 2006) providing changes 
in power amplitude that are often referred to as “event related desynchronization (ERD)” 
and “event related synchronization (ERS).” 

 
2.2.1 Autoregressive filtering 
The first technique that consists of using AR models is a classical parametric method 
(Marple, 1987; Sanei & Chambers, 2007; Shumway & Stoffer, 2000). Contrary to the fast 
Fourier transform, parametric spectral estimation by means of AR models offers various 
advantages by presenting a more general and flexible framework for parsimonious 
dynamical modeling of time series data useful for different applications such as prediction, 
classification or causality analysis of time series (Shumway & Stoffer, 2000; Wong et al., 
2006). Specifically, an AR filter can be used for linear prediction in order to model the signal 
of interest; here an EEG or MEG signal. Namely, the real EEG/MEG signal can be 
considered as the sum of the signal modeled by the AR filter and an error term. Thus, by 
subtracting the real EEG/MEG signal to the one filtered by the AR model, the prediction 
error can be determined (Fig.3).  
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2000) and more sophisticated procedures such as the multitaper (e.g., Conteras-Vidal & 
Kerick, 2004) or wavelet (e.g., Mu et al., 2008) techniques. While some of these approaches 
have been applied with success in EEG/MEG studies that focus on sensorimotor 
performance and/or Brain Computer Interface (BCI) systems (McFarland et al., 2006; 
Pfurtscheller & Lopes da Silva, 1999), two methods are particularly popular to compute the 
EEG/MEG spectral power. The first approach uses autoregressive (AR) methods (e.g., 
McFarland et al., 2006, 2008) while the second one uses the band power method 
(Pfurtscheller & Lopes da Silva, 1999, 2005; Pfurtscheller & Neuper, 2006) providing changes 
in power amplitude that are often referred to as “event related desynchronization (ERD)” 
and “event related synchronization (ERS).” 

 
2.2.1 Autoregressive filtering 
The first technique that consists of using AR models is a classical parametric method 
(Marple, 1987; Sanei & Chambers, 2007; Shumway & Stoffer, 2000). Contrary to the fast 
Fourier transform, parametric spectral estimation by means of AR models offers various 
advantages by presenting a more general and flexible framework for parsimonious 
dynamical modeling of time series data useful for different applications such as prediction, 
classification or causality analysis of time series (Shumway & Stoffer, 2000; Wong et al., 
2006). Specifically, an AR filter can be used for linear prediction in order to model the signal 
of interest; here an EEG or MEG signal. Namely, the real EEG/MEG signal can be 
considered as the sum of the signal modeled by the AR filter and an error term. Thus, by 
subtracting the real EEG/MEG signal to the one filtered by the AR model, the prediction 
error can be determined (Fig.3).  
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Fig. 3. Principle of linear prediction using an AR filter. (The different symbols used in this 
figure are described in the text below). 
 
The prediction error for an AR model is defined as: 
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where ra  (r = 1,2,3,…,p) are the coefficients, the constant p is the order of the filter, and k 

denotes the discrete time sample. )(kx and )(ke  are respectively the input signal to 
approximate and the prediction error. For a given p, the coefficients are identified by 
minimization (e.g., LMS, Durbin method) of the error or driving signal that is considered to 
be zero mean white noise. 

By applying the z-transform to equation (5) and considering Z= je we obtain: 
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Where )(E represents the power spectrum of the white noise that is constant (i.e., 

)(E = K ), and )(X represents the power spectrum of the signal. From this model, the 
spectral power can be estimated for any specific frequency band. 
AR models may suffer from poor estimation of the model parameters mainly due to the 
limited length of the measured signal (Sanei & Chambers, 2007) while the order of the AR 
filter may influence the precision of the computation of power spectrum. For instance, 
McFarland et al., (2008) recently showed that the resolution of lower frequency signals 
requires higher AR model orders and also that increasing AR model order provided an 
enhanced spectral resolution. It must be noted that an increase of the AR model order 
results in a higher computational cost even if the tremendous advances in digital signal 
processor and field-programmable gate-array technology tend to weaken this drawback 
(Wang et al., 2006). Also, in the case of non-stationarity, parametric spectral estimation may 
also be applied with a moving window (Ozaki & Tong, 1975) or using some alternative 
approaches avoiding, thus, the introduction of such a moving window (Wong et al., 2006). 
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2.2.2 ERD/ERS method 
The second method is well-established and has been successfully applied to many different 
EEG/MEG investigations (Gentili et al., 2008 ,2009a, 2009a; Kerick et al., 2004; Pfurtscheller 
& Lopes da Silva, 1999, 2005; Pfurtcheller & Neuper 2006; Tombini et al., 2009). Specifically, 
this method computes the spectral power by squaring and averaging across trials the output 
of a band pass filter in order to detect the changes in power amplitude. ERD and ERS 
correspond respectively to a decrease and an increase of the spectral power for specific 
frequency bands (e.g., alpha band) and brain regions (e.g., frontal region). These measures 
are often expressed as a percentage of a decrease or increase with respect to a baseline 
condition preceding task performance and are computed according to the following 
equation (for more details see Pfurtscheller & Lopes da Silva, 1999): 
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where EP  and RP correspond to the power computed within the frequency band of interest 
in the period after the event begins and during the preceding baseline or reference period, 
respectively.  
 
It must be noted that although these ERD/ERS quantifications can be computed using 
different methods including AR filters, (e.g., see Table 1 in Pfurtscheller & Lopes da Silva, 
1999) the term ERD/ERS is generally associated with the band pass method (see 
Pfurtscheller & Lopes da Silva, 1999, 2005 for a comprehensive review). From a 
physiological point of view, ERD/ERS mirror variations of the activity of local interactions 
between main neurons and interneurons that control the frequency components of the 
ongoing EEG (Pfurtscheller & Lopes da Silva 1999, 2005). As previously mentioned, 
although several methods can be used to isolate some specific frequency bands; one of the 
main problems of the EEG/MEG spectral analysis is the definition of the upper and lower 
bounds of the bands (Pfurtscheller & Lopes da Silva, 1999). Although the definition of the 
frequency band limits can slightly differ from one study to another, a possible approach for 
partitioning the frequency bands related to human motor performance for healthy adults is 
to consider the theta ([4-7 Hz]), alpha ([8-13 Hz]), beta ([14-35 Hz]) and gamma ([36-44 Hz]) 
frequency bands (e.g., Hatfield et al., 2004; Haufler et al., 2000; Tombini et al., 2009). 
Sometimes, the frequency range spread from 8 to 15 Hz (Blankertz & Vidaurre, 2009) or 
from 9 to 13Hz (Blankertz et al., 2009; Pfurtscheller & Neuper, 1997) are also named alpha 
frequency (or mu rhythm under certain conditions). Moreover, since it has been shown that 
certain frequency sub-bands are related to specific brain states during a sensorimotor task 
(e.g., Contreras-Vidal et al., 2004; Gentili et al., 2008; Hatfield et al., 2004; Tombini et al., 
2009), most of the EEG/MEG studies refined their analysis by considering sub-frequency 
bands, typically, the low and high component of the original entire band. Therefore, for the 
bands previously defined, the low theta ([4-5 Hz]), high theta ([6-7 Hz]), low alpha ([8-10 
Hz]), high alpha ([11-13 Hz]), low beta ([14-23 Hz]) and high beta ([24-35 Hz]) frequency 
bands can also be considered. In addition to the classical gamma band ([36-44 Hz]) it is also 
possible to consider the extended gamma band spread from 45 to 100 Hz or higher. This 
gamma band extension can be divided into several sub-bands with a method using a 10-Hz-
wide band with an overlap of 5 Hz frequency bins ranging from 45 to 100 Hz (Crone et al., 
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Fig. 3. Principle of linear prediction using an AR filter. (The different symbols used in this 
figure are described in the text below). 
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Where )(E represents the power spectrum of the white noise that is constant (i.e., 

)(E = K ), and )(X represents the power spectrum of the signal. From this model, the 
spectral power can be estimated for any specific frequency band. 
AR models may suffer from poor estimation of the model parameters mainly due to the 
limited length of the measured signal (Sanei & Chambers, 2007) while the order of the AR 
filter may influence the precision of the computation of power spectrum. For instance, 
McFarland et al., (2008) recently showed that the resolution of lower frequency signals 
requires higher AR model orders and also that increasing AR model order provided an 
enhanced spectral resolution. It must be noted that an increase of the AR model order 
results in a higher computational cost even if the tremendous advances in digital signal 
processor and field-programmable gate-array technology tend to weaken this drawback 
(Wang et al., 2006). Also, in the case of non-stationarity, parametric spectral estimation may 
also be applied with a moving window (Ozaki & Tong, 1975) or using some alternative 
approaches avoiding, thus, the introduction of such a moving window (Wong et al., 2006). 
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2.2.2 ERD/ERS method 
The second method is well-established and has been successfully applied to many different 
EEG/MEG investigations (Gentili et al., 2008 ,2009a, 2009a; Kerick et al., 2004; Pfurtscheller 
& Lopes da Silva, 1999, 2005; Pfurtcheller & Neuper 2006; Tombini et al., 2009). Specifically, 
this method computes the spectral power by squaring and averaging across trials the output 
of a band pass filter in order to detect the changes in power amplitude. ERD and ERS 
correspond respectively to a decrease and an increase of the spectral power for specific 
frequency bands (e.g., alpha band) and brain regions (e.g., frontal region). These measures 
are often expressed as a percentage of a decrease or increase with respect to a baseline 
condition preceding task performance and are computed according to the following 
equation (for more details see Pfurtscheller & Lopes da Silva, 1999): 
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where EP  and RP correspond to the power computed within the frequency band of interest 
in the period after the event begins and during the preceding baseline or reference period, 
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It must be noted that although these ERD/ERS quantifications can be computed using 
different methods including AR filters, (e.g., see Table 1 in Pfurtscheller & Lopes da Silva, 
1999) the term ERD/ERS is generally associated with the band pass method (see 
Pfurtscheller & Lopes da Silva, 1999, 2005 for a comprehensive review). From a 
physiological point of view, ERD/ERS mirror variations of the activity of local interactions 
between main neurons and interneurons that control the frequency components of the 
ongoing EEG (Pfurtscheller & Lopes da Silva 1999, 2005). As previously mentioned, 
although several methods can be used to isolate some specific frequency bands; one of the 
main problems of the EEG/MEG spectral analysis is the definition of the upper and lower 
bounds of the bands (Pfurtscheller & Lopes da Silva, 1999). Although the definition of the 
frequency band limits can slightly differ from one study to another, a possible approach for 
partitioning the frequency bands related to human motor performance for healthy adults is 
to consider the theta ([4-7 Hz]), alpha ([8-13 Hz]), beta ([14-35 Hz]) and gamma ([36-44 Hz]) 
frequency bands (e.g., Hatfield et al., 2004; Haufler et al., 2000; Tombini et al., 2009). 
Sometimes, the frequency range spread from 8 to 15 Hz (Blankertz & Vidaurre, 2009) or 
from 9 to 13Hz (Blankertz et al., 2009; Pfurtscheller & Neuper, 1997) are also named alpha 
frequency (or mu rhythm under certain conditions). Moreover, since it has been shown that 
certain frequency sub-bands are related to specific brain states during a sensorimotor task 
(e.g., Contreras-Vidal et al., 2004; Gentili et al., 2008; Hatfield et al., 2004; Tombini et al., 
2009), most of the EEG/MEG studies refined their analysis by considering sub-frequency 
bands, typically, the low and high component of the original entire band. Therefore, for the 
bands previously defined, the low theta ([4-5 Hz]), high theta ([6-7 Hz]), low alpha ([8-10 
Hz]), high alpha ([11-13 Hz]), low beta ([14-23 Hz]) and high beta ([24-35 Hz]) frequency 
bands can also be considered. In addition to the classical gamma band ([36-44 Hz]) it is also 
possible to consider the extended gamma band spread from 45 to 100 Hz or higher. This 
gamma band extension can be divided into several sub-bands with a method using a 10-Hz-
wide band with an overlap of 5 Hz frequency bins ranging from 45 to 100 Hz (Crone et al., 
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1998). Although, as previously mentioned, the limits of these bands can slightly change from 
one study to another; many EEG/MEG investigations consider frequency bands where 
upper and lower limits of the bandpass filter is the same for all the subjects tested. It must be 
noted that another approach (Pfurtscheller & Lopes da Silva, 1999, 2005) defines these 
frequency band limits for each individual subject in order to take into account some inter-
individual differences. For instance, three possible methods can be used to determine the 
upper and lower limits of the bandpass filter; i) detection of the most reactive frequency 
band by comparing the two short-term power spectra; ii) use of a continuous wavelet 
transform; iii) definition of frequency bands relative to the spectral peak frequency (for more 
details see Pfurtscheller & Lopes da Silva, 1999, 2005). 

 
2.3 Phase synchronization: Coherence and Phase Locking Value  
Another important brain biomarker of sensorimotor performance can also be provided by 
analyzing the phase synchronization between different cortical sites. Such phase 
synchronization measures the level of interaction and cross talk among EEG/MEG channels 
allowing the identification of how signals propagate within the neural network of the brain. 
These spatial EEG/MEG coherence measures, generally presented for individual frequency 
bands, result from correlations among different cortical sources. Therefore, spectral 
coherence is a common method for determining synchrony in EEG/MEG activity. 
Regarding the literature aiming to find brain biomarkers for human sensorimotor 
performance and learning, spectral power analysis has been widely used for a long time, 
however, the use of spectral coherence is relatively more recent, while the phase locking 
value (PLV), despite its advantages, still remains rarely used in this field. Generally, the 
literature focusing on EEG/MEG signal analysis computes the synchronization between two 
time signals recorded from two electrodes x and y by using classical coherence  (Nunez & 
Srinivasan, 2006). First the cross-spectrum (CS) has to be computed using the following 
equation: 
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where )( fSx  is the Fourier transform of the signal )(tsx , )( fS x is the complex conjugate 

of the Fourier transform of the signal )(tsx and is the expectation operator. Then, the 

complex coherence (CC) is computed by using the cross-spectrum normalized with respect 
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Where )( fCSxy  is the cross-spectrum of the two time signals )(tsx  and )(tsy  and 

)( fCCxy  the complex coherence.  

 

Finally, the coherence (C) can be calculated by considering the absolute value of the complex 
coherence: 
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Another way to interpret these equations is to consider the following equation: 
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where the Fourier transform )( fSx of the signal )(tsx  is expressed in order to explicitly 

illustrate its amplitude x and its phase x  (here j denotes the imaginary unit and j2=-1) . 
 
Now the cross-spectrum expressed in equation (8) can be rewritten as: 
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where   denotes the phase difference between the two signals (i.e.,   = yx   ).  

Thus, the complex coherence expressed in equation (9) can be rewritten as: 
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Leading to the classical coherence provided by the following equation: 
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Although this measure of classical coherence is usually used in EEG/MEG studies, two 
main drawbacks have to be considered (Lachaux et al., 1999). First, the coherence can be 
applied only to stationary signals. Most of the time this assumption of stationarity (in time 
or across trials) is not strictly valid, however, the measure of phase-locking does not require 
this assumption on the signal. Second, coherence does not specifically quantify phase 
relationships. In fact, coherence increases with amplitude covariance (see the presence of the 
signal amplitudes x and y in the numerator and denominator of the formula in equation 

(14)) implying an uncertainty concerning the relative importance of amplitude and phase 
covariance in the coherence. In other words, the coherence does not separate the effects of 
amplitude and phase in the interrelations between two signals. Thus, based on these 
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allowing the identification of how signals propagate within the neural network of the brain. 
These spatial EEG/MEG coherence measures, generally presented for individual frequency 
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Although this measure of classical coherence is usually used in EEG/MEG studies, two 
main drawbacks have to be considered (Lachaux et al., 1999). First, the coherence can be 
applied only to stationary signals. Most of the time this assumption of stationarity (in time 
or across trials) is not strictly valid, however, the measure of phase-locking does not require 
this assumption on the signal. Second, coherence does not specifically quantify phase 
relationships. In fact, coherence increases with amplitude covariance (see the presence of the 
signal amplitudes x and y in the numerator and denominator of the formula in equation 

(14)) implying an uncertainty concerning the relative importance of amplitude and phase 
covariance in the coherence. In other words, the coherence does not separate the effects of 
amplitude and phase in the interrelations between two signals. Thus, based on these 
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premises and since phase-locking provides a measure that is sufficient to conclude if two 
brain regions interact, another measure of phase synchronization, the PLV, has been 
introduced, offering, thus, an alternative measure only based on the detection of phase 
covariance (Lachaux et al., 1999; Le Van Quyen et al., 2001; Tass et al., 1998).  
Before computing the PLV, the frequency bands and sub-bands of interest mentioned in 
Section 2.2.2 are extracted for each subject and each single-trial by means of a filter bank 
using band-pass FIR (Lachaux et al., 1999) or IIR filters (Brunner et al., 2006). 
 
Then, the PLV can be computed for each frequency band. Contrary to the classical 
coherence, it is defined by only considering the phases of the two signals. 
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It must be noted that equations (14) and (15) are comparable; however, the equation 
expressing the PLV does not include the amplitudes of the two signals, allowing 
examination of synchronization phenomena in EEG/MEG signals by directly capturing the 
phase synchronization. 
Two methods to compute the phases x and y are available. The first one (Lachaux et al., 

1999) uses a complex Gabor wavelet as defined by equation (16): 
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In this definition, )(~ tsx  is the Hilbert transform of the time series )(tsx (in our case an 
EEG/MEG signal), and PV indicates that the integral is taken in the sense of Cauchy 
principal value. The instantaneous phase  can then be calculated as: 
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It must be noted that these two methods provide very similar results when applied to EEG 
data (Le Van Quyen et al., 2001).  
The averaging process can be performed either over time (i.e., in equation (19), n   [1…N], 
where n is the sample number of the time series) for single-trial applications such as BCI 
approaches (Brunner et al., 2006; Lachaux et al., 2000) or over trials (Lachaux et al., 1999) 
(i.e., in equation (19), n   [1…N], where n is the trial number). Thus, equation (19) is 
obtained: 
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where ),( nt  is the phase difference and ),( nt = ),(),( ntnt yx   .  

 
As for the coherence, the PLV is ranged from 0 to 1 indicating that during this time window 
the two channels considered are ranged from unsynchronized to perfectly synchronized, 
respectively. It must be noted that, despite the previously mentioned advantages of the PLV, 
it has been also suggested that one reason to use coherence rather than the PLV directly is 
that coherence measures are weighted in favor of epochs with large amplitudes. In 
particular, more consistent phase estimates will be probably obtained when amplitudes are 
large (if large amplitudes show a large signal-to-noise ratio as is generally the case in 
EEG/MEG) (Nunez & Srinivasan, 2006). Therefore, both coherence and PLV measures can 
be used. Interestingly, due to their unique advantages and pitfalls, some studies apply and 
compare both techniques that, in the case of convergence, lead to robust results, although in 
the case of EEG both approaches are subject to the electrode reference problem that can 
distort such measurements (Nunez & Srinivasan, 2006). Recently, Darvas et al., (2009) have 
proposed an extension of the PLV, called bi-PLV that is specifically sensitive to non-linear 
interactions providing, thus, robustness behavior to spurious synchronization arising from 
linear crosstalk. This property is particularly useful when analyzing data recorded by EEG 
or MEG. From a physiological point of view, both coherence and PLV methods quantify the 
magnitude of correlation, for a given frequency (or band), between different areas of the 
cerebral cortex. Thus, high coherence and/or PLV implies substantial communication 
between different cortical areas while low coherence and/or PLV reflects regional 
autonomy or independence (Nunez & Srinivasan, 2006).  

 
3 Non-Invasive Functional Brain Biomarkers of Human Sensorimotor 
Performance:  

Although the signal processing approaches described above are applicable to both EEG and 
MEG signals, we will focus mainly on brain biomarkers derived from EEG since, as 
mentioned in the introduction, this technique is portable and therefore is particularly well 
suited for ecological motor tasks such as aiming (e.g., marksmanship, archery), drawing, 
arm reaching and grasping task. Therefore, most of the examples below will present the 
results of brain biomarkers derived from EEG signals. 
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3 Non-Invasive Functional Brain Biomarkers of Human Sensorimotor 
Performance:  

Although the signal processing approaches described above are applicable to both EEG and 
MEG signals, we will focus mainly on brain biomarkers derived from EEG since, as 
mentioned in the introduction, this technique is portable and therefore is particularly well 
suited for ecological motor tasks such as aiming (e.g., marksmanship, archery), drawing, 
arm reaching and grasping task. Therefore, most of the examples below will present the 
results of brain biomarkers derived from EEG signals. 
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3.1 Spectral power 
A series of studies that began in the early 80's provided a growing body of evidence that it is 
possible to assess the cortical dynamics of motor skills in novice and expert performers 
during visuomotor challenge such as marksmanship and archery tasks. These studies 
revealed changes in EEG activity with skill learning as well as differences in EEG power 
between novice and expert sport performers (Del Percio et al., 2008; Hatfield et al., 1984, 
2004; Haufler et al., 2000; Kerick et al., 2004; Landers et al., 1994; Slobounov et al., 2007). 
Specifically, the power computed for the alpha and theta frequency bands were positively 
related to the level of motor performance (Del Percio et al., 2008; Hatfield et al., 2004; 
Haufler et al., 2000; Kerick et al., 2004).  
 

 
Fig. 4. Mean EEG power (mV2) spectra (1–44 Hz) at left and right homologous sites in the 
frontal and temporal regions during the aiming period of the shooting task for expert 
marksmen versus novice shooters (Adapted from Haufler et al., (2000) with permission from 
Elsevier Science). 
 
For instance, Haufler et al., (2000) showed that, compared to novices, experts revealed an 
overall increase in EEG alpha power in the left temporal lobe (i.e., T3) while the same 
comparison between novices and experts performing cognitive tasks that were equally 
familiar to them did not provide any differences. The authors concluded, therefore, that the 
EEG alpha power differences observed were likely due to the difference of level in mastery 
of the motor task (see Fig. 4). Obviously, the differences in cortical dynamic between novices 
and experts revealed by these studies were accompanied with important differences 
between performances (i.e., the novices scored lower and exhibited more variability in their 
performance than the experts). Thus, these studies provided brain biomarkers (e.g., alpha 
power) able to identify a high level of motor performance resulting from an extensive 
practice period, without, however, considering the changes of such brain biomarker 
throughout the training period itself. 
Interestingly, in a more recent study Kerick et al., (2004) extended these investigations by 
assessing the dynamic changes throughout a marksmanship intensive training for novices 
during three months. The results revealed that, throughout the training, the performance for 
the shooting task was enhanced (Fig. 5A) concomitantly with an increased EEG alpha power 
(Fig. 5B) at the temporal level located on the contralateral side (i.e., T3, left temporal lobe) 
while such observation was not observed when the subjects were at rest. Such EEG changes 
are generally interpreted as indicative of high levels of skill and associated with a cortical 
refinement leading to reductions of nonessential cortical resources (Hatfield & Hillman, 
2001). This kind of neural adaptation process may result in simplification of neurocognitive 
activity and less possibility of interference with essential visuomotor processes. Within an 

activation context, a decrease in alpha power frequency band (i.e., desynchronization) 
represents an activated cortical site. Conversely, an increase in alpha power (i.e., 
synchronization) corresponds to a reduction of activation of a given cortical region 
(Pfurtscheller et al., 1996) indicating a decrease of the recruitment of neural resources.  
In addition to the alpha frequency band, several studies suggested that theta oscillations are 
also related to performance enhancement (Caplan et al., 2003; Tombini et al., 2009). For 
instance, during a virtual maze navigation task, Caplan et al., (2003) observed that theta 
oscillations reflected an updating of motor plans in response to incoming sensory 
information that facilitates the information encoding of participant’s cognitive map. 
  

 
Fig. 5. A. Shooting percentages by practice session. The slope of the linear regression 
revealed a significant increase in performance over all practice sessions from time 1 to 3 
(equation lower right corner). The different symbols represent the performance scores of 
individual participants on separate days of practice. B. Changes in mean power from time 1 
to 3 during shooting (SH), postural (PS), and Baseline (BL) condition (T3, left panel; T4, right 
panel). (Adapted from Kerick et al., (2004) with permission from Wolters 
Kluwer/Lippincott Williams). 
 
Although other interpretations of theta power increases are plausible (e.g., frontal theta EEG 
synchronization could also reflect an increased short term memory load; for a review see 
Klimesch et al., 2008), a growing body of work suggest that theta oscillations are 
functionally associated with error monitoring (Cavanagh et al., 2009; Larson & Lynch, 1989; 
Smith et al., 1999; Yordanova et al., 2004).  
Thus, taken together these studies suggested that changes in alpha and theta power can be 
used as non-invasive functional brain biomarkers capable either to assess the level of 
mastery of a given sensori-motor task (e.g., marksmanship task) and/or to track the brain 
status during motor practice. However, these studies used visuomotor task where upper 
limb movements were extremely specific (e.g., archery, marksmanship task) without 
considering more familiar movements used in daily activities such as arm reaching, 
grasping and tool or object manipulations. Moreover, these investigations addressed the 
improvement of an established motor ability (e.g., Haulfer et al., 2000), or a long learning 
period of a skill involving no interference with previous motor experience (e.g., Caplan et 
al., 2003; Kerick et al., 2004). Interestingly, Kranczioch et al., (2008) showed that the learning 
of a visuomotor power grip tool led to EEG changes in spectral power and cortico-cortical 
coupling (i.e., coherence). However, this study did not involve a tool that required 
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Klimesch et al., 2008), a growing body of work suggest that theta oscillations are 
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mastery of a given sensori-motor task (e.g., marksmanship task) and/or to track the brain 
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suppression of a familiar response. Nevertheless, in daily activities, we frequently need to 
adapt our motor commands related to our upper limb to learn new input-output mappings 
characterizing novel tools by inhibiting familiar behavior or responses that are no longer 
valid to manipulate them. Such tool learning requires the selection and guidance of 
movements based on visual and proprioceptive inputs while frontal executive function 
would inhibit the pre-potent input-output relationships during acquisition of the internal 
model (also called internal representation) of the new tool. This would be typically the case 
if a person has to learn to manipulate a new tool such as a neuroprosthetic. It should be 
noted that Anguera et al., (2009) used a visuomotor adaptation task requiring suppression of 
preexisting motor responses in order to quantify the changes in error-related negativity 
associated with the magnitude of the error. However, this study did not focus on tracking 
the learning process by using brain biomarkers derived from spectral power and/or phase 
synchronization. 
Based on this rational, a recent study (Gentili et al., 2008) intended to address this problem 
by analyzing the cortical dynamics during the learning of a new tool having unknown 
kinematics features.  In this experiment, fifteen right-handed healthy adults subjects sat at a 
table facing a computer screen and, with their right hand, had to perform “centre-out” 
drawing movements (on a digitizing tablet) linking a central target and one of four 
peripheral targets. Movement paths were displayed on the screen, but a horizontal board 
prevented any vision of the moving limb on the tablet. EEG signals were acquired using an 
electro-cap with 64 tin electrodes, which was fitted to the participant’s head in accordance 
with the standards of the extended International 10-20 system (Fig.6). First, the subjects 
performed 20 practice trials at the beginning of the experiment in order to be familiarized 
with the experimental setup. After this familiarization period, the experiment was divided 
into three sessions: i) pre-exposure, ii) exposure and iii) post-exposure. During the pre- and 
post-exposure phases the subjects performed, under normal visual conditions, 20 trials (i.e., 
1 block). During the exposure phase, (180 trials, i.e., 20 trials x 9 blocks) ten subjects (i.e., 
learning croup) had to adapt to a 60º counter clock-wise screen cursor rotation. In addition, 
five healthy (i.e., control group) subjects were examined using the same protocol but in the 
absence of any visual distortion. Movements were self-initiated and targets were self-
selected one at a time. All the targets were displayed throughout each trial. The instructions 
were to draw a line as straight and as fast as possible linking the home target and the 
peripheral target. Unknown to the participants, a trial was aborted and restarted if the time 
between entering the home target and movement onset was less than 2s. Therefore, 
participants had enough time to both select the target and plan their movement providing, 
thus, an extended time-window to analyze cortical activations related to preparation 
processes (i.e., planning) of the movement. 
In order to quantify the motor performance during both movement planning and movement 
execution periods, the Movement Time (MT), Movement Length (ML) and Root Mean 
Square of the Error (RMSE) were computed from the 2D horizontal displacements. The MT 
was defined as the elapsed time between leaving the home circle and entering the target. 
The ML was defined as the distance traveled in each trial. 
 

 
Fig. 6. Experimental device to record kinematics and EEG signals during the visuomotor 
adaptation task. Subjects sat at a table facing a computer screen located in front of them at a 
distance of ~60 cm and had to execute the motor task which consisted of drawing a line on a 
digitizing tablet (represented in light blue on the figure) that was displayed in real-time on 
the computer screen. The home target circle was the origin of a direct polar frame of 
reference, and the target circles were positioned 10 cm from the origin  disposed at 45°, 135°, 
225°, and 315°. Once a successful trial was performed, to prevent any feedback, all visual 
stimuli were erased from the screen in preparation for the next trial.  
 
The RMSE was computed to assess the average deviation between the movement trajectory 
from the ‘ideal’ straight line connecting the home and the pointing target. For the nine 
learning blocks, the mean and standard deviation of the ML and MT were computed. In 
order to take into account any differences in subject’s performance during the pre-exposure 
phase (i.e., baseline condition) and to focus on changes due solely to adaptation, the MT, ML 
and RMSE values were standardized with respect to the pre-exposure stage. 
Continuous EEG data were epoched in 2-s windows centered at movement onset. Both pre- 
(i.e., planning) and post- (i.e., execution) movement time-windows were considered. Single-
trial data were detrended to remove DC amplifier drift, low-pass filtered to suppress line 
noise, and baseline-corrected by averaging the mean potential from -1 to 1 s. The EEG 
signals were cleaned by means of the ICA Infomax method applied  on  a  single‐trial  basis 
described in section 2.1.1. For each subject and each single-trial, the EEG power (ERS/ERD) 
were computed by squaring and integrating the output of a dual band-pass Butterworth 
fourth order filter, and standardized with respect to the pre-exposure stage. The EEG power 
was computed for the alpha (low: 8-10 Hz, high: 11-13 Hz), beta (low: 13-20 Hz, high: 21-35 
Hz); theta (Low: 4-5 Hz, High: 6-7 Hz) and γ (36-44 Hz) bands. The entire alpha, beta and 
theta frequency bands were also analyzed. For the alpha band, two similar frequency ranges 
have been considered. i) alpha1: spread form 8 to 13Hz, and ii) alpha2: spreads from 9 to 13 
Hz. For each sensor and each block, the average power changes (across subjects) were fitted 
using a linear model from which the coefficient of determination (R2) and its slope were 
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were computed by squaring and integrating the output of a dual band-pass Butterworth 
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obtained. The sensors that showed a fit indicating a coefficient of determination capable to 
explain at least 50% of the variability of the data (i.e., R2≥0.50) allowed us to determine the 
sensor clusters and the frequency bands of interest. The results of this procedure led us to 
consider the two alpha  frequency bands and the high component of the theta  frequency 
band for the right (FT8, T8, TP8) and left (FT7, T7, TP7) temporal and right (FP2, AF4, F4, F6, 
F8) and left (FP1, AF3, F3, F5, F7,) frontal lobes. This procedure led us also to consider the 
two alpha frequency bands for the left (P1, P3, P5, P7, PO3, PO5, PO7) and right (P2, P4, P6, 
P8, PO4, PO6, PO8) parietal and left (O1) and right (O2) occipital regions (For the electrodes 
sites see Fig. 6). It must be noted that the results for both alpha bands were similar. 
However, since the findings for the second alpha band (i.e., [9-13Hz]) were slightly better 
only this frequency band will be presented and discussed. For the alpha (i.e., [9-13Hz]) and 
high theta (i.e., [6-7Hz]) bands and the eight clusters of interest, the average power values 
were computed, and the same fitting process was applied. Furthermore, in order to 
investigate any correlation between the kinematics data and the EEG power, the average 
EEG power values obtained for the clusters of interest were plotted versus the MT, ML and 
RMSE values. Exponential (single and double), linear and quadratic models were used to fit 
these relationships. The best fit was selected by considering the coefficient of determination 
and its adjusted value, the mean square error of the fit, and the sum of squares due to the 
fitting error. 
The results showed that, during the early learning phase, the subjects performed distorted 
movement trajectories with a slow progression towards the targets. However, as the subjects 
of the learning group learned the unknown physical (kinematics) properties of the novel 
tool, the analysis of the motor performance revealed that the MT, ML and RMSE decreased 
throughout adaptation (Fig. 7A-C). From the early to the late learning period, the trajectories 
were straighter and smoother while the control group did not show any performance 
improvement (Fig. 7A-C).  
 

 
Fig. 7. Concomitant EEG and kinematic changes throughout learning for the learning and 
control groups. (A) Changes in MT (±SE) throughout the learning blocks. (B) Changes in ML 
(±SE) (purple) and RMSE (±SE) (blue) throughout the learning blocks. (C) Changes in 
average trajectory (thick black lines) throughout learning for early, middle and late exposure 
(the grey area represents the standard error across subjects). (D) Qualitative EEG changes in 
alpha (first and third row) and high theta (second and fourth row) frequency bands for the 

frontal, temporal, parietal and occipital regions during planning (two first rows) and 
execution (two last rows). For the sake of clarity, sensors which did not belong to the 
clusters of interest were set to the minimal value of the scale for the scalp plot. The results of 
the learning group and control group are represented in the left and right column, 
respectively. (Adapted from Gentili et al., (2008) with permission from EURASIP). 
 
Simultaneously to these behavioral changes, the results revealed that, as the subject adapt, 
the alpha and the high component of the theta power increased in the frontal and temporal 
lobes whereas an increased in alpha power also took place in the parietal lobes. Moreover, 
these spectral changes occurred during both movement planning (i.e., movement 
preparation) and movement execution. It must be noted that this alpha frequency band 
spread form 9 to 13Hz showed the largest reactivity during the adaptation to the novel tool 
and thus provides a better brain biomarker. Contrary to the learning group, the control 
group did not exhibit any changes in spectral power (Fig. 7D).  

 

 
Fig. 8. Linear fits of EEG power changes for the frontal and temporal clusters for the 
participants of the learning group. Standardized values of the average EEG power 
computed across subjects (n=10) of the learning group and blocks (n=9) for the alpha and 
the high theta frequency bands recorded from the right (FT8, T8, TP8) and left (FT7, T7, TP7) 
temporal lobes and right (FP2, AF4, F4, F6, F8) and left (FP1, AF3, F3, F5, F7) frontal lobes. 
The blue and red stars indicate that the slopes were significantly different from zero for 
planning and execution, respectively. The black star indicates that the slopes between 
planning and execution were significantly different. The two bars on the right side of each 
panel represent the average value of the EEG power for the same cortical sites and the same 
frequency band for planning (blue) and execution (red) of the control group. (Adapted from 
Gentili et al., (2008) with permission from EURASIP). 
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of the learning group learned the unknown physical (kinematics) properties of the novel 
tool, the analysis of the motor performance revealed that the MT, ML and RMSE decreased 
throughout adaptation (Fig. 7A-C). From the early to the late learning period, the trajectories 
were straighter and smoother while the control group did not show any performance 
improvement (Fig. 7A-C).  
 

 
Fig. 7. Concomitant EEG and kinematic changes throughout learning for the learning and 
control groups. (A) Changes in MT (±SE) throughout the learning blocks. (B) Changes in ML 
(±SE) (purple) and RMSE (±SE) (blue) throughout the learning blocks. (C) Changes in 
average trajectory (thick black lines) throughout learning for early, middle and late exposure 
(the grey area represents the standard error across subjects). (D) Qualitative EEG changes in 
alpha (first and third row) and high theta (second and fourth row) frequency bands for the 

frontal, temporal, parietal and occipital regions during planning (two first rows) and 
execution (two last rows). For the sake of clarity, sensors which did not belong to the 
clusters of interest were set to the minimal value of the scale for the scalp plot. The results of 
the learning group and control group are represented in the left and right column, 
respectively. (Adapted from Gentili et al., (2008) with permission from EURASIP). 
 
Simultaneously to these behavioral changes, the results revealed that, as the subject adapt, 
the alpha and the high component of the theta power increased in the frontal and temporal 
lobes whereas an increased in alpha power also took place in the parietal lobes. Moreover, 
these spectral changes occurred during both movement planning (i.e., movement 
preparation) and movement execution. It must be noted that this alpha frequency band 
spread form 9 to 13Hz showed the largest reactivity during the adaptation to the novel tool 
and thus provides a better brain biomarker. Contrary to the learning group, the control 
group did not exhibit any changes in spectral power (Fig. 7D).  

 

 
Fig. 8. Linear fits of EEG power changes for the frontal and temporal clusters for the 
participants of the learning group. Standardized values of the average EEG power 
computed across subjects (n=10) of the learning group and blocks (n=9) for the alpha and 
the high theta frequency bands recorded from the right (FT8, T8, TP8) and left (FT7, T7, TP7) 
temporal lobes and right (FP2, AF4, F4, F6, F8) and left (FP1, AF3, F3, F5, F7) frontal lobes. 
The blue and red stars indicate that the slopes were significantly different from zero for 
planning and execution, respectively. The black star indicates that the slopes between 
planning and execution were significantly different. The two bars on the right side of each 
panel represent the average value of the EEG power for the same cortical sites and the same 
frequency band for planning (blue) and execution (red) of the control group. (Adapted from 
Gentili et al., (2008) with permission from EURASIP). 
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Among the various models tested to fit these spectral changes, the best model that was able 
to capture these changes was linear. Only the left temporal lobe presented a significantly 
linear increase for the high component of theta power during movement planning (Fig. 8A). 
However, for the frontal lobes, the same linear theta power increase occurred during both 
movement planning and execution with similar slopes (Fig. 8C). For both the temporal and 
frontal lobes, the alpha power significantly increased linearly during both movement 
planning and execution. The slopes were also different between movement planning and 
execution (Fig. 8B, D). Finally, the alpha power showed a significant linear increase in the 
left and right parietal lobes for the planning while only a tendency was observed for the 
execution and both movement stages for the two occipital lobes (Fig. 9A, C). 

 
Fig. 9. Linear fits of EEG power changes for the occipital (A) and parietal (B) clusters for the 
learning group. Standardized values of the average EEG power computed across subjects 
(n=10) and blocks (n=9) for the alpha frequency bands recorded from the right (O2) and left 
(O1) occipital lobes and right (P2, P4, P6, P8, PO4, PO6, PO8) and left (P1, P3, P5, P7, PO3, PO5, 
PO7) parietal lobes. The blue stars indicate that the slopes were significantly different from 
zero for planning. The two bars on the right side of each panel represent the average value of 
the EEG power for the same cortical sites and the same frequency band for planning (blue) and 
execution (red) for the control group.  The scalp plot depicts the clusters of electrodes in the 
occipital and parietal sites (C) and also for the frontal and temporal sites (D). For both panels, 
the blue and red circles indicate that the linear models for the alpha and theta power showed a 
coefficient of determination (R2) greater than 0.5 for the planning and execution of movement, 
respectively. The blue and red stars indicate that the linear models had a slope significantly 
different from zero for planning and execution phases, respectively. The black star indicates 
that the slopes for planning and execution are significantly different from each other. 
 
The previous results were obtained at a cluster level; however, a refined analysis conducted 
at the sensor level also showed that these linear changes where located on specific sensors 
(Fig. 9C, D) for these two frequency bands and both movement planning and execution. 
Finally, in order to find a correlation model between these spectral changes and those 
observed in kinematics during performance several models have been tested.  
 

 
Fig. 10. Changes in EEG power in the alpha and high theta bands versus kinematics. The 
first two  rows represent the average values of the standardized power of the alpha bands 
computed for the right and left temporal and frontal regions during planning and execution 
versus the concomitant changes in ML (first row) and RMSE (second row) for the learning 
group. The third row represents the same relationship for both alpha versus ML and high 
theta versus RMSE for the control group. (Adapted from Gentili et al., (2008) with 
permission from EURASIP). 
 
The findings showed that, among the models tested, the single exponential was able to 
capture with the best accuracy these co-variations between EEG power changes and the 
corresponding motor production (Fig. 10A, B). The control group did not show any changes 
(Fig. 10C). 
Thus, it appears that these changes in theta and alpha power provide informative brain 
biomarkers to track the cortical dynamics in order to assess the level of performance and 
also to track during both planning and execution the level of mastery of a novel tool 
throughout learning. Although useful, this first type of brain biomarker has the drawback to 
be univariate, that is, the power computed at a particular scalp site is able to characterize 
activation patterns for a particular channel (or brain region) without accounting for 
functional network connectivity or communications between different regions of the cortex 
during performance. It must be noted that these spectral power changes have been robustly 
observed in EEG/MEG studies and represent today a classical brain biomarker of human 
performance. Beside the spectral power, another type of brain biomarker, derived from 
EEG/MEG, is the computation of the phase synchronization between two scalp sites. 
Although initially less popular, this second technique (see section 2.3) is increasingly used to 
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execution and both movement stages for the two occipital lobes (Fig. 9A, C). 
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(n=10) and blocks (n=9) for the alpha frequency bands recorded from the right (O2) and left 
(O1) occipital lobes and right (P2, P4, P6, P8, PO4, PO6, PO8) and left (P1, P3, P5, P7, PO3, PO5, 
PO7) parietal lobes. The blue stars indicate that the slopes were significantly different from 
zero for planning. The two bars on the right side of each panel represent the average value of 
the EEG power for the same cortical sites and the same frequency band for planning (blue) and 
execution (red) for the control group.  The scalp plot depicts the clusters of electrodes in the 
occipital and parietal sites (C) and also for the frontal and temporal sites (D). For both panels, 
the blue and red circles indicate that the linear models for the alpha and theta power showed a 
coefficient of determination (R2) greater than 0.5 for the planning and execution of movement, 
respectively. The blue and red stars indicate that the linear models had a slope significantly 
different from zero for planning and execution phases, respectively. The black star indicates 
that the slopes for planning and execution are significantly different from each other. 
 
The previous results were obtained at a cluster level; however, a refined analysis conducted 
at the sensor level also showed that these linear changes where located on specific sensors 
(Fig. 9C, D) for these two frequency bands and both movement planning and execution. 
Finally, in order to find a correlation model between these spectral changes and those 
observed in kinematics during performance several models have been tested.  
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first two  rows represent the average values of the standardized power of the alpha bands 
computed for the right and left temporal and frontal regions during planning and execution 
versus the concomitant changes in ML (first row) and RMSE (second row) for the learning 
group. The third row represents the same relationship for both alpha versus ML and high 
theta versus RMSE for the control group. (Adapted from Gentili et al., (2008) with 
permission from EURASIP). 
 
The findings showed that, among the models tested, the single exponential was able to 
capture with the best accuracy these co-variations between EEG power changes and the 
corresponding motor production (Fig. 10A, B). The control group did not show any changes 
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Thus, it appears that these changes in theta and alpha power provide informative brain 
biomarkers to track the cortical dynamics in order to assess the level of performance and 
also to track during both planning and execution the level of mastery of a novel tool 
throughout learning. Although useful, this first type of brain biomarker has the drawback to 
be univariate, that is, the power computed at a particular scalp site is able to characterize 
activation patterns for a particular channel (or brain region) without accounting for 
functional network connectivity or communications between different regions of the cortex 
during performance. It must be noted that these spectral power changes have been robustly 
observed in EEG/MEG studies and represent today a classical brain biomarker of human 
performance. Beside the spectral power, another type of brain biomarker, derived from 
EEG/MEG, is the computation of the phase synchronization between two scalp sites. 
Although initially less popular, this second technique (see section 2.3) is increasingly used to 
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track the level of sensorimotor performance/learning. Recently this approach led to 
interesting results that will be presented in the next section. 

 
3.2 Phase synchronisation 
Contrary to the previously mentioned investigations focusing on the spectral power analysis, 
there are only a few studies that analyzed the cortical networking by means of coherence 
and/or PLV to assess the level of motor performance and/or to track the learning dynamic. 
For instance, Bell and Fox (1996) reported a decreased EEG coherence in experienced infant 
crawlers relative to novice crawlers and attributed their findings to a pruning of synaptic 
connections as crawling became more routine. Another experiment, further directly related 
to our purpose and conducted by Deeny et al., (2003), compared EEG coherence between a 
frontal site (i.e., sensor Fz) and several other cortical regions in two groups of highly skilled 
marksmen who were similar in expertise, but who differed in competitive performance 
history. One of the two groups performed consistently better in competition and exhibited 
significantly lower coherence between the left temporal region (i.e., T3) and the premotor 
area (i.e., Fz) in the low-alpha (8–10 Hz) and low-beta (13–22 Hz) bandwidths during the 
aiming period (Fig. 11).   

 
Fig. 11. Upper row. Expert and skilled group means for low-alpha (8–10 Hz) coherence 
estimates between Fz (premotor area) and frontal, central, temporal, parietal, and occipital 
sites in each cerebral hemisphere. Lower row. Expert and skilled group means for low-beta 
(13–22 Hz) coherence estimates between Fz (premotor area) and frontal, central, temporal, 
parietal, and occipital sites in each cerebral hemisphere. *Significant difference, p <0.05; 
**T3–Fz coherence was significantly lower than T4–Fz coherence in the expert group only. 
(Adapted from Deeny et al., (2003) with permission from Human Kinetics Publishers). 
 
More recently, Deeny et al., (2009) confirmed that the coherence could also be useful to 
assess the brain dynamic in relation to the level of mastery of a motor task. Specifically, they 

showed that experts generally exhibited lower coherence over the whole scalp compared 
with novices, with the effect most prominent in the right hemisphere. Coherence was 
positively related to aiming movement variability in experts (Fig. 12).  
 

 
Fig. 12. A. Average variability of rifle aiming path during the 4 s prior to trigger pull in 1-s 
time bins for experts and novices. Error bars represent standard error. B. Coherence values 
for high alpha. C. Coherence values for low beta. *Indicate significantly higher coherence in 
novice shooters relative to experts (p <0.05). C = central; F = frontal; O = occipital; P = 
parietal; T = temporal. (Adapted from Deeny et al., (2009) with permission from Heldref 
Publications). 
 
Taken together, the authors of these two studies suggested that these coherence results 
reflect a refinement of cortical networks in experts that was interpreted as a reduction of 
nonessential functional communications among the cortical regions of interest inducing in 
turn an improvement in motor performance. In other words, such coherence patterns 
provide brain biomarkers of specific motor planning as skill level increases allowing 
assessing the mastery level of a given task. As previously explained in the section related to 
the spectral power analysis, these studies assessed cortical dynamics for a well-established 
motor ability without addressing any learning manipulations of object or tool having 
unknown properties. As far as we know, only two investigations (Busk & Galbraith, 1975; 
Kranczioch et al., 2008) used coherence measurement to study learning during a visuomotor 
task. Specifically, Busk & Galbraith, (1975) reported decreased coherence between premotor 
(Fz) and motor (C3, C4) areas of the cortex and between the premotor and occipital regions, 
following practice on an eye–hand tracking task. More recently, Kranczioch et al., (2008) 
found changes in cortico-cortical coupling during learning of a visuomotor power grip tool. 
Specifically, they revealed that learning was variably associated with increased coherence 
between contralateral and/or ipsilateral frontal and parietal, fronto-central, and occipital 
brain regions. However, the learning period was relatively short (e.g., only the early 
learning stage was considered in Busk & Galbraith, (1975)) and these studies did not involve 
the suppression of familiar behavior used in the daily life. 
By using the same tool learning protocol with unknown kinematics features (see section 3.1, 
Fig.6), a recent analysis (Gentili et al., 2009b) aimed to identify any changes in phase 
synchronization between two electrode pairs using both spectral coherence and PLV. The 
aim was to extract information from these measures to provide additional non-invasive 
functional brain biomarkers able to track the sensorimotor performance while subjects 
learned to manipulate a novel tool. The pre-processing of the EEG, the choice of the 
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**T3–Fz coherence was significantly lower than T4–Fz coherence in the expert group only. 
(Adapted from Deeny et al., (2003) with permission from Human Kinetics Publishers). 
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assess the brain dynamic in relation to the level of mastery of a motor task. Specifically, they 
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with novices, with the effect most prominent in the right hemisphere. Coherence was 
positively related to aiming movement variability in experts (Fig. 12).  
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for high alpha. C. Coherence values for low beta. *Indicate significantly higher coherence in 
novice shooters relative to experts (p <0.05). C = central; F = frontal; O = occipital; P = 
parietal; T = temporal. (Adapted from Deeny et al., (2009) with permission from Heldref 
Publications). 
 
Taken together, the authors of these two studies suggested that these coherence results 
reflect a refinement of cortical networks in experts that was interpreted as a reduction of 
nonessential functional communications among the cortical regions of interest inducing in 
turn an improvement in motor performance. In other words, such coherence patterns 
provide brain biomarkers of specific motor planning as skill level increases allowing 
assessing the mastery level of a given task. As previously explained in the section related to 
the spectral power analysis, these studies assessed cortical dynamics for a well-established 
motor ability without addressing any learning manipulations of object or tool having 
unknown properties. As far as we know, only two investigations (Busk & Galbraith, 1975; 
Kranczioch et al., 2008) used coherence measurement to study learning during a visuomotor 
task. Specifically, Busk & Galbraith, (1975) reported decreased coherence between premotor 
(Fz) and motor (C3, C4) areas of the cortex and between the premotor and occipital regions, 
following practice on an eye–hand tracking task. More recently, Kranczioch et al., (2008) 
found changes in cortico-cortical coupling during learning of a visuomotor power grip tool. 
Specifically, they revealed that learning was variably associated with increased coherence 
between contralateral and/or ipsilateral frontal and parietal, fronto-central, and occipital 
brain regions. However, the learning period was relatively short (e.g., only the early 
learning stage was considered in Busk & Galbraith, (1975)) and these studies did not involve 
the suppression of familiar behavior used in the daily life. 
By using the same tool learning protocol with unknown kinematics features (see section 3.1, 
Fig.6), a recent analysis (Gentili et al., 2009b) aimed to identify any changes in phase 
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aim was to extract information from these measures to provide additional non-invasive 
functional brain biomarkers able to track the sensorimotor performance while subjects 
learned to manipulate a novel tool. The pre-processing of the EEG, the choice of the 
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frequency bands of interest and the kinematics processing were similar to that previously 
described in section 3.1 for the same tool learning task. Both the spectral coherence and the 
PLV have been computed as mentioned in section 2.3. A visual inspection of the data led us 
to consider a linear and a logarithmic model to fit the relationship between the spectral 
coherence/PLV changes and the kinematics parameters (MT, ML, RMSE) throughout 
learning. However, based on the criteria previously mentioned (see section 3.1), the 
logarithmic model allowed a better fitting of these relationships. It must be noted that, since 
for this experiment both spectral coherence and PLV provided similar results, thus, only the 
PLV results are presented in the following. The kinematics results are the same that those 
presented in section 3.1 (see Fig. 7A-C) indicating that the subjects learned to manipulate 
correctly the novel tool. 
 

 
Fig. 13. Changes in PLV throughout the learning. A. Pair of electrodes showing a decrease of 
their synchronization throughout the learning during planning (top scalp plot) and 
execution (bottom scalp plot). B. Linear model capturing the changes in PLV during 
planning and execution for the pair of electrodes Fz-F3 (low alpha band), Fz-F4 (low beta 
band), Fz-C3 (low beta band) and Fz-O1 (gamma band). C. Linear model capturing the 
changes in PLV during execution for the pair of electrodes Fz-T7 (low theta band), Fz-P3 
(high alpha band), Fz-P4 (high alpha band), and Fz-F3 (high theta band).  (Panels A and B 
reproduced from Gentili et al., (2009b) with permission from IEEE). 
 
While throughout learning the kinematics was enhanced (see Fig. 7A-C); 
electrophysiological changes in phase synchronization were simultaneously observed (Fig. 
13A). Namely, as the subjects adapt, the electrodes pair Fz-F3 (low alpha band), Fz-F3 (low 
beta band), Fz-F4 (low beta band), Fz-C3 (low beta band) and Fz-O1 (gamma band) revealed 
a decrease captured by a linear model (i.e., R2≥0.50) for both movement planning and 
execution (Fig. 13B). For planning, the slopes of these linear models were significantly 
different from zero (t-test, p<0.05) for Fz-F3 (low components of the alpha and beta bands), 
Fz-C3 (low beta band), Fz-O1 (gamma band) and during execution for Fz-F3 (low alpha 
band) and Fz-C3 (low beta band) while a trend was observed for Fz-F3 (low beta band, 
p=0.06) and Fz-F4 (low beta band, p=0.07). Also, for execution, the same analysis revealed 
that the electrode pairs Fz-T7 (low theta band), Fz-P3 (high alpha band), Fz-P4 (high alpha 

band) and Fz-F3 (high theta band) showed a significant linear decrease of the PVL (t-test, 
p<0.05) throughout adaptation (Fig.13C). 
Such linear decrease was correlated with an enhancement of the performance and 
particularly good logarithmic correlations were found between the changes in phase 
synchronization and the MT and ML parameters. The results for the correlation analyses 
showed that the relationships between the changes in PLV for the pairs Fz-F3, Fz-F4,  Fz-C3, 
Fz-O1 and the MT and ML values were best fitted by using a logarithm (R2≥0.40) for both 
planning and execution. The same correlation analysis performed for the pairs Fz-T7, Fz-P3, 
Fz-P4, Fz-F3 and the MT and ML values revealed that the same results were obtained 
(R2≥0.50) only for movement execution. 

  

 
Fig. 14. Representation of the PLV versus the MT (first row) and the ML (second row) for 
both movement planning (blue color) and execution (red color). A. Pair Fz-F3 (low alpha 
band); B. Pair Fz-C3 (low beta band); C. Pair Fz-O1 (gamma band); D. Pair Fz-T7 (low theta 
band); E. Pair Fz-F3 (low alpha band); F. Pair Fz-C3 (low beta band);  G. Pair Fz-O1 (gamma 
band); H. Pair Fz-F3 (high theta band). Since the Pair Fz-T7 (low theta band) and Fz-F3 (high 
theta band) revealed a non significant linear decrease during planning, the fits for PLV 
values versus MT and ML are only presented for execution (see panel D and H). (Panels 
A,B,E,F reproduced from Gentili et al., (2009b) with permission from IEEE). 
 
As for the spectral power changes for the alpha and theta frequency bands, these changes in 
coherence/PLV presented above, allow assessing the level of performance but also its 
development throughout a learning period. Therefore, the spectral power and 
coherence/PLV provide brain biomarkers of the performance and learning in Human that 
may be useful in bioengineering/biomedical applications, particularly for brain monitoring 
applications and/or when the access to the actual performance is impossible. This will be 
presented in section 4, beforehand; the section 3.3 will present and discuss the advantages of 
these brain biomarkers but also their current limitations and the potential solutions to 
overcome them. 
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different from zero (t-test, p<0.05) for Fz-F3 (low components of the alpha and beta bands), 
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p=0.06) and Fz-F4 (low beta band, p=0.07). Also, for execution, the same analysis revealed 
that the electrode pairs Fz-T7 (low theta band), Fz-P3 (high alpha band), Fz-P4 (high alpha 

band) and Fz-F3 (high theta band) showed a significant linear decrease of the PVL (t-test, 
p<0.05) throughout adaptation (Fig.13C). 
Such linear decrease was correlated with an enhancement of the performance and 
particularly good logarithmic correlations were found between the changes in phase 
synchronization and the MT and ML parameters. The results for the correlation analyses 
showed that the relationships between the changes in PLV for the pairs Fz-F3, Fz-F4,  Fz-C3, 
Fz-O1 and the MT and ML values were best fitted by using a logarithm (R2≥0.40) for both 
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Fz-P4, Fz-F3 and the MT and ML values revealed that the same results were obtained 
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band); B. Pair Fz-C3 (low beta band); C. Pair Fz-O1 (gamma band); D. Pair Fz-T7 (low theta 
band); E. Pair Fz-F3 (low alpha band); F. Pair Fz-C3 (low beta band);  G. Pair Fz-O1 (gamma 
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values versus MT and ML are only presented for execution (see panel D and H). (Panels 
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As for the spectral power changes for the alpha and theta frequency bands, these changes in 
coherence/PLV presented above, allow assessing the level of performance but also its 
development throughout a learning period. Therefore, the spectral power and 
coherence/PLV provide brain biomarkers of the performance and learning in Human that 
may be useful in bioengineering/biomedical applications, particularly for brain monitoring 
applications and/or when the access to the actual performance is impossible. This will be 
presented in section 4, beforehand; the section 3.3 will present and discuss the advantages of 
these brain biomarkers but also their current limitations and the potential solutions to 
overcome them. 
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3.3 Strengths, weaknesses, and perspectives for brain biomarkers of the 
sensorimotor performance 
 

3.3.1 Strengths and weaknesses 
By revealing correlations between the spectral power, coherence/PLV and motor 
performance, the research lines presented in this chapter provide potential non-invasive 
functional brain biomarkers to assess and track the level of performance and learning. It is 
important to note that these biomarkers are able to detect important differences in skills 
level such as those existing between novices and experts (e.g., Hatfield et al., 1984, 2004; 
Haufler et al., 2000) as well as to identify the learning dynamic related to different types of 
tasks inducing different neural resources (e.g., Gentili et al., 2008, 2009a,b; Kerick et al., 
2004). Moreover, although their scalp locations and frequency band of interest present slight 
variations from one task to another, it appears that these biomarkers share also some 
frequency (e.g., alpha band) and spatial (e.g., temporal region) features while being located 
on specific electrodes for the various tasks tested. Therefore, beyond certain specificities that 
are task-dependent, these biomarkers of human performance share a common consistent 
topology in term of frequency and spatial scalp locations across different tasks. Moreover, it 
must be noted that changes in phase synchronization for a specific frequency range do not 
necessarily imply similar power changes for the same electrodes (Kiroi & Aslanyan, 2006). 
Therefore, the availability of processing techniques for extracting and combining both 
univariate (i.e., spectral power) and multivariate (i.e., spectral coherence/PLV) cortical 
measures might provide “multidimensional” brain biomarkers in the future. Such 
multidimensionality resulting from the combination previously described is expected to 
provide enhanced, robust biomarkers capable of tracking performance and learning 
dynamics, thus providing a potential solution to overcome limitations in current practical 
applications. This will be explained in the section 3.3.2.  
Another important point is directly linked to the fact that these biomarkers were derived 
from EEG during movement execution, but, more importantly, during movement 
preparation (i.e., planning; Deeny et al., 2003, 2009; Gentili et al., 2008, 2009a,b; Hatfield et 
al., 2004; Haufler et al., 2000). The availability of these biomarkers during movement 
execution and particularly during movement preparation (i.e., planning) involves two 
specific advantages.  
First, a biomarker of the performance during execution can be considered as a good 
complement of the behavioral measures available during and/or after movement execution. 
More importanty, the presence of these brain biomarkers during planning also allow 
estimating/predicting the on-coming performance level that is not available with usual 
peripheral and behavioral measurements. This important feature is common to many 
biomarkers such as the bispectral index derived from EEG used for the identification of 
anesthetic depth during pediatric cardiac surgery while the usual clinical signs are not 
accessible (Williams & Ramamoorthy, 2009).  
Second, the availability of brain biomarkers of the performance during movement 
preparation is a feature that becomes particularly important when considering overt but, 
more importantly, covert movement executions in the context of bioengineering and 
biomedical applications for rehabilitation. The expression “overt movement execution” 
corresponds to a movement actually performed such as those executed in daily activities. In 
this case, the person can see and feel his/her own limb moving. Conversely, the term 
“covert movement execution”, also commonly named mental or motor imagery, refers to a 

dynamic mental process during which a subject internally simulates a motor action without 
activating the muscles and, therefore, without any apparent motion of the limbs involved in 
that action (Gentili et al., 2004, 2006; Jeannerod, 2001). Such motor imagery or covert 
execution is commonly used for mental practice/rehearsal of specific performance skills, 
BCI approaches and more generally in rehabilitation (see section 4 of this chapter). 
Interestingly, many studies revealed that common neurocognitive mechanisms in terms of 
both similar neural structures and behaviour exist between overt and covert motor actions 
(Fadiga & Craighero, 2004; Gentili et al., 2006; Jeannerod et al., 2001). In particular, several 
investigations suggest that motor imagery involves the same neural mechanisms as those 
activated during preparation (i.e., planning) and execution of overt movements (e.g., 
Jeannerod, 1994, 2001). Therefore, although our task involved actual movements, since the 
present results suggest that these brain biomarkers are accessible during movement 
preparation, they may also be suitable for covert movement execution when a task is 
performed using motor imagery. 
Despite this research provided some interesting results and is still currently making 
progresses, two main limitations have to be considered. First, the present brain biomarkers 
of performance are based on a population analysis without considering subject individually. 
Second, their computation was based on the average value across several trials (e.g., 20 
trials). Definitely, considering the variability of the MEG/EEG signals from one trial to 
another and also the sensitivity of the EEG signal to environmental noise and artefacts, the 
approach consisting in defining brain biomarkers of the performance needs to investigate, to 
what extent these results can be extended when single subject and single trials are 
considered. This is important for future applications since they will be designed for single 
subjects and ideally based on single or eventually few trials. Recently, by using MEG 
applied to a similar tool learning task (described in Fig. 6), we started to address these two 
problems by analyzing the alpha power band ([9-13Hz]) in individual subjects using the 
same ERD/ERS techniques and testing different sliding window (e.g., length, overlap) 
across trials. The preliminary results suggest that, at the individual level, the spectral power 
for the alpha band ([9-13Hz]) computed at the frontal, temporal and parietal regions during 
movement preparation were able to predict the motor performance (Gentili et al. 2009a).  

 
3.3.2 Overcoming the current limitations by means of multiple constrains 
As suggested in section 3.3.1, a possible way to overcome the two main limitations 
previously mentioned (i.e., single subject and computation based on single or few trials) is 
to obtain robust multidimensional EEG/MEG biomarkers able to assess the level of 
performance and learning by combining several individual biomarkers. In other words, the 
combination of several biomarkers would result in an increased number of conditions that 
have to be satisfied for estimating reliably any enhancement of the performance. The 
prediction problem is therefore constrained since a reliable estimation of performance needs 
to satisfy several constraints represented by the right combinations of biomarkers. For 
instance, if both a power increase and a coherence/PLV decrease are simultaneously 
observed for specific frequency bands and brain regions, it seems reasonable to predict with 
a certain confidence that the subjects are successfully learning the task. Conversely, if we 
would have only one biomarker, this prediction would be less reliable. Therefore, the 
combination of several brain biomarkers such as phase synchronization and spectral power 
would provide cross-information resulting in the generation of robust and accurate non-
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necessarily imply similar power changes for the same electrodes (Kiroi & Aslanyan, 2006). 
Therefore, the availability of processing techniques for extracting and combining both 
univariate (i.e., spectral power) and multivariate (i.e., spectral coherence/PLV) cortical 
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multidimensionality resulting from the combination previously described is expected to 
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“covert movement execution”, also commonly named mental or motor imagery, refers to a 
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activating the muscles and, therefore, without any apparent motion of the limbs involved in 
that action (Gentili et al., 2004, 2006; Jeannerod, 2001). Such motor imagery or covert 
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performed using motor imagery. 
Despite this research provided some interesting results and is still currently making 
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of performance are based on a population analysis without considering subject individually. 
Second, their computation was based on the average value across several trials (e.g., 20 
trials). Definitely, considering the variability of the MEG/EEG signals from one trial to 
another and also the sensitivity of the EEG signal to environmental noise and artefacts, the 
approach consisting in defining brain biomarkers of the performance needs to investigate, to 
what extent these results can be extended when single subject and single trials are 
considered. This is important for future applications since they will be designed for single 
subjects and ideally based on single or eventually few trials. Recently, by using MEG 
applied to a similar tool learning task (described in Fig. 6), we started to address these two 
problems by analyzing the alpha power band ([9-13Hz]) in individual subjects using the 
same ERD/ERS techniques and testing different sliding window (e.g., length, overlap) 
across trials. The preliminary results suggest that, at the individual level, the spectral power 
for the alpha band ([9-13Hz]) computed at the frontal, temporal and parietal regions during 
movement preparation were able to predict the motor performance (Gentili et al. 2009a).  

 
3.3.2 Overcoming the current limitations by means of multiple constrains 
As suggested in section 3.3.1, a possible way to overcome the two main limitations 
previously mentioned (i.e., single subject and computation based on single or few trials) is 
to obtain robust multidimensional EEG/MEG biomarkers able to assess the level of 
performance and learning by combining several individual biomarkers. In other words, the 
combination of several biomarkers would result in an increased number of conditions that 
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to satisfy several constraints represented by the right combinations of biomarkers. For 
instance, if both a power increase and a coherence/PLV decrease are simultaneously 
observed for specific frequency bands and brain regions, it seems reasonable to predict with 
a certain confidence that the subjects are successfully learning the task. Conversely, if we 
would have only one biomarker, this prediction would be less reliable. Therefore, the 
combination of several brain biomarkers such as phase synchronization and spectral power 
would provide cross-information resulting in the generation of robust and accurate non-
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invasive brain biomarkers of the motor performance. This approach could also give insight 
into possible reasons for the failure of sensorimotor learning and adaptations. Thus, such 
multidimensional brain biomarkers might be better suited for applications based on 
individual subjects and single or few trials. 
It must be noted that, this first type of constraint was related to a combination of various 
biomarkers using the same brain imaging modality, i.e., EEG/MEG signals. However, 
another type of combination could also be considered by using the fusion across multiple 
recoding modalities in order to complement information provided from each imaging 
technique. For instance, in order to complement EEG/MEG signals analysis, fNIRS signals 
processing could provide additional brain biomarker by measuring the hemodynamic of 
brain activity. The choice to use fNIRS is guided by three reasons: First, although the 
hemodynamic activity has a lower temporal resolution than EEG, the fNIRS potentially 
provides more direct spatial resolution or localization abilities over EEG (Soraghan et al., 
2008). Thus, with the superior temporal resolution of EEG, merging these two techniques 
would allow for “the best of both worlds” (Coyle et al., 2007). Second, contrary to EEG, the 
hemodynamic response is influenced by head/body orientation with respect to the 
gravitational axis whereas fNRIS signal is relatively less sensitive to artefact and 
environmental noise than EEG. Once again, since both do not have these two common 
weaknesses their combination appears to be advantageous. Third, although fNIRS only 
penetrate the cortex relatively superficially (~2.0 cm; Rolfe, 2003) contrary to classical fMRI, 
these signals can be recorded by portable devices as it is also the case for EEG, making them, 
particularly well suited for applications in practical/ecological situations with various 
populations (e.g., healthy persons, patients, children, elderly, military personnel, etc.). It 
must be noted that the idea to combine several biomarkers within (power, coherence/PLV) 
and between (fNIRS) imaging modalities has already been proposed for clinical applications 
(Guarracino et al., 2008) such as for brain injury prediction (Ramaswamy et al., 2009) and 
amyotrophic lateral sclerosis (Turner et al., 2009). From a practical point of view, this signal 
fusion across multiple imaging modalities could ideally be performed by using a recoding 
system that embed both EEG and fNIRS sensors. 

 
3.3.3 Emotional states on brain biomarkers of the performance  
A question that is naturally raised is the influence that some psychological and mental states 
such as emotion, stress or fatigue could exert over the quality of sensorimotor performance. 
If such adverse psychological and mental states disrupt the motor performance, it is 
legitimate to wonder to which extent the biomarkers tracking this same performance would 
also be affected. However, the majority of the performance stress-related studies focus on 
behavioural aspects without analyzing the cortical dynamics (Staal et al., 2004). Ongoing 
research by Hatfield and colleagues is beginning to provide some insight into such 
questions by placing performers under stressful conditions. For instance, Rietschel et al., 
(2008) asked participants to perform a marksmanship task under both regular performance-
alone and competitive conditions. Changes in the Spielberger State Anxiety Inventory 
(STAI), heart rate, cortisol and skin conductance evidenced an increased state anxiety during 
the competitive condition. Furthermore, the performance was affected during the 
competition along with a significant decrease in alpha power. Similarly, when subjects 
performed a drawing movement task under high level arousal conditions they exhibited 
higher levels of coherence associated with decreases in performance (Rietschel et al., 2006). 

Therefore, these results provide evidence that the brain biomarkers of sensorimotor 
performance can be disrupted by psychological and mental states such as emotion, stress. 
Thus, from a physiological point of view, it is possible to consider that an increased degree 
of stress would induce the recruitment of nonessential neural resources during task 
execution, leading to a reduction of cortical refinement (i.e., a reduction of alpha power and 
an increase in cortico-cortical communication) that reflects sub-optimal performance. In 
other words, we could consider that, to some degree, the brain biomarkers are contaminated 
with a sort of noise. However, even in this case, they may still be informative since in some 
instances they could also unravel the possible causes (e.g., stress, fatigue) of alterations in 
behavioral performance which cannot be revealed by peripheral motion parameters (e.g., 
kinematics) alone. For instance, in the study where subjects learn a novel tool, the absence of 
learning/adaptation could also be due to fatigue. Nevertheless, when considering the 
spectral power, the frontal biomarkers evidenced here are neither in the same spatial 
location (frontal midline) nor in the same frequency band (low theta band) than the fatigue-
related EEG power (Makeig et al., 2000; Oken et al., 2006). Similarly, when considering the 
coherence/PLV, factors such as stress or fatigue imply an increase and not a decrease in 
phase synchronization and is generally identified for different electrodes pairs and/or 
frequency bands (Andersen et al., 2009; Lorist et al., 2009) than those found in the tool 
learning study (see section 3.2). Therefore, this clearly illustrates: i) the advantage to 
combine different biomarkers of the performance to obtain more robust predictions, ii) the 
benefit to combine them with other biomarkers identifying some adverse mental states (e.g., 
fatigue, stress) to be able to better decipher or indicate potential causes of a poor learning 
performance. Futures research should provide insights about these various possibilities, 
their benefit and limits. 

 
3.3.4 Fusion of structural and functional brain biomarkers  
Although the two previous sections (3.3.2 and 3.3.3) focused on different problems, both of 
them emphasized the importance for cross-information by combining several biomarkers. 
Indeed, it can be reasonably expected that such combination of biomarkers would lead to a 
robust tracking of motor performance and learning. It must be noted that such a 
combination can be performed not only between functional biomarkers but also between 
both structural and functional biomarkers. For instance, biomarkers can predict the 
performance based on information at the genetic/molecular level (e.g., naloxone, cortisol) or 
from behaviour such as heart rate or skin conductance (Armstrong & Hatfield, 2006). Thus, 
such convergence between these biomarkers, different in nature, would allow performing 
an even more robust prediction to assess accurately the level of performance and to 
track/predict precisely the learning dynamic. Although this chapter introduced mainly the 
concept of functional brain biomarkers for performance assessment, it appears clearly that 
both structural and functional brain biomarkers must be seen as a complementary source of 
information. Interestingly, while structural brain biomarkers using methods form genetic 
may be more appropriate on a long timescale prediction such as very early diagnostic, 
functional biomarkers may be better suited for short timescale prediction such as a real-time 
tracking of the neural events. Such combination of structural and functional brain 
biomarkers is an emerging research line. For instance, recently Deeny et al., (2008) 
investigated MEG measurements in relation to genetic markers such as the epsilon4 allele of 
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the apolipoprotein, providing a method to detect risk factors for Alzheimer's disease 
(Corder et al., 1993).  

 
4. Current Brain Biomarkers for Sensorimotor Performance and 
Bioengineering Applications 

Beyond the considerations presented in section 3, the techniques presented to record and 
process brain biomarkers non-invasively using portable systems make them particularly 
well suited for real-time (or close to real-time) prediction in practical/ecological 
applications. Although multiple potential applications can be considered for the future, this 
section will illustrate two possible applications. The first one will be the design of future 
smart neuroprosthetics by proposing solutions to overcome some well-known BCI-related 
problems. The second application (that is actually to some extent a generalization of the first 
one) will be related to brain monitoring in the context of overt and covert movement 
execution to accelerate learning or re-learning when a task is performed/learned using 
actual movements and/or motor imagery. 

 
4.1 Neuroprosthetic applications: towards a smart Brain Computer Interface 
The changes previously described in EEG power and coherence/PLV that mirror human 
motor performance may potentially provide powerful biomarkers for tracking human 
learning/adaptation status when one has to learn/adapt to a new tool. A first potential 
interesting role of these brain biomarkers would be to overcome the well-known difficulties 
related to BCI systems such as adaptive decoding, constant recalibration and the 
maintenance of stable performance while a user tries to control a neuroprosthesis (Vaughan 
et al., 2003). Traditionally, motor-imagery-based BCI approaches are divided into two 
phases. The first one consists of a calibration phase to determine the parameters of a 
decoding algorithm, which has to map neural signals to a class of imagined movement. The 
second phase aims to train the subject by providing him/her sufficient feedback to change 
his/her cortical dynamics in order to control an external device via the BCI system. It is 
important to note that during this second stage, since the adaptation depends on the 
capacity of the user’s brain to change its cortical dynamics, frequent recalibrations of the 
decoding algorithms are required when the user’s performance degrades (Blankertz et al., 
2009). In order to address these problems, some solutions have been proposed and notably 
by means of adaptive algorithms (Blankertz et al., 2006; Sykacek et al., 2004). However, these 
approaches use supervised adaptation based on a priori knowledge of an external target. 
Although helpful, the requirement of such a priori information actually represents a major 
pitfall for practical BCI applications since the user should decide when and where to direct 
his/her intentions. In other words, no information of external targets is available to the 
decoding algorithm (Blankertz et al., 2006; Vidaurre et al., 2007). The complexity of using 
two adaptive controllers (the user’s brain and the decoding algorithm) is not new and has 
been already raised (McFarland et al., 2006; Vaughan et al., 1996); however, it continues to 
be an issue, and no satisfying solutions of this problem have been provided (McFarland et 
al., 2006). The brain biomarkers of performance presented in this chapter may help to 
overcome such important drawbacks of BCI. Indeed, such biomarkers could be used to 
continuously adapt the decoding algorithm to the subject’s mental states, thereby allowing a 
stable co-adaptation/cooperation between the user and the BCI system. This is especially 

relevant when the user has to learn the physical properties of a new tool and/or a novel 
environment as is the case when a user intends to control a neuroprosthetic device. For 
example, the alpha power at the frontal, temporal and parietal sites combined with 
coherence/PLV for the low beta frequency bands between the pair of electrodes Fz-F3 and 
Fz-C3 could be computed using a sliding window (e.g., 15-20 trials). If the user’s brain 
considerably adapts as indicated by an increased alpha power combined with a reduced 
coherence/PLV at the brain sites mentioned above, then the BCI decoding algorithm should 
not update its parameters. Conversely, it should adjust the parameters, by using, for 
instance, a reinforcement learning signal, to compensate for a user’s poor performance (in 
that case reflected by a decreased alpha power and an increased coherence/PLV at the brain 
sites mentioned above).  
As previously mentioned in section 3.3.3, the use of such biomarkers could also reveal the 
sources of alteration in behavioral performance which cannot be revealed by kinematics 
parameters alone. For instance, poor learning/adaptation performance could be due to 
other factors such as stress or fatigue. These biomarkers, thanks to their specificities in term 
of scalp sites and frequency bands (and also with eventual additional information such as 
hemodynamic response provided by fNIRS), could reasonably unravel the possible origin of 
poor motor learning, providing, therefore, relevant covert supervision of the user during 
BCI training. For example, in practical use, it is important to decipher if a user’s poor BCI 
performance is related to fatigue or to bottlenecks related to information processing guiding 
the algorithm to adapt to the user’s cognitive state, which is usually impossible to access 
from behavior.  

 
4.2 Brain monitoring applications 
Another possible application of functional brain biomarkers would be related to brain 
monitoring for overt and more importantly for covert execution. It is well known that motor 
imagery, or covert execution, share a lot of functional commonalities and that many neural 
structures are commonly activated during both overt and covert movement. On the other 
hand, there is also a growing body of evidence that suggests that it is possible to learn, or at 
least improve, performance with practice using motor imagery also called mental training. 
Most of the studies focusing on mental practice either considered performance enhancement 
in a healthy population (e.g., Gentili et al., 2006; Yaguez et al., 1998) or a rehabilitation (e.g., 
Jackson et al., 2004; Page et al., 2001) context where a positive effect on subsequent actual 
motor performance was evidenced. While it is possible to assess the effects of such covert 
practice on subsequent actual movements, it is impossible to continuously monitor mental 
training (unless a trial is actually executed) since no overt execution is available. However, 
the brain biomarkers presented here would allow for assessing the level of performance 
during mental training and tracking of learning dynamics. Such brain biomarkers could be 
coupled to a neurofeedback system providing, thus, an enhanced feedback of performance 
during overt execution (in addition to classical feedback) or covert execution where usually 
no feedback is available. Such brain monitoring systems for covert/overt movement 
execution would allow efficient supervision of performance, resulting in an accelerated 
learning or re-learning. Such bioengineering systems could be applied in various 
populations ranging from military personnel desiring to rapidly acquire skills to any 
persons subjected to a motor impairment undergoing rehabilitation where enhanced 
guidance for both patient and therapist would be beneficial. It must be noted that these 
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the apolipoprotein, providing a method to detect risk factors for Alzheimer's disease 
(Corder et al., 1993).  
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hemodynamic response provided by fNIRS), could reasonably unravel the possible origin of 
poor motor learning, providing, therefore, relevant covert supervision of the user during 
BCI training. For example, in practical use, it is important to decipher if a user’s poor BCI 
performance is related to fatigue or to bottlenecks related to information processing guiding 
the algorithm to adapt to the user’s cognitive state, which is usually impossible to access 
from behavior.  
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Another possible application of functional brain biomarkers would be related to brain 
monitoring for overt and more importantly for covert execution. It is well known that motor 
imagery, or covert execution, share a lot of functional commonalities and that many neural 
structures are commonly activated during both overt and covert movement. On the other 
hand, there is also a growing body of evidence that suggests that it is possible to learn, or at 
least improve, performance with practice using motor imagery also called mental training. 
Most of the studies focusing on mental practice either considered performance enhancement 
in a healthy population (e.g., Gentili et al., 2006; Yaguez et al., 1998) or a rehabilitation (e.g., 
Jackson et al., 2004; Page et al., 2001) context where a positive effect on subsequent actual 
motor performance was evidenced. While it is possible to assess the effects of such covert 
practice on subsequent actual movements, it is impossible to continuously monitor mental 
training (unless a trial is actually executed) since no overt execution is available. However, 
the brain biomarkers presented here would allow for assessing the level of performance 
during mental training and tracking of learning dynamics. Such brain biomarkers could be 
coupled to a neurofeedback system providing, thus, an enhanced feedback of performance 
during overt execution (in addition to classical feedback) or covert execution where usually 
no feedback is available. Such brain monitoring systems for covert/overt movement 
execution would allow efficient supervision of performance, resulting in an accelerated 
learning or re-learning. Such bioengineering systems could be applied in various 
populations ranging from military personnel desiring to rapidly acquire skills to any 
persons subjected to a motor impairment undergoing rehabilitation where enhanced 
guidance for both patient and therapist would be beneficial. It must be noted that these 
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biomarkers would allow monitoring and fitting of the training time-scale for each individual 
since it is reasonable to expect that two individuals will not mentally learn at the same 
speed. For instance, for the same task some individuals using mental practice may need 40 
trials to reach acceptable performance while others would need 60 trials to reach the same 
level of performance. However, it is not possible to detect any progression in performance 
when using motor imagery (except by occasionally using actual execution) unless we use 
these brain biomarkers to create a customized training timescale for each individual. 
Moreover, as for BCI application, it would also be possible to know if a poor performance is 
related to sensorimotor learning processes or induced by some adverse mental states such as 
fatigue. Thus, the therapist could adapt the current rehabilitation session to the patient’s 
cognitive state in order to improve training efficiency without having to access behavioral 
measures. 
At present, the current research focuses mainly on brain biomarkers for healthy people since 
a well-established model of these brain biomarkers needs to be defined before moving 
towards practical applications for pathology in a rehabilitation context. It is of interest to 
consider if such brain biomarkers would be applicable for patients subjected to neural 
pathologies. Although these biomarkers should be affected by a given pathological state, it 
is still possible to find their modified version adapted to this pathology as a BCI decoding 
algorithm is able to map a pathological neural activity to the desired output (Neuper et al., 
2003). This would necessitate applying the same techniques and approaches, albeit with 
some modifications, to provide biomarkers engineered for specific neural pathologies. For 
instance, it has been suggested that mental imagery practice would have positive effects on 
persons subjected to cerebral palsy (Trusceli et al., 2008; Zabalia, 2002). Therefore, under 
such conditions, the cerebral palsy-specific performance biomarkers would allow 
monitoring of the brain to provide feedback for a therapist in order to accelerate and 
improve performance and, thus, the physical therapy process. It must be noted that, beyond 
application, such brain biomarkers could also provide useful information about the cortical 
neural networks of patients suffering from neural diseases. Still taking the example of 
patients with cerebral palsy, specifically, these brain biomarkers could provide insights into 
the effects of physical therapy by, for instance, estimating the benefit of motor imagery on 
reorganization of cortical dynamics and the degree of automatization of the movement. 
Namely, the coherence/PLV biomarker (Busk & Galbraith, 1975; Deeny et al., 2003, 2009; 
Gentili et al., 2009b) may be of particular interest to analyze any possible changes in cortical 
network recruitments throughout the rehabilitation procedure associated with any potential 
motor performance improvement. Moreover, several investigations have suggested that an 
increase in alpha power in the temporal, frontal regions would reflect that movement 
become more automatized as a function of practice, requiring less attentional and processing 
resources, since as strategies and skills are developed, there is a less extensive cortical 
contribution to task performance, resulting in increased alpha power (Gentili et al., 2008, 
2009a; Hatfield et al., 2004; Smith et al., 1999). Therefore, when using mental imagery the 
computation of such spectral power could provide a biomarker able to assess the degree of 
automatization of the repeated actions throughout a rehabilitation session. Finally, as 
previously mentioned, a multidimensional brain biomarker could be even more effective by 
combining information such as the spectral power, coherence/PLV and hemodynamic 
responses using fNIRS. 

 

5. Conclusions and Perspectives 

Nowadays, some non-invasive functional brain biomarkers able to assess cognitive-
motor/sensorimotor performance and learning level are available. However, they were 
mainly analyzed by means of investigations based on populations of subjects. The next 
challenge is to generalize these biomarkers to single subjects using single or few trials in 
tasks using actual movements or motor imagery. In order to reach these new aims, further 
research is needed to provide multidimensional biomarkers by considering the fusion of 
both processing techniques (e.g., EEG/MEG spectral power and coherence) and the nature 
of neural signals (e.g., hemodynamic response with fNIRS). Such approaches are expected to 
provide robust models for these biomarkers. Today, these brain biomarkers are engineered 
based on healthy people; however, in the future these methods could be transferred to 
alleviate neural disorders, provide new types of smart neural prostheses, and create brain 
monitoring tools to allow the emergence of a new generation of assistive technology for both 
healthy (e.g., accelerated learning) and pathological (e.g., rehabilitation) human populations. 
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Moreover, as for BCI application, it would also be possible to know if a poor performance is 
related to sensorimotor learning processes or induced by some adverse mental states such as 
fatigue. Thus, the therapist could adapt the current rehabilitation session to the patient’s 
cognitive state in order to improve training efficiency without having to access behavioral 
measures. 
At present, the current research focuses mainly on brain biomarkers for healthy people since 
a well-established model of these brain biomarkers needs to be defined before moving 
towards practical applications for pathology in a rehabilitation context. It is of interest to 
consider if such brain biomarkers would be applicable for patients subjected to neural 
pathologies. Although these biomarkers should be affected by a given pathological state, it 
is still possible to find their modified version adapted to this pathology as a BCI decoding 
algorithm is able to map a pathological neural activity to the desired output (Neuper et al., 
2003). This would necessitate applying the same techniques and approaches, albeit with 
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become more automatized as a function of practice, requiring less attentional and processing 
resources, since as strategies and skills are developed, there is a less extensive cortical 
contribution to task performance, resulting in increased alpha power (Gentili et al., 2008, 
2009a; Hatfield et al., 2004; Smith et al., 1999). Therefore, when using mental imagery the 
computation of such spectral power could provide a biomarker able to assess the degree of 
automatization of the repeated actions throughout a rehabilitation session. Finally, as 
previously mentioned, a multidimensional brain biomarker could be even more effective by 
combining information such as the spectral power, coherence/PLV and hemodynamic 
responses using fNIRS. 
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motor/sensorimotor performance and learning level are available. However, they were 
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research is needed to provide multidimensional biomarkers by considering the fusion of 
both processing techniques (e.g., EEG/MEG spectral power and coherence) and the nature 
of neural signals (e.g., hemodynamic response with fNIRS). Such approaches are expected to 
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1. Introduction 

Audible sound analysis is assumed to be an integral part of any speech processing system, since 
the audible frequency ranges are naturally used for vocal communications. Inaudible sound, 
either ultrasonic or subsonic, is less widely researched – although sub-sonics (also called 
infrasound) have found a niche application in sound strengthening for spatial effects (Begault, 
1994) and more immersive audio experiences (Kyriakakis, 1998) since there is evidence that these 
lower frequencies can be felt even if not heard. Higher frequency ultrasound is commonly used 
for diagnostic imaging in both medical and engineering fields (Szabo, 2004), and even sometimes 
for medical treatment (Haar, 1999). Due to the required resolution of these applications, they tend 
to operate at frequencies above the MHz range. In the animal kingdom, the majority of 
communication signals share a similar frequency range with humankind, although extending 
downward to infrasound in sea creatures such as whales (Clark, 2004), and upward to 
ultrasound in bats, moths, dolphins and so on (McLoughlin, 2009). 
One phonetically significant and growing application of ultrasound is ultrasonic speech, as a 
contribution of ultrasound to speech analysis and processing. The technology acts to 
augment the human natural speech production system, using data extracted from ultrasonic 
analysis to synthesize elements of audible speech. In this application, an ultrasonic signal in 
the kHz range is injected into the vocal tract (VT), which propagates and resonates through 
the vocal cavities and is emitted from the mouth as ultrasonic speech. This signal could 
potentially be converted to audible speech by appropriate down-conversion.  
This chapter introduces ultrasonics, particularly low frequency (LF) ultrasonic waves, and 
analyses their interaction with the human vocal tract. Ultrasonic frequencies used in this 
application are relatively low (near-audible), extending upwards from the upper threshold 
of human hearing to around 100 kHz in frequency. These frequencies are easily generated, 
captured and recorded by much existing audio equipment – and can be readily processed in 
real-time with available hardware. 
In this chapter, the basic principles of ultrasonic speech technology and the most important 
issues concerning its implementation and signal processing are addressed. Most 
importantly, a modelling scheme describing ultrasonic behaviour within the VT is proposed 
and proven as the theoretical basis and the main framework of implementation of ultrasonic 
speech. This chapter concludes with open areas of research concerning the technology. 
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The scope of this chapter is as follows: In order to have a precise understanding of the 
problem, first the attributes of ultrasonic propagation are analyzed physically and 
mathematically in section 2. This section investigates these attributes, and describes linearity 
preconditions of any gas medium, the compliance with which, would allow ultrasonic 
propagation in that medium to be considered linear and lossless.  
Section 3 analyses the plausibility of the linearity assumption for the propagation of the low 
frequency portion of the ultrasound bandwidth in the VT by a numerical analysis of the 
impact of dispersion and attenuation of LF ultrasound and addresses issues such as exhaled 
CO� as a dispersive wave medium for ultrasound, losses and cross modes of resonance of 
the VT in such frequencies. 
Given this basic perspective, section 4 introduces ultrasonic speech as the usage of LF 
ultrasound for speech processing, surveys previous implementations of the technology and 
describes the necessary requirements of the implementation. As in this method, the human 
VT is used to produce the ultrasonic output signal, there is a need to study the anatomy and 
physiology of human speech production system in general in section 5. The necessary pre-
conditions for linear modelling in section 2 along with the numerical analysis of section 3, 
lead to the derivation of a linear source-filter model for the ultrasonic speech process in 
section 6. Many applications in the theory of speech processing rely on the classical source-
filter model of speech production. Section 6 considers how this model can be adapted to 
ultrasonic wave propagation in the vocal tract by manipulating the sonic wave equations 
and deriving the vocal tract transfer function for ultrasonic propagation.  
At audible frequencies, linear predictive analysis (LPA) applies a linear source-filter model 
to speech production, to yield accurate estimates of speech parameters. Section 7 
investigates the possibility of extension of LPA to cover ultrasonic speech. Discussing some 
simplifying assumptions, the section leads to the application of LPA for the analysis of 
ultrasonic speech. By the extension of LPA to ultrasonic speech, we introduce the main set of 
features needed to be extracted from the ultrasonic output of the VT to be utilized in speech 
augmentation. The chapter then presents a concise outline of current research questions 
related to this topic in section 8. Section 9 finally concludes the discussion. 

 
2. Attributes of ultrasonic propagation 

Ultrasound can be defined as “Sound waves or vibrations with frequencies greater than 
those audible to the human ear, or greater than 20,000 Hz” (Simpson & Weiner, 1989). The 
starting point of the ultrasonic bandwidth resides implicitly somewhere between 16-20 kHz 
due to variations in the hearing thresholds of different people. The bandwidth continues up 
to higher levels1 where it goes over to what is conventionally called the hypersonic regime 
(David & Cheeke, 2002). The upper limit of ultrasound bandwidth in a gas is around 1 GHz 
and in a solid is around 10�� Hz (Ingard, 2008). At such mechanical vibrations exceeding the 
GHz range, electromagnetic waves may be emitted so that the upper limit of ultrasound 
may induce RF (radio frequency) electromagnetic waves (Lempriere, 2002). 
The general definition of sound indicates that “sound is a pressure-wave which transports 
mechanical energy in a material medium” (Webster, 1986). This definition can extend the 

                                                                 
1 which in a gas is of the order of the intermolecular collision frequency and in a solid is the 
upper vibration frequency (Ingard, 2008). 

 

margins of understanding of sound beyond the hearing limitations of humans to cover any 
pressure wave including ultrasound. It has to be noted that similar to the sense of sight, 
which subjects the visible light region of the EM spectrum to special attention, the human 
sense of hearing has differentiated the “audio” segment of sound to be classically termed as 
“sound” in common language and other portions of the bandwidth have thus been 
classified in relation to the audible part as ultra or infrasound (similarly to visible light and 
infrared, ultraviolet terminology).   
The fact which should not be concealed is that the audible sub-band is only a tiny slice of the 
total available bandwidth of sound waves, and the full bandwidth, except at its extreme 
limits can be described by a complete and unique theory of sound wave propagation in 
acoustics (David & Cheeke, 2002). Accordingly all of the phenomena occurring in the 
ultrasonic range occur throughout the full acoustic spectrum and there is no propagation 
theory that works only for ultrasound. 
The theory of sound wave propagation in certain cases simplifies to the theory of linear 
acoustics which eases linear modelling of acoustic systems. It is generally preferential to 
approximate a system with a linear model where the assumptions of such modelling are 
plausible. Ultrasound inherits some of its behaviours from its nature of being a sound wave. 
There are also characteristics of the medium which impose some medium specific 
constraints on ultrasonic waves. Based on these facts we will review the general 
characteristics of ultrasound propagation as a sound wave and the effects of the medium, 
paying special attention to the required pre-conditions of linearity. 

 
2.1 Wave based attributes of sound 
Ultrasound as a sound wave, obeys the general principles of wave phenomena. The theory 
of wave propagation stems from a rich mathematical foundation of partial differential 
equations which are valid for all types of waves (Ikawa, 2000). In other words every wave, 
regardless of its production and physical detail of propagation can be described by a set of 
partial differential equations. All common behaviours observed in waves are 
mathematically proven by these equations (Rauch, 2008). 
To rest under the scope of generalization of the theory of waves, a physical phenomenon 
solely needs to fulfil the preconditions of being a wave by complying with the restrictions 
imposed by the wave equations. Afterwards the common behaviour of waves, proven 
mathematically for the solutions of these equations, would be valid for that specific physical 
phenomenon too. It has to be noted that although in today’s understanding of waves we are 
quite confident that for example, sound “is” a wave, however compliance of each wave type 
with the wave equations as the necessary pre-condition, has long ago been proven by 
scientists of the corresponding discipline (Pujol, 2003).  
When the dimensions of the material are large in comparison to the wavelength, the wave 
equations become further simplified and can approximate the wave propagation as rays2. 
These simplified sets of wave equations are the basis of geometric wave theory (aka ray 
theory) of wave propagation (Bühler, 2006). The geometric wave theory permits freedom of 
microscopic details of wave propagation and describes the wave movement, reflection and 
refraction in terms of rays. The theory has been initially observed in optics and owes its 

                                                                 
2 A ray is a straight or curved line which follows the normal to the wave-front and 
represents the two or three dimensional path of the wave (Lempriere, 2002). 
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equations which are valid for all types of waves (Ikawa, 2000). In other words every wave, 
regardless of its production and physical detail of propagation can be described by a set of 
partial differential equations. All common behaviours observed in waves are 
mathematically proven by these equations (Rauch, 2008). 
To rest under the scope of generalization of the theory of waves, a physical phenomenon 
solely needs to fulfil the preconditions of being a wave by complying with the restrictions 
imposed by the wave equations. Afterwards the common behaviour of waves, proven 
mathematically for the solutions of these equations, would be valid for that specific physical 
phenomenon too. It has to be noted that although in today’s understanding of waves we are 
quite confident that for example, sound “is” a wave, however compliance of each wave type 
with the wave equations as the necessary pre-condition, has long ago been proven by 
scientists of the corresponding discipline (Pujol, 2003).  
When the dimensions of the material are large in comparison to the wavelength, the wave 
equations become further simplified and can approximate the wave propagation as rays2. 
These simplified sets of wave equations are the basis of geometric wave theory (aka ray 
theory) of wave propagation (Bühler, 2006). The geometric wave theory permits freedom of 
microscopic details of wave propagation and describes the wave movement, reflection and 
refraction in terms of rays. The theory has been initially observed in optics and owes its 

                                                                 
2 A ray is a straight or curved line which follows the normal to the wave-front and 
represents the two or three dimensional path of the wave (Lempriere, 2002). 
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application to acoustic waves to (Karal & Keller, 1959; 1964) and has yielded geometric 
acoustics (Crocker, 1998) as the dual to wave acoustics (Watkinson, 1998). 
As a high frequency approximation solution to the wave equations, ray theory fails to 
describe the wave phenomenon in low frequencies when the wavelength is large compared 
to the dimensions of the medium. Consequently, in low frequencies we have to refer to 
general wave equations as the wave theory to describe the wave phenomenon. It has to be 
noted that wave theory is always valid but only in smaller wavelengths in comparison to the 
dimensions of the medium can the analysis be simplified by the geometric theory. 
In any case, because all the waves obey the same sets of partial differential equations, they 
have common attributes which are guaranteed by several principles extracted out of the 
wave equations. These principles manifest geometric and wave behaviour and are the 
general laws which impose similar conditions upon the propagation of waves in 
microscopic and macroscopic scales. The Doppler effect (Harris & Benenson et al., 2002), 
principle of superposition of waves in linear media (Avallone & Baumeister et al., 2006), 
Fermat’s (Blitz, 1967) and Huygens principles (Harris & Benenson et al., 2002) are the 
fundamental laws of propagation for all the waves including ultrasound in wave and 
geometric theory.  For interested readers, the mathematical derivation of some of these 
principles using wave equations is covered in (Rauch, 2008).  
For universal wave events such as diffraction, reflection and refraction which obey the 
general principles of wave propagation, there would be no exception to the general theory 
of sound propagation for ultrasound (David & Cheeke, 2002) except only the change of 
length scale which means that we have moved to different scales of the wavelength so the 
scale of material in interaction with waves and the technologies used for generation and 
reception of these waves will be different (David & Cheeke, 2002).  

 
2.2 Medium based attributes of sound 
The exclusive wavelength-dependant behaviours of ultrasound will present itself in the 
influence of the medium on wave propagation and we expect to observe some differences 
with audible sound where the wave propagation is apt to be influenced by characteristics of 
the medium through which it travels. In this section we consider the general attributes of a 
medium which impose special behaviours on a sound wave. Next in section 2.3 we will 
consider the effect of such attributes on ultrasound waves. When the medium of sound 
wave propagation is considered, the first important attribute under question is the linearity 
of the medium. Also important is a consideration of the attenuation mechanisms by which 
the energy of a sound wave is dissipated in the medium.  

 
2.2.1 Linearity 
Propagation of sound involves variations of components of stress (pressure) and strain in a 
medium. For an isolated segment of the medium we may consider the incoming wave stress 
as the input and the resulting medium strain as the response of the system to that input. To 
consider a medium of sound propagation as a linear system the stress-strain relation should 
be a linear function around the equilibrium state (Sadd, 2005). Gas mediums such as the air, 
match closely to the ideal gas law in their equilibrium state (Fahy, 2001) which states that: 

      (1) 

 

Where �� is the gas pressure, �� is the volume, ��  is temperature and �, � are constant 
coefficients depending on the gas. If one of the three variables of ��� �� or ��  remains constant, 
the relation of the other two, can easily be understood from (1) but sound wave propagation 
generally alters all of these three components in different regions of the gas medium. A 
general trend is to consider sound wave propagation in an ideal gas as an adiabatic process 
meaning no energy is transferred by heat between the medium and its surroundings when 
the wave propagates in the medium (Serway & Jewett, 2006). If the ideal gas is in an 
adiabatic condition we would have (2) as the relation of pressure �����and density (��) where 
� is a constant and the exponent � is the ratio of specific heats at constant pressure and 
constant volume for the gas (which has the value 1.4 for air) (Fahy, 2001): 

�� � ���� � ��� ���⁄ � ������� � (2) 

Equation (2) does not generally demonstrate a linear relation between pressure and density 
in an ideal gas but in small variations of pressure and density around the equilibrium state, 
����� can be considered to be constant and we will have: 

���� ����⁄ � � � ������ � ���� ����⁄ � � ���� (3) 

where ���� ����⁄ � denotes small variations around the equilibrium, �� and �� are the pressure 
and density of the gas at equilibrium and constant � � ��� is called the adiabatic bulk 
modulus of the gas (Fahy, 2001). Based on the above discussion the linear stress-strain 
relation in an ideal gas medium can be considered to exist between variations of pressure 
(���� and variations of density (����, having an adiabatic process (no loss) and small 
variations of pressure and density around the equilibrium.  

 
2.2.2 Dissipation mechanisms  
In section 2.2.1 we observed that under three conditions of having an ideal gas with an 
adiabatic process (no loss) and small variations of pressure and density around the 
equilibrium as a result of sound wave, air can be considered a linear lossless medium of sound 
wave propagation. These assumptions are known to be reasonable for audible sound but we 
need to consider their validation for the ultrasound case. Although we can preserve the small 
pressure variations precondition of linearity for ultrasonic speech application, as we will 
observe shortly, the physics of the problem make the assumptions of an adiabatic process and 
ideal gas behaviour of the air for ultrasonic frequencies, to be more of an approximation.  
We need to consider the effects of this approximation i.e. attenuation (heat loss) and also 
deviation of the air from linear state equation (3) of an ideal gas in the frequency range of LF 
ultrasound. These derivations could cause dissipative behaviours in the air medium of 
sound propagation as a result of several phenomena including viscosity, heat conduction 
and relaxation. We will describe each briefly. 

 
2.2.2.1 Viscosity and heat conduction 
Viscosity is a material property that measures a fluids resistance to deformation. Heat 
conduction on the other hand is the flow of thermal energy through a substance from a 
higher to a lower-temperature region (Licker, 2002). For air, viscosity and heat conduction 
are known to have negligible dispersive effects (section 2.3.4) for sound frequencies below 
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application to acoustic waves to (Karal & Keller, 1959; 1964) and has yielded geometric 
acoustics (Crocker, 1998) as the dual to wave acoustics (Watkinson, 1998). 
As a high frequency approximation solution to the wave equations, ray theory fails to 
describe the wave phenomenon in low frequencies when the wavelength is large compared 
to the dimensions of the medium. Consequently, in low frequencies we have to refer to 
general wave equations as the wave theory to describe the wave phenomenon. It has to be 
noted that wave theory is always valid but only in smaller wavelengths in comparison to the 
dimensions of the medium can the analysis be simplified by the geometric theory. 
In any case, because all the waves obey the same sets of partial differential equations, they 
have common attributes which are guaranteed by several principles extracted out of the 
wave equations. These principles manifest geometric and wave behaviour and are the 
general laws which impose similar conditions upon the propagation of waves in 
microscopic and macroscopic scales. The Doppler effect (Harris & Benenson et al., 2002), 
principle of superposition of waves in linear media (Avallone & Baumeister et al., 2006), 
Fermat’s (Blitz, 1967) and Huygens principles (Harris & Benenson et al., 2002) are the 
fundamental laws of propagation for all the waves including ultrasound in wave and 
geometric theory.  For interested readers, the mathematical derivation of some of these 
principles using wave equations is covered in (Rauch, 2008).  
For universal wave events such as diffraction, reflection and refraction which obey the 
general principles of wave propagation, there would be no exception to the general theory 
of sound propagation for ultrasound (David & Cheeke, 2002) except only the change of 
length scale which means that we have moved to different scales of the wavelength so the 
scale of material in interaction with waves and the technologies used for generation and 
reception of these waves will be different (David & Cheeke, 2002).  

 
2.2 Medium based attributes of sound 
The exclusive wavelength-dependant behaviours of ultrasound will present itself in the 
influence of the medium on wave propagation and we expect to observe some differences 
with audible sound where the wave propagation is apt to be influenced by characteristics of 
the medium through which it travels. In this section we consider the general attributes of a 
medium which impose special behaviours on a sound wave. Next in section 2.3 we will 
consider the effect of such attributes on ultrasound waves. When the medium of sound 
wave propagation is considered, the first important attribute under question is the linearity 
of the medium. Also important is a consideration of the attenuation mechanisms by which 
the energy of a sound wave is dissipated in the medium.  

 
2.2.1 Linearity 
Propagation of sound involves variations of components of stress (pressure) and strain in a 
medium. For an isolated segment of the medium we may consider the incoming wave stress 
as the input and the resulting medium strain as the response of the system to that input. To 
consider a medium of sound propagation as a linear system the stress-strain relation should 
be a linear function around the equilibrium state (Sadd, 2005). Gas mediums such as the air, 
match closely to the ideal gas law in their equilibrium state (Fahy, 2001) which states that: 

      (1) 

 

Where �� is the gas pressure, �� is the volume, ��  is temperature and �, � are constant 
coefficients depending on the gas. If one of the three variables of ��� �� or ��  remains constant, 
the relation of the other two, can easily be understood from (1) but sound wave propagation 
generally alters all of these three components in different regions of the gas medium. A 
general trend is to consider sound wave propagation in an ideal gas as an adiabatic process 
meaning no energy is transferred by heat between the medium and its surroundings when 
the wave propagates in the medium (Serway & Jewett, 2006). If the ideal gas is in an 
adiabatic condition we would have (2) as the relation of pressure �����and density (��) where 
� is a constant and the exponent � is the ratio of specific heats at constant pressure and 
constant volume for the gas (which has the value 1.4 for air) (Fahy, 2001): 

�� � ���� � ��� ���⁄ � ������� � (2) 

Equation (2) does not generally demonstrate a linear relation between pressure and density 
in an ideal gas but in small variations of pressure and density around the equilibrium state, 
����� can be considered to be constant and we will have: 

���� ����⁄ � � � ������ � ���� ����⁄ � � ���� (3) 

where ���� ����⁄ � denotes small variations around the equilibrium, �� and �� are the pressure 
and density of the gas at equilibrium and constant � � ��� is called the adiabatic bulk 
modulus of the gas (Fahy, 2001). Based on the above discussion the linear stress-strain 
relation in an ideal gas medium can be considered to exist between variations of pressure 
(���� and variations of density (����, having an adiabatic process (no loss) and small 
variations of pressure and density around the equilibrium.  

 
2.2.2 Dissipation mechanisms  
In section 2.2.1 we observed that under three conditions of having an ideal gas with an 
adiabatic process (no loss) and small variations of pressure and density around the 
equilibrium as a result of sound wave, air can be considered a linear lossless medium of sound 
wave propagation. These assumptions are known to be reasonable for audible sound but we 
need to consider their validation for the ultrasound case. Although we can preserve the small 
pressure variations precondition of linearity for ultrasonic speech application, as we will 
observe shortly, the physics of the problem make the assumptions of an adiabatic process and 
ideal gas behaviour of the air for ultrasonic frequencies, to be more of an approximation.  
We need to consider the effects of this approximation i.e. attenuation (heat loss) and also 
deviation of the air from linear state equation (3) of an ideal gas in the frequency range of LF 
ultrasound. These derivations could cause dissipative behaviours in the air medium of 
sound propagation as a result of several phenomena including viscosity, heat conduction 
and relaxation. We will describe each briefly. 

 
2.2.2.1 Viscosity and heat conduction 
Viscosity is a material property that measures a fluids resistance to deformation. Heat 
conduction on the other hand is the flow of thermal energy through a substance from a 
higher to a lower-temperature region (Licker, 2002). For air, viscosity and heat conduction 
are known to have negligible dispersive effects (section 2.3.4) for sound frequencies below 
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50 MHz (Blackstock, 2000) but these mechanisms cause absorption of sound energy. Their 
effect in an unbounded medium can be considered by introducing a visco-thermal 
absorption coefficient ��� to the time harmonic solution of the wave equation, the amount of 
which demonstrates the necessity of switching to wave equations in thermo-viscous fluids 
for the analysis of waves in frequency range of interest.  
 
2.2.2.2 Relaxation 
Gases demonstrate a behaviour called relaxation in sound wave propagation. Relaxation 
denotes that there is a time-lag (relaxation delay time) between the initiation of the 
disturbance by the wave and application of this disturbance to the gas which is compared to 
the time a capacitor needs to reach its final voltage value in an RC circuit (Ensminger, 1988). 
This delay could result from several physical phenomena. First the viscosity, second heat 
conduction in the gas from the places which the wave has compressed to the places where 
the wave has rarefacted which will cause the energy of the wave to be distributed in an 
unwanted pattern delaying the energy from returning to the equilibrium. The third and the 
most important case of relaxation in LF ultrasound applications is the molecular relaxation 
resulting from the delays of multi–atomic gas molecules having several modes of 
movement, vibration and rotation and the delay for molecules to be excited in their special 
vibration mode (Crocker, 1998). 
When a new cycle of the wave is applied to the relaxing medium, the delay between the 
previous cycle of the wave disturbance and the resulting response of the medium will 
consume some of the energy of the new cycle, to return the medium to its equilibrium. This 
will cause absorption of the wave energy which depends on the frequency of the wave and the 
amount of the delay. In addition, due to the relative variations of frequency and relaxation 
delay, waves of some frequency can propagate faster than other frequencies. Consequently, 
relaxation in the gases is the physical cause of frequency dependant energy absorption and 
dispersion of the wave. As for this being a reason for dispersion, readers may refer to a 
mathematical discussion in (Bauer, 1965), while for the absorption as a result of relaxation, the 
interesting discussions in (Ingard, 2008) and (Blitz, 1967) should be consulted. 
 
2.3 Effects of the medium on ultrasound propagation 
Having considered the dispersive mechanisms of a gas for ultrasound frequencies, now we 
can consider the effects of these mechanisms in attenuation and dispersion of ultrasound. 
We will also discuss the case of resonance in the medium of ultrasonic propagation because 
these analyses will finally be applied to the propagation of ultrasound in the vocal tract 
which is a resonant cavity. 
 
2.3.1 Speed 
The sound speed in a medium (not necessary linear) has been formulated by (Fahy, 2001) as: 

�� � ��� ���⁄  (4) 

While a gas medium maintains a linear behaviour as an ideal gas, based on the discussion of 
section 2.2.1, this speed is not a function of frequency and is evaluated according to the 
formula (Blackstock, 2000):  

 

� � �� ��⁄  (5) 

If the phase speed of sound propagation in a medium is independent of the frequency as per 
(5), the medium is non-dispersive (Harris & Benenson et al., 2002), and all the events which 
rely on the speed of propagation (such as refraction) will be similar for sound waves across 
the whole frequency range (including ultrasound and audio) in that medium.  
 
2.3.2 Acoustic impedance 
The concept of acoustic impedance3 is analogous to electrical impedance and is defined as 
the ratio of acoustic pressure �� and the resultant particle velocity ��  (Harris & Benenson et 
al., 2002). Impedances determine the reflection and refraction of waves over medium 
boundaries. In a homogenous material the acoustic impedance is a material characteristic, so 
it is called characteristic acoustic impedance and is formulated as: 

� � ��
�� � ��� �  (6) 

Where �� is the density of undisturbed medium and � is the speed of sound (The formula is 
same for both solids and fluids when they are homogenous). From (6) it is observed that in a 
non-dispersive material the acoustic impedance is independent of the frequency, so the 
impedance based characteristics (such as reflection coefficients) will be general to the case of 
all sounds in a non-dispersive medium (Harris & Benenson et al., 2002). 
 
2.3.3 Attenuation  
Attenuation is the loss of the energy of sound beam passing through a material. Attenuation 
can be the result of scattering, diffraction or absorption (Subramanian, 2006). Scattering and 
diffraction losses are not of much concern in the current application of LF ultrasounds in the 
vocal tract so we are going to discuss absorption in more detail.  
The main causes of absorption of energy in gases in ultrasound frequencies are the 
molecular relaxation and visco-thermal effects. Visco-thermal effects introduce a visco-
thermal absorption coefficient ��� while molecular relaxation introduces several molecular 
coefficients ��� for each of the �� gases in an � gas mixture (like air). The total absorption 
coefficient � is the sum of these values (Blackstock, 2000).  

� � ���� � ���
�

���
 (7) 

��� is a scalar multiplicand of �� , (� being the frequency of the sound wave) while ��� is a 

scalar multiplicand of ��
������

 (�� is the relaxation frequency of the gas4) (Blackstock, 2000).  
The impact of absorption is usually regarded by the value of absorption coefficient. In an 
unbounded medium for the time harmonic analysis of the wave, the role of absorption 
coefficient � would be an exponential multiplicand ���� to be multiplied by the lossless 
wave solution where � is the distance of the inspection point from the source. In bounded 

                                                                 
3 The unit for acoustic impedance is Kg/m�/� and is called Rayl, named after Lord Rayleigh. 
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 where � is the relaxation time delay of the gas. 
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50 MHz (Blackstock, 2000) but these mechanisms cause absorption of sound energy. Their 
effect in an unbounded medium can be considered by introducing a visco-thermal 
absorption coefficient ��� to the time harmonic solution of the wave equation, the amount of 
which demonstrates the necessity of switching to wave equations in thermo-viscous fluids 
for the analysis of waves in frequency range of interest.  
 
2.2.2.2 Relaxation 
Gases demonstrate a behaviour called relaxation in sound wave propagation. Relaxation 
denotes that there is a time-lag (relaxation delay time) between the initiation of the 
disturbance by the wave and application of this disturbance to the gas which is compared to 
the time a capacitor needs to reach its final voltage value in an RC circuit (Ensminger, 1988). 
This delay could result from several physical phenomena. First the viscosity, second heat 
conduction in the gas from the places which the wave has compressed to the places where 
the wave has rarefacted which will cause the energy of the wave to be distributed in an 
unwanted pattern delaying the energy from returning to the equilibrium. The third and the 
most important case of relaxation in LF ultrasound applications is the molecular relaxation 
resulting from the delays of multi–atomic gas molecules having several modes of 
movement, vibration and rotation and the delay for molecules to be excited in their special 
vibration mode (Crocker, 1998). 
When a new cycle of the wave is applied to the relaxing medium, the delay between the 
previous cycle of the wave disturbance and the resulting response of the medium will 
consume some of the energy of the new cycle, to return the medium to its equilibrium. This 
will cause absorption of the wave energy which depends on the frequency of the wave and the 
amount of the delay. In addition, due to the relative variations of frequency and relaxation 
delay, waves of some frequency can propagate faster than other frequencies. Consequently, 
relaxation in the gases is the physical cause of frequency dependant energy absorption and 
dispersion of the wave. As for this being a reason for dispersion, readers may refer to a 
mathematical discussion in (Bauer, 1965), while for the absorption as a result of relaxation, the 
interesting discussions in (Ingard, 2008) and (Blitz, 1967) should be consulted. 
 
2.3 Effects of the medium on ultrasound propagation 
Having considered the dispersive mechanisms of a gas for ultrasound frequencies, now we 
can consider the effects of these mechanisms in attenuation and dispersion of ultrasound. 
We will also discuss the case of resonance in the medium of ultrasonic propagation because 
these analyses will finally be applied to the propagation of ultrasound in the vocal tract 
which is a resonant cavity. 
 
2.3.1 Speed 
The sound speed in a medium (not necessary linear) has been formulated by (Fahy, 2001) as: 

�� � ��� ���⁄  (4) 

While a gas medium maintains a linear behaviour as an ideal gas, based on the discussion of 
section 2.2.1, this speed is not a function of frequency and is evaluated according to the 
formula (Blackstock, 2000):  
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If the phase speed of sound propagation in a medium is independent of the frequency as per 
(5), the medium is non-dispersive (Harris & Benenson et al., 2002), and all the events which 
rely on the speed of propagation (such as refraction) will be similar for sound waves across 
the whole frequency range (including ultrasound and audio) in that medium.  
 
2.3.2 Acoustic impedance 
The concept of acoustic impedance3 is analogous to electrical impedance and is defined as 
the ratio of acoustic pressure �� and the resultant particle velocity ��  (Harris & Benenson et 
al., 2002). Impedances determine the reflection and refraction of waves over medium 
boundaries. In a homogenous material the acoustic impedance is a material characteristic, so 
it is called characteristic acoustic impedance and is formulated as: 
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Where �� is the density of undisturbed medium and � is the speed of sound (The formula is 
same for both solids and fluids when they are homogenous). From (6) it is observed that in a 
non-dispersive material the acoustic impedance is independent of the frequency, so the 
impedance based characteristics (such as reflection coefficients) will be general to the case of 
all sounds in a non-dispersive medium (Harris & Benenson et al., 2002). 
 
2.3.3 Attenuation  
Attenuation is the loss of the energy of sound beam passing through a material. Attenuation 
can be the result of scattering, diffraction or absorption (Subramanian, 2006). Scattering and 
diffraction losses are not of much concern in the current application of LF ultrasounds in the 
vocal tract so we are going to discuss absorption in more detail.  
The main causes of absorption of energy in gases in ultrasound frequencies are the 
molecular relaxation and visco-thermal effects. Visco-thermal effects introduce a visco-
thermal absorption coefficient ��� while molecular relaxation introduces several molecular 
coefficients ��� for each of the �� gases in an � gas mixture (like air). The total absorption 
coefficient � is the sum of these values (Blackstock, 2000).  
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��� is a scalar multiplicand of �� , (� being the frequency of the sound wave) while ��� is a 

scalar multiplicand of ��
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 (�� is the relaxation frequency of the gas4) (Blackstock, 2000).  
The impact of absorption is usually regarded by the value of absorption coefficient. In an 
unbounded medium for the time harmonic analysis of the wave, the role of absorption 
coefficient � would be an exponential multiplicand ���� to be multiplied by the lossless 
wave solution where � is the distance of the inspection point from the source. In bounded 
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media we need to switch to damped wave equations to consider the effect of absorption. 
Absorption is usually accompanied by dispersion (Blackstock, 2000). 

 
2.3.4 Dispersion 
There are several possible causes for dispersion in a gaseous medium among which 
viscosity, heat conduction and relaxation are the most applicable for propagation of 
ultrasound frequencies. It is known that the dispersive effects of viscosity and heat 
conduction in air at frequencies below 50 MHz are negligible (Blackstock, 2000), so the main 
cause of dispersion in lower frequency ultrasound will be molecular relaxation (Blackstock, 
2000). Sound speed in a relaxing gas with standard temperature and pressure is computed 
by (Crocker, 1998): 

��
��� � � � �

� � � .
����

� � ���� (8) 

�  is the speed at angular frequency � � ���, � is the relaxation strength and � is relaxation 
time which are constants for a specific gas. �� is the low frequency speed of sound in the gas. 
The value �� � � occurs at the relaxation frequency �� and the effect of dispersion in 
frequencies around �� is more intense. For example CO� introduces dispersion at ultrasonic 
frequencies around 28 kHz (Dean, 1979). 

 
2.3.5 Resonance 
An important attribute of some sound propagation media is resonance at certain frequencies. 
Resonance is tied closely with the presence of standing waves in a medium. A resonant 
medium for sound waves should first have the possibility of forming standing waves and 
second the capability of frequency selectivity. Standing waves are normally formed as a result 
of interference between two waves travelling in opposite directions. For an interesting 
description of how standing waves are formed in an open-closed end tube as a simplified 
model of vocal tract, readers may refer to (Johnson, 2003).  
The major cause of resonance for sound waves of certain frequencies in a medium is the 
geometric structure of that medium. When the geometry is more suitable for sound waves of 
certain frequencies to be distributed as standing waves in the medium e.g. the medium 
dimensions are wider where the standing wave has a rarefaction and narrower where it has a 
compression point, resonance can happen at that frequency. The resonance frequencies of an 
open/open and closed/open tube are a clear example of this (Halliday & Resnick et al., 2004). 
For the case of interest, namely ultrasonic propagation through the vocal tract, we need to 
emphasize that the resonant behaviour of the VT will have one major difference with the 
audible case. In audible frequencies, due to the relatively large wavelength of the sound, 
standing wave patterns establish mainly along the axial length of the tract. But as we move 
toward lower wavelengths, in addition to axial standing waves, cross-modes of resonance 
can be created across the width of the tract, resulting in more complex patterns of resonance. 
Analysis of these cross-modes urges us to consider three dimensional equations for 
ultrasonic wave propagation in the tract while in audible range we normally consider the 
one dimensional wave equation. 

 

Now that we have understood the main characteristics of ultrasound and its deviations from 
the general sound category in terms of attenuation and dispersion, we will consider a 
numerical analysis of the impact of these characteristics in LF ultrasound. 

 
3. Low-frequency ultrasound 

A major application of ultrasound is scanning, both in medical and industrial applications, 
relying upon reflections of the wave by an object (such as a defect in non destructive testing 
or a human fetus in ultra-sonography). When the dimensions of the reflecting object are 
smaller than the wavelength, the wave does not reflect back but scatters as an unfavourable 
wave behaviour. So to detect a defect, one needs to use a wavelength equal or smaller than 
its dimensions e.g. for a defect size of millimetres we need to use a sound wave above MHz 
frequency (Subramanian, 2006). The demand for detecting smaller details moves us out of 
audible range to use higher ultrasound frequencies, limiting the application of LF 
ultrasound to special cases such as cavitation or industrial non destructive testing. 
Low Frequency ultrasound in ultrasonic speech application is considered as a portion of the 
ultrasonic bandwidth, starting from human hearing threshold up to 100 kHz. We will 
discuss the reasons for selection of this portion of the bandwidth shortly. As we will see in 
this section, LF ultrasound has properties which make it a suitable substitute for audible 
excitation of the vocal tract to produce ultrasonic speech. 
The discussion of this section is biased so that the numerical analysis will provide us with an 
insight about the impact of attenuation and dispersion effects of LF ultrasound propagation 
in the vocal tract which we should discuss before being capable of modelling ultrasonic 
speech process as a linear and lossless system. 
We are going to consider attributes of LF ultrasonic propagation in the air, and through the 
air-tissue interface. Soft body tissues and the air in the vocal tract are the regions of interest 
for ultrasonic speech production and both can be considered as homogeneous fluids 
(Zangzebski, 1996). Sound waves in the volumes of fluids are longitudinal (Fahy, 2001) so 
the mode of ultrasound propagation in the vocal tract and soft tissues of our concern will be 
longitudinal. As we will see in this section, high reflection coefficients of the air-tissue 
interface will reflect back most of the ultrasound wave energy over vocal tract walls, so we 
do not need to consider LF propagation through human body tissue. 

 
3.1 Propagation through air-tissue interface 
As described in (Caruthers, 1977), if the wavelength of the wave is small enough in 
comparison to the dimensions of the boundary of two media, Fermat principle will govern 
and the wave will be reflected with an angle (to the normal) equal to the angle of incidence. 
The reflection coefficient (Crocker, 1998) determines the proportion of energy to be reflected. 
Referring to (Zangzebski, 1996), we observe that the acoustic impedance of the air is too 
small in comparison to other materials of our problem. The reflection coefficient for an air-
tissue interface (acoustic impedance =0.0004 Rayls for air and =1.71  for 
muscle)5, is computed to be -0.99 (same value with positive sign for the tissue-air interface)6. 
                                                                 
5 Speed of sound is approximated 1600 m/s in muscle and 330 m/s in the air. 
6 The minus value merely indicates the phase difference between the incident and reflected 
signal to be 180 degrees. 
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media we need to switch to damped wave equations to consider the effect of absorption. 
Absorption is usually accompanied by dispersion (Blackstock, 2000). 

 
2.3.4 Dispersion 
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 The value illustrates that ultrasound will almost completely reflect back from an air/tissue 
or tissue/air interface. This is expected also by the impedance mismatch effect (Zangzebski, 
1996).  

 
Fig. 1. Variation of the absorption coefficient of the air with frequency 

 
3.2 Propagation through the air  
In ultrasonic speech applications, the ultrasonic signal entering the vocal tract from the 
transducer has to travel through the air bounded by VT walls. As the exclusive effects of the 
medium on ultrasound, attenuation and dispersion are frequency-dependant, we need to 
have a numerical overview of the significance of these effects on ultrasound propagation in 
the air.  

 
3.2.1 Attenuation 
The absorption coefficient � was introduced in section 2.3.3 to be a sum of visco-thermal ��� 
and molecular relaxation coefficients. For the air the two major components of oxygen and 
nitrogen have the molecular relaxation coefficients of ��� and ���. Figure 1 demonstrates the 
variation of value of � (being equal to ��� � ��� � ���) with frequency. As the figure 
demonstrates, this value reaches around 0.1 ���� in sound frequency of 100 KHz which is 
less than 1 dB/m. 

 
3.2.2 Dispersion 
As stated in 2.2.1 and 2.3.1, one precondition of linearity for ultrasound propagation in air is 
that the air medium should be an ideal gas in which the speed of sound is independent of 
sound frequency. For frequencies in the ultrasonic range, air deviates from this attribute as a 
result of being composed of dispersive carbon dioxide (CO2) which should be considered in 
the VT due to the higher proportion of CO2 in the exhaled air flow (The percentage of CO2 in 
exhaled air is 4% which is 100 times that in normal air (Zemlin, 1997). This deviation 
initiates at frequencies above 28 kHz (Dean, 1979) and needs to be addressed here in detail. 
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The visco-thermal dispersion of sound in air for frequencies below several hundred MHz, 
depends on the square of the frequency but is negligible for frequencies between 1 Hz and 
50 MHz at STP7 (Blackstock, 2000; Dean, 1979). Thus there remains only molecular 
relaxation dispersion. Among the main components of air (nitrogen, oxygen, carbon dioxide 
and water), nitrogen and oxygen can be considered non-dispersive as the maximum 
variation of sound speed in these two gases with the increase of frequency from zero to 
infinity is only a few centimetres per second (Blackstock, 2000). Water and carbon dioxide 
have effects on variation of sound speed with frequency in the air. Specifically, pure carbon 
dioxide in which the speed of sound may vary about 8m/s between frequencies of 1kHz 
and 100 kHz (Crocker, 1998).  
Equation (8) demonstrated the dispersion characteristics of the gas, and is shown in figure 2. 
The same figure is reported for air, which illustrates that the dispersive effect of humid air is 
negligible for frequencies up to 5 MHz (Crocker, 1998).  
 

 
Fig. 2. Dispersion characteristics of a relaxing gas mixture 
 
Based on studies of sound propagation in the atmosphere (Dean, 1979), the resulting 
variation of sound speed in air as a mixture of these gases (which obeys figure 2) over 
frequencies up to 5 MHz is in the order of few cm/s (for sound speed of approximately 343 
m/s at STP). Referring to the monotonic pattern of increase of sound speed in (8) and figure 
2, where the maximum speed variation for air at frequencies up to 5 MHz is negligible, and 
considering the percentage of gases other than carbon dioxide in the air, the dispersive 
effects of air can confidently be considered negligible for the dimensions of the vocal tract 
and the frequency range of interest (namely, less than 100 kHz).  
As a conclusion of the preceding discussion, for ultrasonic frequencies of less than 100 kHz, 
and for the dimensions of our problem the air only has the effect of frequency dependant 
attenuation with an absorption coefficient of less than 1 dB/m and can be considered as a 
lossless non-dispersive linear medium in modelling ultrasonic propagation in the vocal 
tract. Linear systems are considered preferential for speech analysis and processing, and so 
we would prefer to limit our application to frequency ranges which can assure a linear 
relationship, if possible. 

                                                                 
7 Standard temperature and pressure. 
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The visco-thermal dispersion of sound in air for frequencies below several hundred MHz, 
depends on the square of the frequency but is negligible for frequencies between 1 Hz and 
50 MHz at STP7 (Blackstock, 2000; Dean, 1979). Thus there remains only molecular 
relaxation dispersion. Among the main components of air (nitrogen, oxygen, carbon dioxide 
and water), nitrogen and oxygen can be considered non-dispersive as the maximum 
variation of sound speed in these two gases with the increase of frequency from zero to 
infinity is only a few centimetres per second (Blackstock, 2000). Water and carbon dioxide 
have effects on variation of sound speed with frequency in the air. Specifically, pure carbon 
dioxide in which the speed of sound may vary about 8m/s between frequencies of 1kHz 
and 100 kHz (Crocker, 1998).  
Equation (8) demonstrated the dispersion characteristics of the gas, and is shown in figure 2. 
The same figure is reported for air, which illustrates that the dispersive effect of humid air is 
negligible for frequencies up to 5 MHz (Crocker, 1998).  
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Based on studies of sound propagation in the atmosphere (Dean, 1979), the resulting 
variation of sound speed in air as a mixture of these gases (which obeys figure 2) over 
frequencies up to 5 MHz is in the order of few cm/s (for sound speed of approximately 343 
m/s at STP). Referring to the monotonic pattern of increase of sound speed in (8) and figure 
2, where the maximum speed variation for air at frequencies up to 5 MHz is negligible, and 
considering the percentage of gases other than carbon dioxide in the air, the dispersive 
effects of air can confidently be considered negligible for the dimensions of the vocal tract 
and the frequency range of interest (namely, less than 100 kHz).  
As a conclusion of the preceding discussion, for ultrasonic frequencies of less than 100 kHz, 
and for the dimensions of our problem the air only has the effect of frequency dependant 
attenuation with an absorption coefficient of less than 1 dB/m and can be considered as a 
lossless non-dispersive linear medium in modelling ultrasonic propagation in the vocal 
tract. Linear systems are considered preferential for speech analysis and processing, and so 
we would prefer to limit our application to frequency ranges which can assure a linear 
relationship, if possible. 
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4. Application of LF ultrasound in speech augmentation 

Having described the preliminary basics, we now turn our attention to the application of 
ultrasound in speech augmentation. We will divide these applications into two sets. The 
first set corresponds to applications in which ultrasonic excitation can act as a substitute to 
replace the natural excitation of the human voice production system. In this case, a person 
can speak without any voicing and an ultrasound to audible conversion system can produce 
a final audible sound. In the second set, ultrasonic excitation can be considered to act as a 
supplement to the natural excitation to provide additional data from the vocal tract for 
computational analysis. 
Examples of the former set apply to people who suffer from impairments to their voice box 
and are incapable of producing natural excitations in their VT including laryngectomised 
patients and the voice-rest cases (Pozo, 2004). Another example is where audible speech is 
highly affected by surrounding or background noise and common levels of conversation or 
even high amplitude speech cannot be heard,  such as at airports, on the battlefield, or in 
industrial environments (MacLeod, 1987). The other application in this set is when one does 
not wish to be heard in cases of talking in private places or when being heard will disturb 
other applications of a system like dictation in human-computer interfaces of crowded offices. 
For the examples of the second set we may primarily consider ultrasound for providing 
additional data in speech recognition systems aiming to achieve higher levels of robustness. 
As another application in this set, we can mention cases where ultrasound can be 
augmented as an auxiliary excitation to the VT to provide voicing information when 
converting whispered speech to normally phonated speech. In this application, while a 
person whispers, the unvoiced segments of speech are extracted from the whispered signal 
but the voiced segments are reconstructed using the VT resonance data extracted from the 
ultrasonic output of the VT. This special augmentation can be used in whispered speech 
communications over telephone, and speech aids for people who have to speak in whisper 
mode for medical reasons. 

 
4.1 Ultrasonic speech 
In this chapter the application of LF ultrasonic waves in speech augmentation is termed 
ultrasonic speech. By ultrasonic speech we mean a system which augments an ultrasonic 
excitation to the human voice production mechanism as a substitute or supplement to the 
natural excitation and extracts feature sets from the resulting ultrasonic output to be used in 
several tasks including conversion to the audible speech, speech regeneration, recognition, 
enhancement and communication. The signal which is injected from an ultrasonic 
transducer to the VT via several possible injection points propagates through the tract and 
emits out of the mouth, where it is picked by another transducer and is delivered to the 
processing algorithms in charge of feature extractions in the ultrasonic domain or the 
equivalent audible domain. The set of these extracted features are then delivered as the 
output of the ultrasonic speech system to other modules which may pursue classic tasks of 
speech generation, recognition, and so on. 
The ultrasonic frequency range of this application starts from the higher threshold of human 
hearing up to around 100 kHz. As stated before, this frequency range has some 
characteristics which suit the propagation of ultrasonic waves in the vocal tract to be 

 

modelled in linear and lossless acoustic domains. In this domain we can be equipped with 
facilities of linear modelling of the VT behaviour in response to ultrasonic excitation.  

 
4.2 Previous implementations 
Speech processing science relies heavily on data provided by ultrasonic scanning of the 
position of VT articulators as an indirect contribution of ultrasound to speech processing 
(Kelsey & Minifie et al., 1969). As an example we can mention the data provided by real-
time ultrasonic monitoring of the tongue (Shawker & Sonies, 2005) to speech processing. In 
direct applications, ultrasonic waves are used directly to produce an ultrasonic speech 
signal which is sought for speech processing features (MacLeod, 1987).  Similarly, an audible 
signal modulated by an ultrasonic career in ultrasonic communication (Akerman & Ayers et 
al., 1994), or converted to audible speech as a consequence of the non-linearities of the 
system in ultrasonic hearing (Lenhardt & Skellett et al., 1991).  
These are niche examples of several contributions of ultrasonics to speech processing, yet 
there are few examples of the implementation of low frequency ultrasound in speech 
augmentation (ultrasonic speech).  To consider further, let us first review the 
implementations of these methods. 
The history of ultrasonic speech goes as far back as 1987 when MacLeod filed a patent for a 
non audible speech generator system (MacLeod, 1987). The system augmented a series of 
pulses similar to the glottal pulse shape in ultrasonic frequency range of 15 to 105 kHz to the 
vocal tract. MacLeod considered the output at the mouth as being an amplitude modulation 
of the ultrasonic input. He then proposed the idea of passing the output to an ultrasonic 
detector where it was down converted to audible range to pursue a further goal of synthesis 
of artificial speech. He considered the injection transducer to be directly placed on the throat 
or in front of the mouth which was equipped with separate noise and pulse generation 
mechanisms to produce voiced and unvoiced phonemes.  
Based on the classification in the preamble of this section, MacLeod’s proposed system was 
a substitutive approach which converted a speaker’s silently mouthed words into 
synthesized audible speech. Other later authors mainly considered supplementary 
ultrasonic excitation, mostly for speech recognition. (Tosaya & Sliwa, 2002; 1999) patented a 
system which applied ultrasonic signal injection to the vocal tract to make the task of 
audible voice recognition more robust. Their system was proposed to enhance or replace the 
natural excitation with an artificial excitation for which ultrasound was considered an 
option. The injection points for the artificial excitation were proposed to include: outside 
and within the mouth, nasal passage and on the neck.  
Another instance of ultrasonic speech implementation was proposed by (Lahr, 2002). He 
considered the ultrasonic output of the VT as the third mode of a trimodal voice recognition 
system whose other two modes where audible voice and images of the lips, tongue and the 
teeth. In addition to greater transcription accuracy in the recognition task, the system was 
claimed to be capable of audible speech production when the speaker did not use vocal fold 
vibration and just shaped the VT in positions associated to several different voices. He 
elected to use the neck and mouth as possible injection points of 28 to 100 kHz excitations. 
He also stated that wearing a neck device was usually uncomfortable so he focused on 
signal injection over the lips where the mouth and teeth opening permitted the signal to 
penetrate in the VT. The ultrasonic output of his system was finally demodulated to the 
audible range and used directly as an input channel to a recognition system. 
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claimed to be capable of audible speech production when the speaker did not use vocal fold 
vibration and just shaped the VT in positions associated to several different voices. He 
elected to use the neck and mouth as possible injection points of 28 to 100 kHz excitations. 
He also stated that wearing a neck device was usually uncomfortable so he focused on 
signal injection over the lips where the mouth and teeth opening permitted the signal to 
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Recent	Advances	in	Signal	Processing516

 

Another implementation was reported by (Douglass, 2006), who used ultrasonic excitation 
to add value in improving the reliability of speech recognition. His excitation points were 
below the chin, on the neck, in front, and inside of the mouth. He proposed employing the 
same means of demodulating commonly used in radio broadcasting for the output 
ultrasonic signal. 

 
4.3 Necessary considerations for implementation 
There are several considerations which are necessary for implementation of an ultrasonic 
speech system. These considerations include, signal injection points, excitation waveforms, 
feature extraction method and hardware setup. 
As stated in section 4.2, in spite of its various applications, ultrasonic speech has been a little 
researched area and there have been few cases of attempts of implementation. One of the 
reasons for unpopularity might be problems associated with signal injection to the vocal 
tract. The choice of injection position has a great impact on system design. Ultrasound, as 
we have observed in section 3.1, reflects back almost totally from the air-tissue interface. 
Another strong reflecting boundary is the bone/soft tissue interface. The bone is normally 
avoided in ultrasound propagation, because it distorts the ultrasonic beam (Zangzebski, 
1996) (so we will not consider placing the transducer on the jaw or skull bones in this 
chapter). Consequently, injecting the signal through the bone or when the signal is going to 
face an air-tissue interface before entering the VT are not promising options. 
Nevertheless, the task of signal injection is possible via some considerations to prevent or 
compensate for injection problems. Possible injection points introduced by previous 
implementations include the throat, on the neck, against the cheek, in the nasal cavity, inside 
and in front of the mouth. Each of these injection points imposes special considerations to 
fulfil the task of augmentation of an ultrasonic excitation to the VT.  
As an example, for signal injection over the neck skin which has been used by (Lahr, 2002; 
MacLeod, 1987; Tosaya & Sliwa, 2002), the ultrasound wave propagates from the transducer 
to the air gap between the transducer and skin. As we have previously observed, this 
air/tissue boundary totally reflects the signal back. We can compensate for the effect of the 
reflection by using a coupling gel on the skin to eliminate the air from the transducer/skin 
interface. The signal entering the skin passes the tissue and encounters another tissue/air 
boundary before being able to enter the vocal tract where it will almost totally reflect back. 
So to consider signal injection over the neck skin we may need to apply the injection where 
the tissues are relatively thin to minimize reflection effects over the thin boundary. Another 
convenient option is signal injection in front of the mouth. 
Excitation signal waveform design is another task which could simplify and optimize the 
operation of the system. Another brain-storming task is the down conversion of ultrasonic 
output and extraction of features which will be used for the reconstruction or recognition of 
audible speech. Although some of the previously mentioned implementations have 
considered the demodulation of ultrasonic speech to gain the audible equivalent, when the 
resulting converted signal is going to provide features to produce audible speech, the design 
of ultrasonic speech systems will require greater attention. This chapter addresses a solution 
to this issue by mathematically proving the possibility of linear predictive analysis (LPA) of 
ultrasonic speech. LPA is one of the strong feature extraction facilities based on a linear 
source-filter model of speech production. Extension of LPA to the ultrasonic domain will 
significantly simplify processing and analysis requirements in the audible domain. 

 

The choice of hardware components in any ultrasonic system is another implementation 
consideration. Transducers are the core of a typical ultrasonic set up, fulfilling the task of 
transmit and receive, but ultrasonic system set up comprises several other hardware 
components including a signal generator to supply input energy to the transmitting 
transducer, and a data acquisition system to capture the signals for analysis.  

 
5. Human speech production anatomy and physiology 

The human speech production apparatus is well designed for the task of generating, 
modulating, and projecting intelligible sound.  Controlled, in part by the Broca nucleus in 
the frontal cortex and Wernicke nucleus in the temporal cortex of the brain, the muscles 
controlling lung exhalation, glottal tension, epiglottis, tongue, throat and lip position, must 
work in concert to create and modulate the sounds that make up language. 
Although speech can be considered as simply as a set of complex waveforms, and indeed 
sinewave speech can be created from simple waveforms (McLoughlin, 2009), it is in reality a 
complex and rich set of auditory symbols differentiated through several production 
mechanisms.  These are illustrated in figure 3, and include the following: 
 

 airflow from the lungs, either restricted, diverted through the nasal passages, 
around the tongue, through the lips or teeth, modulated in speed and intensity, or 
blocked momentarily, as in a plosive sound like /p/.  It is the job of the lungs to 
provide the airflow, and to modulate its intensity (although the glottis and lips can 
both be used to block airflow for a time). 

 pitch comes from the vibration of the flap-like vocal cords in the glottis, induced by 
airflow from the lungs.  As some muscles in the glottis tauten, the glottal opening 
narrows and the vibration consequently increases in frequency.  Pitch not only 
provides the characteristic frequency of our speech, but contributes a lexical 
meaning in several languages, particularly Chinese.  Perhaps the most important 
role of pitch, which is similar in many ways to a periodic pulse train, is to resonate 
through the vocal tract.  

 vocal tract geometry dictates the resonance patterns produced by the excitation.  A 
pitch train flowing through the VT causes these resonances which affect the 
frequency of the sound exiting the tract in much the same way as most wind 
instruments operate.  

 

Consider further this analogy with a wind instrument: a trumpet player relies upon a 
mouthpiece which, when blown, acts with the lips to produce a buzzing sound. This takes 
the place of the glottis in the speech production mechanism (and both examples require  
lungs to make the air move in the first place).  The annoying buzzing sound from a trumpet 
mouthpiece, when fed through the smooth tubes of a trumpet, results in a beautiful resonant 
horn sound.  Pressing or releasing the trumpet valves (keys) selects the tubes that the air 
passes through, resulting in different notes being played.  Similarly, the glottal vibration is 
modified by the vocal tract to produce speech sounds.  Changing the geometry of the vocal 
tract under muscular control changes the sounds produced in speech (McLoughlin, 2009). 
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Fig. 3. A cut-away diagram of the human speech production mechanism, namely the human 
head (top), along with a block diagram representation below, showing lung excitation 
causing pitch to be produced by the glottis, acted upon by the vocal tract, and emitted from 
the mouth and nose 
 
In speech, pitch is not present in all sounds: the vowel /a/ is voiced, meaning that it contains 
pitch, whereas the letter /f/ is unvoiced – meaning there is no pitch, so the sound is all lung 
excitation plus vocal tract shape.  However all vowels are voiced, as are many consonants.  
In ultrasonic speech production, an ultrasonic pulse-train usually replaces the pitch 
component generated by the glottis.  All other articulators remain: the lungs still exhale, and 
provide airflow for the quiet unvoiced sounds (which are around 16dB quieter than voiced 
sounds).  The tongue, lips and throat muscles still act together and the human brain can still 
direct the voice production apparatus to form words, as if whispering (which is naturally 
unvoiced).  The main difference being that the pulse-producing glottis does not resonate. 
Finally, understanding the speech production mechanism led many researchers to adopt a 
source-filter model for speech.  This model separates the sound source (lung and glottis), 
from the filter (vocal tract), and assumes that these two parts are independent, but when 
directed by the brain to act in concert, produce the required sounds.  Almost all modern 
speech analysis and processing systems rely heavily upon the source-filter model, and in 
particular assume that the filter part of the model can be represented by a linear polynomial 
function. It is this important relationship that we aim to establish for the case of LF 
ultrasonic speech. 

 

speech

glottal
vibration

lung
exhalation gain

vocal tract
shape

vocal
tract

resonance

lung excitation

glottis vibration

excitation pitch resonances

Vocal 
Tract

 resonance

Glottis Vibration

Lung Excitation

Lung 
Exhalation

Glottal
 Vibration

Vocal Tract
Shape Gain

SpeechExcitation Pitch Resonances

 

6. Modelling ultrasonic speech process  

Linear partial differential equations (PDEs) are the basic descriptors of linear systems, as a 
consequence of allowance to the principle of superposition (Coleman, 2005). Well known for 
benign impulse response and convolutional characteristics, linear time invariant (LTI) 
systems theory has underpinned the source-filter model of speech production for decades. 
The aim of this section is to derive a linear model for the propagation of ultrasonic signals 
through the vocal tract. We have seen in the previous sections that the assumptions of 
lossless propagation and ideal gas behaviour are plausible for small amplitude LF 
ultrasound propagation within the vocal tract. We commence our modelling from basic 
acoustic equations and apply these. 

 
6.1 Mathematical description of ultrasonic propagation in the VT 
The theory of acoustics stems from four main PDEs based on the conservation of mass, 
momentum and energy and also equations of the state of the medium (Blackstock, 2000), 
valid in three dimensional space over the frequency range of sound waves (including 
infrasound, audio and ultrasound). These equations are generally not linear but they are 
linearized in acoustics under several simplifying assumptions (Reynolds, 1981) and lead to 
the facilities of the theory of linear acoustics. We have theoretically described these 
assumptions earlier but will now review them mathematically before building on them 
further. 
The first assumption is to consider ultrasonic wave propagation to be an adiabatic (lossless) 
phenomenon. We observed that the main causes of attenuation in ultrasound frequencies in 
a fluid medium are heat conduction, relaxation and viscosity. We then observed in section 
3.2.1 that the effect of this attenuation in the frequency range of our application is negligible. 
So the process could be considered lossless (adiabatic) in which case, the equation of energy 
conservation will not be necessary (Blackstock, 2000). 
The remaining equations are conservation of momentum (9) and mass (10) and equations of 
state of the gas. These equations describe the evolution of pressure   and particle velocity 
vector  as functions of time t and three dimensional coordinates, . The general 
form of these equations is as stated below (Reynolds, 1981) where  is the density,  and  
are viscosity coefficients of the medium and  is the external excitation force.  

 

 

(9) 

 

(10) 

Equation (9) includes the divergence of a dyadic product which is defined as: 

 (11) 

where  is the  element of the vector . 
The system (9-10) is completed by the equation of state that gives the pressure as a function 
of the density and temperature. When the flow is adiabatic in a gas, that is, no heat is 
transferred to or from the gas, and is reversible, that is, the flow conditions can return to 



The	use	of	low-frequency	ultrasonics	in	speech	processing 519

 

 
Fig. 3. A cut-away diagram of the human speech production mechanism, namely the human 
head (top), along with a block diagram representation below, showing lung excitation 
causing pitch to be produced by the glottis, acted upon by the vocal tract, and emitted from 
the mouth and nose 
 
In speech, pitch is not present in all sounds: the vowel /a/ is voiced, meaning that it contains 
pitch, whereas the letter /f/ is unvoiced – meaning there is no pitch, so the sound is all lung 
excitation plus vocal tract shape.  However all vowels are voiced, as are many consonants.  
In ultrasonic speech production, an ultrasonic pulse-train usually replaces the pitch 
component generated by the glottis.  All other articulators remain: the lungs still exhale, and 
provide airflow for the quiet unvoiced sounds (which are around 16dB quieter than voiced 
sounds).  The tongue, lips and throat muscles still act together and the human brain can still 
direct the voice production apparatus to form words, as if whispering (which is naturally 
unvoiced).  The main difference being that the pulse-producing glottis does not resonate. 
Finally, understanding the speech production mechanism led many researchers to adopt a 
source-filter model for speech.  This model separates the sound source (lung and glottis), 
from the filter (vocal tract), and assumes that these two parts are independent, but when 
directed by the brain to act in concert, produce the required sounds.  Almost all modern 
speech analysis and processing systems rely heavily upon the source-filter model, and in 
particular assume that the filter part of the model can be represented by a linear polynomial 
function. It is this important relationship that we aim to establish for the case of LF 
ultrasonic speech. 

 

speech

glottal
vibration

lung
exhalation gain

vocal tract
shape

vocal
tract

resonance

lung excitation

glottis vibration

excitation pitch resonances

Vocal 
Tract

 resonance

Glottis Vibration

Lung Excitation

Lung 
Exhalation

Glottal
 Vibration

Vocal Tract
Shape Gain

SpeechExcitation Pitch Resonances

 

6. Modelling ultrasonic speech process  

Linear partial differential equations (PDEs) are the basic descriptors of linear systems, as a 
consequence of allowance to the principle of superposition (Coleman, 2005). Well known for 
benign impulse response and convolutional characteristics, linear time invariant (LTI) 
systems theory has underpinned the source-filter model of speech production for decades. 
The aim of this section is to derive a linear model for the propagation of ultrasonic signals 
through the vocal tract. We have seen in the previous sections that the assumptions of 
lossless propagation and ideal gas behaviour are plausible for small amplitude LF 
ultrasound propagation within the vocal tract. We commence our modelling from basic 
acoustic equations and apply these. 

 
6.1 Mathematical description of ultrasonic propagation in the VT 
The theory of acoustics stems from four main PDEs based on the conservation of mass, 
momentum and energy and also equations of the state of the medium (Blackstock, 2000), 
valid in three dimensional space over the frequency range of sound waves (including 
infrasound, audio and ultrasound). These equations are generally not linear but they are 
linearized in acoustics under several simplifying assumptions (Reynolds, 1981) and lead to 
the facilities of the theory of linear acoustics. We have theoretically described these 
assumptions earlier but will now review them mathematically before building on them 
further. 
The first assumption is to consider ultrasonic wave propagation to be an adiabatic (lossless) 
phenomenon. We observed that the main causes of attenuation in ultrasound frequencies in 
a fluid medium are heat conduction, relaxation and viscosity. We then observed in section 
3.2.1 that the effect of this attenuation in the frequency range of our application is negligible. 
So the process could be considered lossless (adiabatic) in which case, the equation of energy 
conservation will not be necessary (Blackstock, 2000). 
The remaining equations are conservation of momentum (9) and mass (10) and equations of 
state of the gas. These equations describe the evolution of pressure   and particle velocity 
vector  as functions of time t and three dimensional coordinates, . The general 
form of these equations is as stated below (Reynolds, 1981) where  is the density,  and  
are viscosity coefficients of the medium and  is the external excitation force.  

 

 

(9) 

 

(10) 

Equation (9) includes the divergence of a dyadic product which is defined as: 

 (11) 

where  is the  element of the vector . 
The system (9-10) is completed by the equation of state that gives the pressure as a function 
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their original values, the pressure is a function of the density only (Fahy, 2001), and the 
equation of state of the gas reduces to: 

 (12) 

Considering the equation of conservation of momentum (9), with adiabatic and reversible 
wave deformation in the medium, the next assumption is irrotational flow, . This 
assumption has been somehow challenged by the existence of rotational flows in turbulent 
and jet flows in the classical linear modelling of audible sound propagation in the vocal tract 
during articulation of unvoiced utterances.  
Due to the work of (Lighthill, 1952)  and (Goldstein, 1984)  the production of turbulent flow 
is governed by nonlinear equations of acoustics but once fully developed, we can describe 
its propagation as irrotational, governed by equations of linear acoustics (Crocker, 2007). We 
have conventionally used this assumption for the audible case, transferring the non-linearity 
of turbulent flow production to the source and dealing with the VT as a linear filter in the 
conventional source-filter modelling of the speech production system (Sinder, 1999). The 
same considerations apply to the ultrasonic range and make the assumption of   a 
plausible statement. 
The next step is to consider the effects of viscosity. Based on the discussions of section 3.2.2 
about negligible dispersive effects of viscosity for frequencies below 50 MHz and referring 
to section 3.2.1 about values of visco-thermal absorption coefficient of the air in the 
frequency range of the current application, we can consider  and  to be very small, to 
neglect the effects of viscosity for LF ultrasound propagating in the air. We may now rewrite 
(9) in a clearer notation of (13) for each   from 1 to 3 as:  

 
(13) 

Considering Small disturbances in pressure and density we will have (14, 15) where , , 
 are attributes of the medium at equilibrium state which are actually the time averages of 

,  and  respectively. “Acoustic pressure”  is introduced here then as the small variations 
of pressure around the equilibrium value  . 

 (14) 

 (15) 

Assuming the homogeneous (16) medium initially at rest (17):  

      ;       (16) 

 (17) 

And manipulating conditions of (14-17) in (13), the linear equation of conservation of 
acoustic momentum for a lossless homogeneous medium initially at rest is derived for 
ultrasonic propagation inside the vocal tract by (18): 

 (18) 

 

For the equation of conservation of mass (10), using the above assumptions of homogeneous 
medium, small disturbances and medium at rest (14-17), we can determine the following: 
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The equation of state for an ideal gas states that:  

�
� �

���
��� � ��  (20) 

Where � is the speed of sound. The dispersive effects of air medium are discarded in (20) 
based on the discussions of section 3.2.2. Taking the derivative of (20) with respect to time, 
we will have: 

��
�� � �� ����  (21) 

 Substituting (21) in (19) we would reach to the conservation of mass equation for ultrasonic 
propagation in the vocal tract:  

1
��

��
�� � ���� � � � (22) 

We would rewrite (18,22), i.e. lossless linear acoustic equations in (23,24) as the basic 
equations of ultrasound propagation in the vocal tract where � is the acoustic pressure and 
� is the acoustic velocity vector, ρ� is the static mass density of the medium and � is the 
adiabatic bulk modulus of the air:  

�� ���� � �� � � (23) 

��
�� � ��� � � � (24) 

As observed mathematically, the derivation of ultrasonic wave propagation in the vocal 
tract, with the simplifying assumptions which we have described in detail, has led to 
equations (23), (24) which are the general equations of linear acoustics, now applicable for 
ultrasonic propagation through the vocal tract.  

 
6.2 Vocal tract transfer function for ultrasonic speech 
In our approach to derive a linear model, in this section the VT transfer function is 
determined using the functional transformation method (FTM) which converts the linear 
PDEs to algebraic equations including boundary and initial conditions, similarly to Laplace 
transformation in ordinary PDEs (Rabenstein, 1999).  
Combining (23) and (24) yields the wave equation for ���� �� and ���� ��: 

�
��

���
��� � ��� � �      ;       ���

���
��� � ��� � �  (25) 

where  � � ������� is the three dimensional coordinates vector and � is the speed of sound. 
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For audible sound production, since the cross section of the VT is small compared to the 
wavelength, the wave can propagate along the tract axis and we can model the VT simply as 
a single narrow tube. However the smaller wavelength of ultrasound means the wave can 
propagate across the width of the tract and the resulting cross modes require (25) solving in 
three dimensions.  Thus the task of derivation of the three dimensional VT transfer function 
may not be as simple as the one dimensional wave equation for audible sound. We are 
considering the placement of the source in front of the mouth, however the general method 
is applicable to other injection positions. 
Representing VT volume as Ω and its boundary as Γ being comprised of boundaries Γ� (the 
glottis), Γ� (VT walls) and Γ� (the mouth), having ���, �� to be the ultrasonic excitation source 
placed in front of the mouth, the general boundary and initial conditions of ultrasonic wave 
propagation in the VT can be found, with  ���)  being the impedance of the VT and closed 
glottis walls, as:  
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(26) 

Defining linear differential operators: �� � ��
���, �� � �� � ��

��� � ��
��� � ��

���, we can rewrite (25) 
for pressure as: 

�
�� ������, ��� � ������, ��� � �    (27) 

Taking the Laplace transform of (27) and considering the initial conditions of (26), we 
convert differential operator ����� to the algebraic form: 
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),( sP r is the Laplace transform of ),( tp r . Next we seek another transform � which can 
convert the spatial differential operator �� to algebraic equations. Lacking a general 
transform similar to the Laplace transform in the spatial domain, the spatial Sturm-Liouville 
transform (SLT) (Rabenstein, 1999) is applied: 

������� � ������ � � ����� ���,Ω �����     (29) 

The dependence upon Laplace transform parameter (s) is omitted for convenience from this 
point on (so ),( sP r  is written as )(rP  for instance). The aim is to evaluate the kernel 
function ���, ���  so that: 

�����������= ���������� � Φ��Γ�            (30) 

Where �� is a scalar coefficient and Φ���� is a function which depends on the boundary 
conditions of the problem. To reach this goal, we first multiply (28.a) by ���, ���.  
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Next we take the integral � ��Ω , �� is the volume element. 
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Referring to the definition of the SL transform (29), (32) yields: 
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Considering �� � �� and by Green’s theorem (Rabenstein, 1999), the integral in (33) is: 
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��� is the surface element. Comparing (34), and (30), the first integral in the right hand side 
of (34) should be converted to a multiplicand of ������� (29). The second integral uses the 
values of ����� on the boundary Γ, which we have by the boundary conditions of (26). The 
last term is unwanted because we do not have the value of ������ over the boundary so we 
define kernel ���, ��� to fulfil the following requirements as: 

������, ��� � ������, ���
����, ��� � � � ��Γ  (35) 

Equation (35) is the well known Helmholtz equation (Blackstock, 2000) and its general solution 
relies strongly to the geometry Ω. Values of ���, ���, �� are Eigen functions and Eigen values 
of the operator �� � �� (Rabenstein, 1999). We then substitute the results in (33): 
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Referring to the definition of SLT (29) and substituting the values of ����� from boundary 
conditions  (28.a,b), we may rewrite (36) as:  
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(37) 

Equation (37), where ������, Γ�, ��� � � ���, ����������� , is the general equation relating 
the output ������ of the VT to the input ���� and initial and boundary conditions.  
Considering hard walls for both the vocal tract and closed glottis, ���� �� (based on the 
impedance values of the soft tissue in section 3.1) and ������� � �, i.e. zero initial conditions, 
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For audible sound production, since the cross section of the VT is small compared to the 
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relies strongly to the geometry Ω. Values of ���, ���, �� are Eigen functions and Eigen values 
of the operator �� � �� (Rabenstein, 1999). We then substitute the results in (33): 

1
�� �

������� � 1
�� ������� �� ������, �������

Ω
�� �� ����, ���������

�
� ������� (36) 

Referring to the definition of SLT (29) and substituting the values of ����� from boundary 
conditions  (28.a,b), we may rewrite (36) as:  

� ��� �� � ����������= �
�� ������� � ���� ����

���� ���, �������,� � � ���, ����������� �
�
�� ������� � ���� ��������� , Γ�,�, ��� � ������, Γ�, ���   

(37) 

Equation (37), where ������, Γ�, ��� � � ���, ����������� , is the general equation relating 
the output ������ of the VT to the input ���� and initial and boundary conditions.  
Considering hard walls for both the vocal tract and closed glottis, ���� �� (based on the 
impedance values of the soft tissue in section 3.1) and ������� � �, i.e. zero initial conditions, 
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and ���, �� � ���� meaning that the ultrasound source has uniform spatial distribution 
pattern, which is a plausible simplification we have: 

������, Γ�, ��� � �� ���, �����Γ�
   (38) 

And consequently: 
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Since ������ � �������, we need to take the inverse SL transform (Rabenstein, 1999) to reach 
����. 
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���� � ���, �� is the Laplace transform of ���, ��. Using simplifications of (39), (40) becomes: 
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And consequently we will reach the transfer function of vocal tract for ultrasonic speech: 
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� � �� �� 1
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�
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��
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����is the three dimensional transfer function of the vocal tract when excited in front of the 
mouth which explicitly is a function of � but in its formation, the integrals were on the 
geometry of volume Ω and its boundaries Γ, so ���� is strongly relied on the definition of 
the geometry. Thus the three-dimensional wave equation applied to the near-audio 
ultrasonic speech, with several realistic assumptions as described, yields the linear transfer 
function (42). 

 
6.3 Linear source filter model for ultrasonic speech 
Showing the Laplace transform parameter (s) again – which we had omitted in our 
equations up to the point for simplicity - we recall that ���� was actually ���, ��, the 
Laplace transform of  ���, ��. If sampling time intervals are small enough to consider the VT 
shape pseudo-static, a system with transfer function ���, �� will be an LTI system, leading to 
a convolutional relation between its output and input as (43). So ���, �� can be considered as 
a linear time-invariant (LTI) filter for small time intervals and by the benefit of LTI systems, 
the conventional source-filter model of audible speech can be extended to cover ultrasonic 
speech production. 

���, �� � ���, �� � ����   (43) 

The classical source-filter modelling of VT enjoys independence between source and filter. 
In the case of ultrasonic speech, the source and the filter are intrinsically independent.  

 

7. Extension of LPA to the analysis of ultrasonic speech 
In the previous section, linear source filter model of speech production was mathematically 
proven to be valid for ultrasonic speech. Linear source filter modelling of ultrasonic speech 
is the basis of linear predictive analysis as a powerful feature extraction method as will be 
observed in this section.  
The Z transform of ���� ��, can be described as an IIR filter as in (44). 

���� �� � ∑ ������������
� � ∑ ������������

 
(44) 

There is a need to inspect the dependence of ���� �� on coordinates vector � more carefully. 
The VT is a resonant cavity and at ultrasonic frequencies will have cross modes of 
resonance. If the excitation signal is a sine function of the same frequency of one of the 
modes of the resonance, a standing wave of that frequency will form and as a consequence 
of linearity, the output wave at any point, except nodes, will have the same frequency as the 
input. The impulse function is the integral sum of an infinite number of sine waves in the 
time domain. As another consequence of LTI systems, the response of the VT to the impulse 
will be the summation of its output to sine waves of all frequencies including all its 
resonances with different amplitudes. Accordingly although the transfer function would 
have different values in different �, it will have the same set of common poles as the 
resonances of the tract. These common resonances can be calculated with several methods as 
per (Haneda & Makino et al., 1994). 
Linear predictive analysis utilizes the autoregressive (all pole) representation of the transfer 
function of VT and provides the procedures to evaluate the coefficients of the denominator. 
The same procedure can be applied to the Z transform of the VT transfer function in (44) 
which as the transfer function of a minimum phase system, has both poles and zeros inside 
the unit circle and can be represented as an all pole transfer function, with any zeros being 
approximated by additional poles (Rabiner & Schafer, 1978).  

 
8. Open research questions 
This chapter has presented a mathematical model for ultrasound propagation in the vocal tract 
and has proven the possibility of application of linear predictive analysis to the ultrasonic 
speech. The source-filter model of speech production and LPA are the basic building blocks of 
audible speech processing. Expanding their implementation to ultrasonic speech is the major 
basis of implementation of this technology. Having the findings of this chapter in hand, 
ultrasonic speech can begin to enjoy further research effort to reach a state of maturity. 
For ultrasonic speech, an ultrasound excitation is injected into the vocal tract. The choice of 
optimum excitation point and excitation signal wave-form is a topic for further research. 
Based on the achievements of this chapter, the ultrasonic speech at the output of the mouth 
can be treated as the output of a LTI source-filter model and can be subjected to LPA 
analysis to retrieve a set of common poles of the transfer function. The extracted features, 
converted to a set of parameters, are suitable for production of audible speech. Efficient and 
accurate down-conversion is also a topic of further research which involves the choice of 
suitable deterministic or statistic conversion methods. 
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geometry of volume Ω and its boundaries Γ, so ���� is strongly relied on the definition of 
the geometry. Thus the three-dimensional wave equation applied to the near-audio 
ultrasonic speech, with several realistic assumptions as described, yields the linear transfer 
function (42). 
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a linear time-invariant (LTI) filter for small time intervals and by the benefit of LTI systems, 
the conventional source-filter model of audible speech can be extended to cover ultrasonic 
speech production. 

���, �� � ���, �� � ����   (43) 

The classical source-filter modelling of VT enjoys independence between source and filter. 
In the case of ultrasonic speech, the source and the filter are intrinsically independent.  

 

7. Extension of LPA to the analysis of ultrasonic speech 
In the previous section, linear source filter model of speech production was mathematically 
proven to be valid for ultrasonic speech. Linear source filter modelling of ultrasonic speech 
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will be the summation of its output to sine waves of all frequencies including all its 
resonances with different amplitudes. Accordingly although the transfer function would 
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which as the transfer function of a minimum phase system, has both poles and zeros inside 
the unit circle and can be represented as an all pole transfer function, with any zeros being 
approximated by additional poles (Rabiner & Schafer, 1978).  

 
8. Open research questions 
This chapter has presented a mathematical model for ultrasound propagation in the vocal tract 
and has proven the possibility of application of linear predictive analysis to the ultrasonic 
speech. The source-filter model of speech production and LPA are the basic building blocks of 
audible speech processing. Expanding their implementation to ultrasonic speech is the major 
basis of implementation of this technology. Having the findings of this chapter in hand, 
ultrasonic speech can begin to enjoy further research effort to reach a state of maturity. 
For ultrasonic speech, an ultrasound excitation is injected into the vocal tract. The choice of 
optimum excitation point and excitation signal wave-form is a topic for further research. 
Based on the achievements of this chapter, the ultrasonic speech at the output of the mouth 
can be treated as the output of a LTI source-filter model and can be subjected to LPA 
analysis to retrieve a set of common poles of the transfer function. The extracted features, 
converted to a set of parameters, are suitable for production of audible speech. Efficient and 
accurate down-conversion is also a topic of further research which involves the choice of 
suitable deterministic or statistic conversion methods. 
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Finally, as ultrasonic speech involves long term exposure to ultrasound frequencies below 
100 kHz, medical standards in place relating to the health effects of the technology need to 
be assessed and possibly revised as a pre-condition to widespread adoption. 

 
9. Conclusion 

This chapter has presented ultrasonic speech as a novel application of ultrasound in speech 
augmentation. Ultrasonic speech, operating by replacing the natural excitation in audible 
speech with an LF ultrasonic signal, has applications in speech augmentation for the speech 
rehabilitation and secure communications communities. This chapter has studied the 
requirements in modelling ultrasonic speech as a linear system of sound propagation and 
has proven that LPA, a major tool in the analysis of normal speech, is also extendible to 
ultrasonic speech. 
In pursuing this aim, we first introduced the attributes of ultrasonic propagation in a linear 
lossless gas medium. We observed that if the sound propagation is an adiabatic procedure 
and the gas obeys the ideal gas law and with small disturbances in the medium as a result of 
wave propagation, the gas medium can be considered a linear lossless medium for 
ultrasound propagation. We then discussed deviations of these conditions for ultrasound 
propagation in the air medium. 
Subsequently, LF ultrasound was introduced, and the impacts of the deviations of linear 
acoustic behaviour were numerically analyzed for propagation of low frequency ultrasound in 
the vocal tract. Then we considered the application of LF ultrasound in speech augmentation 
and discussed the aspects of system design which seek more attention. By a review of previous 
implementations, we investigated how they had addressed these aspects including the 
injection points and methods of down-conversion to audible domain. 
Afterwards we considered the physiology and anatomy of the human speech production 
mechanism and how we can substitute the natural excitation with an ultrasonic waveform in 
speech augmentation. We also stated that the ultrasonic excitation could be applied as a 
supplement to natural excitation to provide additional data for speech processing applications. 
The chapter then demonstrated a linear modelling scheme in addition to the fact that speech 
LPA tools can be extended to sound propagation at lower ultrasonic frequencies.  Starting 
with basic wave equations, and making several simplifying assumptions such as rigid walls 
for closed glottis and VT, relatively small signal disturbance, and a spatially flat (uniform) 
excitation source , the VT has been shown to be LTI with the transfer function in the form of 
a pole-zero IIR filter.  By means of this derivation, the conventional source-filter model was 
proven to be extendable for an ultrasonic speech production system, and thus the powerful 
tools of LPA can be used. 
In this chapter we have tried to bridge from audible speech processing methods to 
ultrasonics by mathematically and physically demonstrating that the extension of principles 
of audible speech processing to the analysis of ultrasonic speech is plausible. This 
significantly simplifies ultrasonic speech processing. The currently neglected area of LF 
ultrasonics research in speech analysis and processing can now be explored with relative 
ease.  Further research effort is necessary, and welcomed in this area, as it moves toward 
further maturity and future real-life applications. 
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Finally, as ultrasonic speech involves long term exposure to ultrasound frequencies below 
100 kHz, medical standards in place relating to the health effects of the technology need to 
be assessed and possibly revised as a pre-condition to widespread adoption. 

 
9. Conclusion 

This chapter has presented ultrasonic speech as a novel application of ultrasound in speech 
augmentation. Ultrasonic speech, operating by replacing the natural excitation in audible 
speech with an LF ultrasonic signal, has applications in speech augmentation for the speech 
rehabilitation and secure communications communities. This chapter has studied the 
requirements in modelling ultrasonic speech as a linear system of sound propagation and 
has proven that LPA, a major tool in the analysis of normal speech, is also extendible to 
ultrasonic speech. 
In pursuing this aim, we first introduced the attributes of ultrasonic propagation in a linear 
lossless gas medium. We observed that if the sound propagation is an adiabatic procedure 
and the gas obeys the ideal gas law and with small disturbances in the medium as a result of 
wave propagation, the gas medium can be considered a linear lossless medium for 
ultrasound propagation. We then discussed deviations of these conditions for ultrasound 
propagation in the air medium. 
Subsequently, LF ultrasound was introduced, and the impacts of the deviations of linear 
acoustic behaviour were numerically analyzed for propagation of low frequency ultrasound in 
the vocal tract. Then we considered the application of LF ultrasound in speech augmentation 
and discussed the aspects of system design which seek more attention. By a review of previous 
implementations, we investigated how they had addressed these aspects including the 
injection points and methods of down-conversion to audible domain. 
Afterwards we considered the physiology and anatomy of the human speech production 
mechanism and how we can substitute the natural excitation with an ultrasonic waveform in 
speech augmentation. We also stated that the ultrasonic excitation could be applied as a 
supplement to natural excitation to provide additional data for speech processing applications. 
The chapter then demonstrated a linear modelling scheme in addition to the fact that speech 
LPA tools can be extended to sound propagation at lower ultrasonic frequencies.  Starting 
with basic wave equations, and making several simplifying assumptions such as rigid walls 
for closed glottis and VT, relatively small signal disturbance, and a spatially flat (uniform) 
excitation source , the VT has been shown to be LTI with the transfer function in the form of 
a pole-zero IIR filter.  By means of this derivation, the conventional source-filter model was 
proven to be extendable for an ultrasonic speech production system, and thus the powerful 
tools of LPA can be used. 
In this chapter we have tried to bridge from audible speech processing methods to 
ultrasonics by mathematically and physically demonstrating that the extension of principles 
of audible speech processing to the analysis of ultrasonic speech is plausible. This 
significantly simplifies ultrasonic speech processing. The currently neglected area of LF 
ultrasonics research in speech analysis and processing can now be explored with relative 
ease.  Further research effort is necessary, and welcomed in this area, as it moves toward 
further maturity and future real-life applications. 
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